
QUANTUM INTERFERENCE
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About complex numbers, called probability amplitudes, that, unlike probabilities, can cancel
each other out, leading to quantum interference and qualitatively new ways of processing
information.

The classical theory of computation usually does not refer to physics. Pioneers such
as Alan Turing, Alonzo Church, Emil Post and Kurt Gödel managed to capture the
correct classical theory by intuition alone and, as a result, it is often falsely assumed
that its foundations are self-evident and purely abstract. They are not! The concepts Computation is a physical process!

Computation is a physical process!
Computation is a physical process!
Computation is...
Computation...

of information and computation can be properly formulated only in the context of a
physical theory – information is stored, transmitted and processed always by phys-
ical means. Computers are physical objects and computation is a physical process.
Indeed, any computation, classical or quantum, can be viewed in terms of physi-
cal experiments, which produce outputs that depend on initial preparations called
inputs. Once we abandon the classical view of computation as a purely logical no-
tion independent of the laws of physics it becomes clear that whenever we improve
our knowledge about physical reality, we may also gain new means of computation.
Thus, from this perspective, it is not very surprising that the discovery of quantum
mechanics in particular has changed our understanding of the nature of computation.
In order to explain what makes quantum computers so different from their classical
counterparts, we begin with the rudiments of quantum theory.

1.1. Two basic rules. Quantum theory, at least at some instrumental level, can be
viewed as a modification of probability theory. We replace positive numbers (prob-
abilities) with complex numbers z (probability amplitudes) such that the squares of
their absolute values, |z|2, are interpreted as probabilities. The rules for combining

The correspondence between prob-
ability amplitude z and probability
p = |z|2 is known as Born’s Rule.

Born’s Rule
amplitudes are very reminiscent of the rules for combining probabilities:

z1
z2

z = z1z2

Whenever something can happen in a se-
quence of independent steps, we multiply
the amplitudes of each step.

z1

z2

z = z1 + z2

Whenever something can happen in several
alternative ways, we add the amplitudes for
each separate way.

That’s it! These two rules are basically all you need to manipulate amplitudes in any
physical process, no matter how complicated. (we will amend the two rules later
on when we touch upon the particle statistics). They are universal and apply to any
physical system, from elementary particles through atoms and molecules to white
dwarfs stars. They also apply to information for, as we have already emphasised,
information is physical. The two rules look deceptively simple but, as you will see in
a moment, their consequences are anything but trivial.

1.2. Quantum interference and the failure of probability theory. Modern mathe-
matical probability theory is based on three axioms, proposed by Andrey Nikolae-
vich Kolmogorov (1903–1987) in his monograph with the impressive German title
Grundbegriffe der Wahrscheinlichkeitsrechnung (Foundations of Probability Theory). The
Kolmogorov axioms are simple and intuitive. Once you identify all elementary out-
comes, or events, you may then assign probabilities to them. Probability is a number
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between 0 and 1, and an event which is certain has probability 1. These are the first
two axioms. There is one more. The probability of any event can be calculated using
a deceptively simple rule - the additivity axiom:

Whenever an event can occur in several mutually exclusive ways, the
probability for the event is the sum of the probabilities for each way
considered separately.

Obvious, isn’t it? So obvious, in fact, that probability theory was accepted as a
mathematical framework theory, a language that can be used to describe actual phys-
ical phenomena. Physics should be able to identify elementary events and assign
numerical probabilities to them. Once this is done we may revert to mathematical
formalism of probability theory. The Kolmogorov axioms will take care of the mathe-
matical consistency and will guide us whenever there is a need to calculate probabili-
ties of more complex events. This is a very sensible approach apart from the fact that
it does not always work! Today, we know that probability theory, as ubiquitous as
it is, fails to describe many common quantum phenomena. In order to see the need
for quantum theory let us consider a simple experiment in which probability theory
fails to give the right predictions. In a double slit experiment a particle emitted from
a source S can reach detector D by taking two different paths, e.g. through an upper
or a lower slit. After sufficiently many repetitions of this experiment we can evaluate
the frequency of clicks in the detector D and show that it is inconsistent with the pre-
dictions based on the probability theory. Let us use the quantum approach to show
how the discrepancy arises.

The particle emitted from a source S can reach detector D by taking two different
paths, e.g. through an upper or a lower slit, with amplitudes z1 and z2 respectively.
We may say that the upper slit is taken with probability p1 = |z1|2 and the lower
slit with probability p2 = |z2|2. These are two mutually exclusive events. With the
two slits open, probability theory declares (the additivity axiom) that the particle
should reach the detector with probability p1 + p2 = |z1|2 + |z2|2. Wrong! Following
the “quantum rules”, first we add the amplitudes and then we square the absolute
value of the sum to get the probability. Thus, the particle will reach the detector with
probability

S

D

z1

z2

z = z1 + z2

p = |z|2 = |z1 + z2|2 = |z1|2 + |z2|2 + z?1z2 + z1z?2 ,

= p1 + p2 + |z1||z2|(ei(ϕ2−ϕ1) + e−i(ϕ2−ϕ1)),

= p1 + p2 + 2
√

p1 p2 cos(ϕ2 − ϕ1),

= p1 + p2 + interference terms, (1)

where we have expressed the amplitudes in their polar forms z1 = |z1|eiϕ1 and
z2 = |z2|eiϕ2 . The appearance of the interference terms marks the departure from
the classical theory of probability. The probability of any two seemingly mutually
exclusive events is the sum of the probabilities of the individual events, p1 + p2, mod-
ified by the interference term, 2

√
p1 p2 cos(ϕ2 − ϕ1). Depending on the relative phase

ϕ2− ϕ1, the interference term can be either negative (destructive interference) or pos-
itive (constructive interference), leading to either suppression or enhancement of the
total probability p.

p1 + p2

1

destructive interference

constructive interference

relative phase

p (probability)

The algebra is simple, our focus is on the physical interpretation. Firstly, note that
the important quantity here is the relative phase ϕ2 − ϕ1 rather than the absolute
values ϕ1 and ϕ2. This observation is not trivial at all. If a particle reacts only to the
difference of the two phases, each pertaining to a separate path, then it must have,
somehow, experienced the two paths, right? Thus we cannot say that the particle has
travelled either through the upper or the lower slit, it has travelled through both. In the
same way quantum computers follow, in some tangible way, all computational paths
simultaneously, producing answers that depend on all these alternative calculations.
Weird, but this is how it is! Secondly, what has happened to the axiom of additivity
in probability theory, what is wrong with the additivity axiom? One thing that is
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wrong is the assumption that the processes of taking the upper or the lower slit are
mutually exclusive. In reality, as we have just mentioned, the two transitions both
occur, simultaneously. However, we cannot learn this from probability theory, or any
other a priori mathematical construct. There is no fundamental reason why Nature
should conform to the additivity axion. We find out how nature works by making According to the philosopher Karl Popper

(1902–1994) a theory is genuinely scientific
only if it is possible, in principle, to establish
that it is false. Genuinely scientific theories
are never finally confirmed because no
matter how many confirming observations
have been made observations that are
inconsistent with the empirical predictions of
the theory are always possible.

intelligent guesses, running experiments, checking what happens and formulating
physical theories. If our guess disagrees with experiments it is wrong, so we try
another intelligent guess, and another, etc. Right now quantum theory is the best
guess we have; it offers good explanations and predictions that have not been falsified
by any of the existing experiments. This said, be assured that one day quantum theory
will be falsified and we will have to start guessing again.

1.2.1. Example: One of the simplest quantum devices in which quantum interference
can be controlled is a Mach-Zehnder interferometer.

1

2

Input 1

Input 2

Beam 1

Beam 2

ϕ1

ϕ2

It consists of two beam-splitters (the square boxes, bottom left and top right) and
two slivers of glass of different thickness which are inserted into each of the optical
paths connecting the two beam-splitters. The slivers are usually referred to as “phase
shifters” and their thicknesses, ϕ1 and ϕ2, are measured in units of the photon’s wave-
length multiplied by 2π. The two inputs ports of the interferometer are labelled as
1 and 2, and each of the two output ports, also labelled as 1 and 2, terminates in a
photodetector. A photon (the orange dot) impinges on the first beam-splitter from
one of the two input ports, here input 1, and begins its journey towards one of the
two photodetectors. Let Uij denotes the probability amplitude that the photon ini-
tially in input port j = 1, 2 ends up in detector i = 1, 2 (here, and in the following,
index i should not be confused with the imaginary unit). At each of the two beam-
splitters the photon is transmitted with the probability amplitude

√
T and reflected

with the probability amplitude i
√

R, (R + T = 1), and the two phase shifters modify
the amplitudes by phase factors, eiϕ1 and eiϕ2 , respectively. In quantum theory we
almost always start with the amplitudes and once we have a full expression for the
amplitude of a given outcome we square its absolute value to get the corresponding
probability. For example, let us calculate U11. We notice that there are two alternative
ways for the photon in the input port 1 to end up in the output port 1. It can take the
lower path, through the phase shifter ϕ1, or the upper path, through the phase shifter
ϕ2. The lower path implies two consecutive transmissions at the beamsplitters and
the phase factor eiϕ1 , whereas the upper path implies two consecutive reflections and
the phase factor eiϕ2 . Once the photon ends in the output port 1 there is no way of
knowing which path was taken, thus we add the amplitudes pertaining to each path.
The resulting amplitude is

U11 =
√

Teiϕ1
√

T + i
√

Reiϕ2 i
√

R,



QUANTUM INTERFERENCE 4

and the corresponding probability P11 = |U11|2 reads

P11 = |
√

Teiϕ1
√

T + i
√

Reiϕ2 i
√

R|2 = |Teiϕ1 − Reiϕ2 |2

= T2 + R2 − 2TR cos(ϕ2 − ϕ1).

The “classical” part of this expression, T2 + R2, basically says that the photon un-
(T − R)2

T2 + R2

1

relative phase

Pr(detector 2 clicks)

dergoes either two consecutive transmissions with probability T2, or two consecutive
reflections with probability R2. The probability of being transmitted through any
phase shifter is always 1, hence the phase shifters play no role in the classical descrip-
tion of this process. But the classical description is not correct, as the experiments
show, and hence the interference term 2TR cos(ϕ2 − ϕ1), in which the phase shifters
play the essential role. Depending on the relative phase ϕ = ϕ2 − ϕ1 the probability
that the detector 1 “clicks” can vary from (T − R)2, for ϕ = 0, to 1 for ϕ = π.

If we do not care about the experimental details, we can represent the action of the
Mach-Zehnder interferometer in terms of a diagram:

2

1

2

1

first beamsplitter phase shifts second beamsplitter

√
T

i
√

R

i
√

R

√
T

eiϕ2

eiϕ1

√
T

i
√

R

i
√

R

√
T

Here, we can follow, from left to right, the multiple different paths that a photon
can take in between specific input and output ports. The amplitude for any given
path is just the product of the segments, while the overall amplitude is the sum
of the amplitudes for the many different paths. You can, for example, see that the
probability amplitude U21 is given by

U21 =
√

Teiϕ1 i
√

R + i
√

Reiϕ2
√

T,

and the corresponding probability

P21 = |
√

Teiϕ1 i
√

R + i
√

Reiϕ2
√

T|2

= 2RT + 2RT cos(ϕ2 − ϕ1).

Again, the first term is of “classical” origin and represents probabilities correspond-
ing to each path, one reflection followed by one transmission plus one transmission
followed by one reflection, that is, RT + TR = 2RT. The second term is the interfer-
ence term. Clearly, the photon entering port 1 will end up in one of the two detectors,
hence,

P11 + P21 = R2 + 2RT + T2 = (T + R)2 = 1.

The action of the interferometer is fully described by the four probability amplitudes
Uij (i, j = 1, 2). The most popular instance of a Mach-Zehnder interferometer involves
only symmetric beamsplitters (R = T = 1

2 ) and is fully described by the matrix In general, any isolated quantum device,
including a quantum computer, can be
described by a matrix of probability
amplitudes Uij that input j generates output
i. Watch the order of indices.

U =

[
− sin ϕ/2 cos ϕ/2

cos ϕ/2 sin ϕ/2

]
,

where ϕ = ϕ2 − ϕ1. In fact, when you do all the calculations you obtain iei ϕ1+ϕ2
2 U

rather than U, but the global phase factor iei ϕ1+ϕ2
2 is common to all the amplitudes in

the matrix and as such it does not contribute to the resulting probabilities (why?).
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1.3. Computation. Think about computation as a physical process that evolves a pre-
scribed initial configuration of a computing machine, called input, into some final
configuration, called output. We shall refer to the configurations as states. The dia-
gram below shows five consecutive computational steps performed on four distinct
states.

input

output

DETERMINISTIC

That computation was deterministic – every time you run it with the same input, you
get the same output. Such a computation does not have to be deterministic – we
can augment a computing machine by allowing it “to toss an unbiased coin” and to
choose its steps randomly. It can then be viewed as a directed, tree-like graph where
each node corresponds to a state of the machine, and each edge represents one step
of the computation.

input

p = p1 + p2

PROBABILISTIC

The computation starts from some initial state (input) and it subsequently branches
into other nodes representing states reachable with non-zero probability from the ini-
tial state. The probability of a particular final state (output) being reached is equal
to the sum of the probabilities along all mutually exclusive paths which connect the
initial state with that particular state. The diagram above shows only two compu-
tational paths, but, in general, there could be many more of them (here, up to 256)
paths contributing to the final probability. Quantum computation can be represented
by a similar graph:

input

p = p1 + p2 + 2
√

p1 p2 cos(ϕ2 − ϕ1)

QUANTUM

We associate with each edge in the graph the probability amplitude that the computa-
tion follows that edge. The probability amplitude of a particular path to be followed
is the product of amplitudes pertaining to transitions in each step. The probability
amplitude of a particular final state being reached is equal to the sum of the am-
plitudes along all mutually exclusive paths which connect the initial state with that
particular state,

z = ∑
all paths k

zk.

The resulting probability, as we have just seen, is the sum of the probabilities pertain-
ing to each computational path pk modified by the interference terms,

p = |z|2 = ∑
k,j

z?j zk = ∑
k

pk + ∑
k 6=j

√
pk pj cos(ϕk − ϕj).
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Quantum computation can be viewed as a complex multiparticle quantum in-
terference involving many computational paths through a computing device.
The art of quantum computation is to shape quantum interference, through
a sequence of computational steps, enhancing probabilities of correct outputs
and suppressing probabilities of the wrong ones.

1.4. Computational Complexity. Is there a compelling reason why we should care
about quantum computation? It may sound like an extravagant way to compute
something that can be computed anyway. Indeed, your standard laptop, given enough
time and memory, can simulate pretty much any physical process. In principle, it can The age of the Universe is currently

estimated at 13.772 billion yearsalso simulate any quantum interference and compute everything that quantum com-
puters can compute. The snag is, this simulation, in general, is very inefficient. And
efficiency does matter, especially if you have to wait more than the age of the Universe
for your laptop to stop and deliver an answer!

In order to solve a particular problem, computers (classical or quantum) follow a
precise set of instructions — an algorithm. Computer scientists quantify the efficiency
of an algorithm according to how rapidly its running time, or the use of memory,
increases when it is given ever larger inputs to work on. An algorithm is said to be
efficient if the number of elementary operations taken to execute it increases no faster
than a polynomial function of the size of the input. We take the input size to be the Notice that the technological progress alone,

such as increasing the speed of classical
computers, will never turn an inefficient
algorithm (exponential scaling) into an
efficient one (polynomial scaling). Why?

total number of binary digits (bits) needed to specify the input. For example, using
the algorithm taught in elementary school, one can multiply two n digit numbers in a
time that grows like the number of digits squared, n2. In contrast, the fastest-known
method for the reverse operation—factoring an n-digit integer into prime numbers—
takes a time that grows exponentially, roughly as 2n. That is considered inefficient.

The class of problems that can be solved by a deterministic computer in poly-
nomial time is represented by the capital letter P, for polynomial time. The class of
problems that can be solved in polynomial time by a probabilistic computer is called
BPP, for bounded-error probabilistic polynomial time. It is clear that BPP contains P,
since a deterministic computation is a special case of a probabilistic computation in
which we never consult the source of randomness. When we run a probabilistic, aka
randomised, computation many times on the same input, we will not get the same
answer every time, but the computation is useful if the probability of getting the right
answer is high enough. Finally, the complexity class BQP, for bounded-error quan-

P

BPP

BQP

tum polynomial, is the class of problems that can be solved in polynomial time by a
quantum computer. Since a quantum computer can easily generate random bits and
simulate a probabilistic classical computer, BQP certainly contains the class BPP. Here
we are interested in problems that are in BQP but not known to be in BPP. The most
popular example of such a problem is factoring. A quantum algorithm, discovered by
Peter Shor in 1994, can factor n-digit numbers in a number of steps that grows only
as n2. Since the intractability of factorisation underpins the security of many meth- It must be stressed that not all quantum

algorithms are so efficient, in fact many are
no faster than their classical counterparts.
Which particular problems will lend
themselves to quantum speed-ups is an open
question.

ods of encryption Shor’s algorithm was soon hailed as the first ‘killer application’ for
quantum computation, something very useful that only a quantum computer could
do. Since then, the hunt has been on for interesting things for quantum computers
to do, and at the same time, for the scientific and technological advances that could
allow us to build quantum computers.

1.5. Quantum decoherence. In principle we know how to build quantum computers
out of simple components, such as qubits (quantum bits) and quantum logic gates. We
will describe these components in detail in the subsequent lectures. However, as the
number of quantum components increases, we quickly run into some serious practical
problems. The more interacting components are involved, the harder it tends to be to
engineer the interactions that would cause the necessary gate operations and induce
quantum interference without introducing errors. The more components there are,
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the more likely it is that quantum interference will spread outside the quantum com-
puter, to the surrounding environment, thus spoiling the computation. This process
is called decoherence. In order to understand the essence of decoherence consider the
following two different scenarios in which a quantum computer is prepared in some
input state I and generates output O

I O

z1

z2

p = |z1 + z2|2

The computer is isolated and quantum com-
putation does not affect the environment.
The computer and the environment evolve
independently from each other and, as a
result, the environment does not hold any
physical record of how the computer reached
output O. In this case we add the amplitudes
for each of the two alternative computational
paths.

I
O1

O2

z1

z2

p = |z1|2 + |z2|2

Quantum computation affects the environ-
ment. The environment now holds a physi-
cal record of how the computer reached out-
put O, which results in two final states of the
composed system (computer + environment)
which we denote O1 and O2. We add the
probabilities for each of the two alternative
computational paths.

The addition of probability amplitudes, rather than probabilities, applies to physical
system which are completely isolated. When quantum computation affects the envi-
ronment we have to include the environment in our analysis for it now takes part in
the computation, i.e. our isolated system is now composed of a quantum computer
and its environment. Depending on which computational path was taken the envi-
ronment may end up in two distinct states. The computer itself may show output
O but when we include the environment we have not one but two outputs, O1 and
O2, denoting, respectively, “computer shows output O and the environment knows
that path 1 was taken” and “computer shows output O and the environment knows
that path 2 was taken”. There are no alternative ways of reaching O1 or O2 hence
there is no interference and the corresponding probabilities read p1 = |z1|2 for O1,
and p2 = |z2|2 for O2. The probability that the computer shows output O, regardless
the state of the environment, is the sum of of the two probabilities p = p1 + p2. We
have lost the interference term and with it any advantages of quantum computation.
In the presence of decoherence the interference formula Eq.(1) is modified and reads,

p = p1 + p2 + 2v
√

p1 p2 cos(ϕ2 − ϕ1),

where the parameter v, called the “visibility” of the interference pattern, ranges from
0 (the environment can perfectly distinguish between the two paths, total decoher-
ence, no interference) to 1 (the environment cannot distinguish between the two paths,
no decoherence, full interference), with the values in between corresponding to partial
decoherence. We shall derive this formula later on and you will see that v quantifies
the degree of distinguishability between O1 and O2. The more environment knows
about which path was taken the less interference we see. Decoherence suppresses quantum

interference.

p1 + p2

1

relative phase

p (probability)

Decoherence is chiefly responsible for our classical description of the world – without
interference terms we may as well add probabilities instead of amplitudes. While
decoherence is a serious impediment to building quantum computers, depriving us
of the power of quantum interference, it is not all doom and gloom; there are clever
ways around decoherence such as the quantum error correction and fault-tolerant
methods we will meet later.

1.6. Outlook. When the physics of computation was first investigated, starting in the
1960s, one of the main motivations was a fear that quantum-mechanical effects might
place fundamental bounds on the accuracy with which physical objects could render
the properties of the abstract entities, such as logical variables and operations, that
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appear in the theory of computation. But it turned out that quantum mechanics im-
poses no significant limits but does break through some of those that classical physics
imposed. The quantum world has a richness and intricacy that allows new practical
technologies, and new kinds of knowledge. In this course we will merely scratch the
surface of the rapidly developing field of quantum computation. We will concentrate
mostly on the fundamental issues and skip many experimental details. However, it
should be mentioned that quantum computing is a serious possibility for future gen-
erations of computing devices. At present it is not clear how and when fully-fledged
quantum computers will eventually be built; but notwithstanding this, the quantum
theory of computation already plays a much more fundamental role in the scheme
of things than its classical predecessor did. I believe that anyone who seeks a fun-
damental understanding of either physics, computation or logic must incorporate its
new insights into his world view.
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Notes & Exercises

(1) I always found it an interesting coincidence that the two basic ingredients
of modern quantum theory, namely probability and complex numbers, were
discovered by the same person, an extraordinary man of many talents, a gam-
bling scholar by the name of Girolamo Cardano (1501–1576).

(2) Complex numbers have many applications in physics, however, not until the
advent of quantum theory was their ubiquitous and fundamental role in the
description of the actual physical world so evident. Even today, their pro-
found link with probabilities appears to be a rather mysterious connection.
Mathematically speaking, the set of complex numbers is a field. This is an im-
portant algebraic structure used in almost all branches of mathematics. You
do not have to know much about algebraic fields to follow these lectures, but
still, you should know the basics. Look them up.

(3) (a) The sets of rational and real numbers are all fields, but the set of integers
is not. Why?

(b) What does it mean that the field of complex numbers is algebraically
closed?

(c) Evaluate each of the following quantities 1 + e−iπ , |1 + i|, (1 + i)42,
√

i, 2i

and ii.
(d) Here is a simple proof that +1 = −1,

1 =
√

1 =
√
(−1)(−1) =

√
−1
√
−1 = i2 = −1

What is wrong with it?
(4) A quantum computer starts calculations in some initial state, then follows n

different computational paths which lead to the final output. The computa-
tional paths are followed with probability amplitudes 1√

n eikϕ, where ϕ is a
fixed angle 0 < ϕ < 2π and k = 0, 1, ...n − 1. Show that the probability of
generating the output is 1 + z + z2 + . . . + zn = 1−zn+1

1−z

1
n

∣∣∣∣1− einϕ

1− eiϕ

∣∣∣∣2 =
1
n

sin2(n ϕ
2 )

sin2( ϕ
2 )

.

for 0 < ϕ < 2π and 1 for ϕ = 0. Plot the probability as a function of ϕ.
(5) Imagine two distant stars that emit identical photons. If you point a single

detector towards them you will register a click every now and then, but you
never know which star the photon came from. Now prepare two detectors and
point them towards the stars. Assume the photons arrive with the probability
amplitudes specified below.

z

z

zeiφ

zeiφ

Every now and then you will register a coincidence – the two detectors will
fire.
(a) Calculate the probability of a coincidence.
(b) Now, assume that z ≈ 1

r ei 2rπ
λ , where r is the distance between detectors

and the stars. How can we use this to measure r?
(6) Quantum Bomb Tester You have been drafted by the government to help This is a slightly modified version of a bomb

testing problem described by Avshalom
Elitzur and Lev Vaidman in
Quantum-mechanical interaction-free
measurement, Found. Phys. 47, 987-997 (1993).

in the demining effort in a former war-zone. In particular, retreating forces
have left very sensitive bombs in some of the sealed rooms. The bombs are
configured such that if even one photon of light is absorbed by the fuse (i.e. if
someone looks into the room), the bomb will go off. Each room has an input
and output port which can be hooked up to external devices. An empty room
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will let light go from the input to the output ports unaffected, whilst a room
with a bomb will explode if light is shone into the input port and the bomb
absorbs even just one photon. Your task is to find a way of determining empty

bomb

whether a room has a bomb in it without blowing it up, so that specialised
(limited and expensive) equipment can be devoted to defusing that particular
room. You would like to know with certainty whether a particular room had
a bomb in it.
(a) To start with, consider the setup (see the margin) where the input and

output ports are hooked up in the lower arm of a Mach-Zehnder inter-
fereometer.

Hint: Consider the setup where the input
and output ports are hooked up in one of the
arms of a Mach-Zehnder interferometer.

|0〉

|1〉

0

1

(i) Assume an empty room. Send a photon to input port |0〉. Which
detector, at the output port, will register the photon?

(ii) Now assume that the room does contain a bomb. Again, send a
photon to input port |0〉. Which detector will register the photon
and with which probability?

(iii) Design a scheme that allows you – at least part of the time – to
decide whether a room has a bomb in it without blowing it up. If
you iterate the procedure, what is its overall success rate for the
detection of a bomb without blowing it up?

(b) Assume that the two beam splitters in the interferometer are different.
Say the first beamsplitter reflects incoming light with probability r and
transmits with probability t = 1− r and the second one transmits with
probability r and reflects with probability t. Would the new setup im-
prove the overall success rate of the detection of a bomb without blowing
it up?

(c) There exists a scheme, involving many beamsplitters and something called
“quantum Zeno effect”, such that the success rate for detecting a bomb
without blowing it up approaches 100%. Try to work it out or find a
solution on internet.

(7) A quantum machine has N perfectly distinguishable configurations. What
is the maximum number of computational paths connecting a specific input
with a specific output after k steps of the machine? Suppose you are using
your laptop to add together amplitudes pertaining to each of the paths. As k
and N increase you may need more time and more memory to complete the
task. How does the execution time and the memory requirements grow with
k and N? Will you need more time or more memory or both?

(8) The classical theory of computation is essentially the theory of the universal
Turing machine - the most popular mathematical model of classical compu-
tation. Its significance relies on the fact that given a large but finite amount
of time the universal Turing machine is capable of any computation that can
be done by any modern classical digital computer, no matter how powerful.
The concept of Turing machines may be modified to incorporate quantum
computation, but we will not follow this path. It is much easier to explain the
essence of quantum computation talking about quantum logic gates and quan-
tum Boolean networks or circuits. The two approached are computationally
equivalent, even though certain theoretical concepts, e.g. in computational
complexity, are easier to formulate precisely using the Turing machine model.
The main advantage of quantum circuits is that they relate far more directly
to proposed experimental realisations of quantum computation.

(9) In computational complexity the basic distinction is between polynomial ver-
sus exponential algorithms. Polynomial growth is good and exponential growth
is bad, especially if you have to pay for it. There is an old story about the leg-
endary inventor of chess who asked the Persian king to be paid only by a
grain of cereal, doubled on each of the 64 squares of a chess board. The king
placed one grain of rice on the first square, two on the second, four on the
third, and he was supposed to keep on doubling until the board was full. The One light year (the distance that light travels

through a vacuum in one year) is
9.4607× 1015m.
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last square would then have 263 = 9, 223, 372, 036, 854, 775, 808 grains of rice,
more than has been ever harvested on planet Earth, to which we must add
the grains of all previous squares, making the total number about twice as
large. If we placed that many grains in an unbroken line we would reach the
nearest star Alpha Centauri, our closest celestial neighbour beyond the solar
system, about 4.4 light-years away. The moral of the story: if whatever you do
requires an exponential use of resources you are in trouble.

(10) In order to make qualitative distinctions between how different functions
grow we will often use the asymptotic big-O notation. For example, sup-
pose an algorithm running on input of size n takes an2 + bn + c elementary
steps, for some positive constants a, b and c. These constants depend mainly
on the details of the implementation and the choice of elementary steps. What
we really care about is that for large n the whole expression is dominated by
its quadratic term. We then say that the running time of this algorithm grows
as n2, and we write it as O(n2), ignoring the less significant terms and the con-
stant coefficients. More precisely, let f (n) and g(n) be functions from positive
integers to positive reals. You may think of f (n) and g(n) as the running times
of two algorithms on inputs of size n. We say f = O(g), which means that f
grows no faster than g, if there is a constant c > 0 such that f (n) ≤ cg(n) for f = O(g) is pronounced as

“ f is big-oh of g”.all sufficiently large values of n. Essentially, f = O(g) is a very loose analog of
f ≤ g. In addition to the big-O notation, computer scientists often use Ω for
lower bounds: f = Ω(g) means g = O( f ). Again, this is a very loose analog
of f ≥ g.

(11) (a) When we say that f (n) = O(log n), why don’t we have to specify the base
of the logarithm?

(b) Let f (n) = 5n3 + 1000n + 50, is f (n) = O(n3) or O(n4) or both?
(c) Which of the following statements are true?

(i) nk = O(2n) for any constant k
(ii) n! = O(nn)

(iii) if f1 = O(g) and f2 = O(g) then f1 + f2 = O(g) Primality used to be given as the classic
example of a problem in BPP but not P.
However, in 2002 a deterministic polynomial
time test for primality was proposed by
Manindra Agrawal, Neeraj Kayal, and Nitin
Saxena. Thus, since 2002, primality has been
in P.

(12) There exists a randomised algorithm which tests whether a given number
N is prime. The algorithm always returns yes when N is prime and the
probability it returns yes when N is not prime is ε, which not greater than
half (independently, each time you run the algorithm). You run this algorithm
(for the same N) r times and each time the algorithm returns yes. What is the
probability that N is not prime?

(13) Suppose a randomised algorithm solves a decision problem, returning yes or
no answers. It gets the answer wrong with a probability not greater than
1
2 − δ, where δ > 0 is a constant.

This result is known as the Cher-
noff bound. If we are willing to ac-
cept a probability of error no larger
than ε, then it suffices to run the
computation a number of times
r = O(log 1/ε).

Chernoff Bound
(a) If we perform this computation r times, how many possible sequences of

outcomes are there?
(b) Give a bound on the probability of any particular sequence with w wrong

answers.
(c) If we look at the set of r outcomes, we will determine the final outcome

by performing a majority vote. This can only go wrong if w > r/2. Give
an upper bound on the probability of any single sequence that would
lead us to the wrong conclusion.

(d) Using the bound 1− x ≤ e−x, conclude that the probability of our coming
to the wrong conclusion is upper bounded by e−2rδ2

.
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Appendix: Physics against logic

Explained with a beamsplitter

Consider the following task: design a logic gate that operates on a single bit such
that when it is followed by another, identical, logic gate the output is always the
negation of the input. Let us call this logic gate the square root of not (

√
not). A

simple check, such as an attempt to construct a truth table, should persuade you that
there is no such operation in logic. It may seem reasonable to argue that since there
is no such operation in logic,

√
not is impossible. But think again.

1

0

1

0

1

0

1

0

≡

√
not

√
not not

1+i√
2

1−i√
2

1−i√
2

1+i√
2

1+i√
2

1−i√
2

1−i√
2

1+i√
2

Here is a simple computation, two identical computational steps performed on two
states labelled as 0 and 1, i.e. on one bit. An interplay of constructive and destruc-
tive interference makes some transitions impossible and the result is the logical not.
Thus, quantum theory declares, the square root of not is possible. And it does exist!
Experimental physicists routinely construct this and many other “impossible” gates
in their laboratories. In fact, the square root of not can be as simple as a symmetric
beam-splitter.

A symmetric beam-splitter is a cube of glass which reflects half the light that im-
pinges upon it, while allowing the remaining half to pass through unaffected. For
our purposes it can be viewed as a device which has two input and two output ports
which we label as |0〉 and |1〉. When we aim a single photon at such a beam-splitter
using one of the input ports, we notice that the photon doesn’t split in two: we can
place photo-detectors wherever we like in the apparatus, fire in a photon, and verify
that if any of the photo-detectors registers a hit, none of the others do. In particular,
if we place a photo-detector behind the beam-splitter in each of the two possible exit
beams, the photon is detected with equal probability at either detector, no matter
whether the photon was initially fired from input port |0〉 or |1〉. It may seem obvious

|0〉|0〉

|1〉

|1〉

that at the very least, the photon is either in the transmitted beam |0〉 or in the reflected
beam |1〉 during any one run of this experiment. Thus we may be tempted to think
of the beam-splitter as a random binary switch which, with equal probability, trans-
forms any binary input into one of the two possible outputs. However, that is not
necessarily the case. Let us introduce a second beam-splitter and place two normal
mirrors so that both paths intersect at the second beam-splitter (see diagrams in the
margin).

|0〉 |0〉

|1〉

|1〉

0

1

Now, the axiom of additivity in probability theory, says that whenever something
can happen in several alternative ways we add probabilities for each way considered
separately. We might argue that a photon fired into the input port |0〉 can reach the
detector 0 in two mutually exclusive ways: either by two consecutive reflections or
by two consecutive transmissions. Each reflection happens with probability 1/2 and
each transmission happens with probability 1/2 thus the total probability of reaching
detector 0 is a sum of the probability of the two consecutive reflections (1/2× 1/2 =
1/4) and the probability of the two consecutive transmissions (1/2 × 1/2 = 1/4)
which gives probability 1/2. This makes perfect sense – a random switch followed by
a random switch should give nothing else but a random switch. However, if we set up
such an experiment, that is not what happens! When the optical paths between the

|0〉

|1〉

0

1

Two consecutive reflections give
amplitude i√

2
i√
2
= − 1

2

|0〉

|1〉

0

1

Two consecutive transmissions give
amplitude 1√

2
1√
2
= 1

2

two beam-splitters are the same, the photon fired from input port |0〉 always strikes
detector 1 and never detector 0 (and the photon fired from input port |1〉 always strikes
detector 0 and never detector 1). Thus a beam-splitter acts as the square root of not

gate.
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The action of the beamsplitter – in fact, the action of any quantum device – can be
described by tabulating the amplitudes of transitions between its input and output
ports.

B =

[
B00 B01
B10 B11

]
=

[ 1√
2

i√
2

i√
2

1√
2

]
.

There is no reason why probability theory or
any other a priori mathematical construct
should make any meaningful statements
about outcomes of physical experiments.

The matrix element Blk, where k, l = 0, 1, represents the amplitude of transition from
input |k〉 to output |l〉 (watch the order of indices). Each reflection (entries B01 and
B10) happens with amplitude i/

√
2 and each transmission (entries B00 and B11) hap-

pens with amplitude 1/
√

2. Thus the total amplitude that a photon fired from input
port |0〉 will reach detector 0 is the sum of the amplitude of the two consecutive reflec-
tions (i/

√
2× i/

√
2 = −1/2) and the amplitude of the two consecutive transmissions

(1/
√

2× 1/
√

2 = 1/2) which gives the total amplitude 0. The resulting probability
is then zero. Unlike probabilities, amplitudes can cancel out each other out. We can
now go on and calculate the amplitude that the photon will reach detector 1. In this
case we will get i, which gives probability 1. We can then switch to input |1〉 and
repeat our calculations. All possible paths and associated amplitudes are shown in
the diagram below.

|1〉

|0〉

|1〉

|0〉

B B

1√
2

i√
2

i√
2

1√
2

1√
2

i√
2

i√
2

1√
2

However, instead of going through all the paths in this diagram and linking specific
inputs to specific outputs, we can simply multiply the transition matrices,

Logical Not

X =

[
0 1
1 0

]

X

Beam Splitter

B = 1√
2

[
1 i
i 1

]

B

BB =

[ 1√
2

i√
2

i√
2

1√
2

] [ 1√
2

i√
2

i√
2

1√
2

]
=

[
0 i

i 0

]
= iX.

As you can see, the matrix multiplication in one swoop takes care of multiplication
and addition of amplitudes corresponding to different alternatives. You can now
inform you colleagues logicians that they are now entitled to propose a new logical
operation

√
not for a faithful physical model for it exists in nature! Note that gate B is not the same square root

of not as the one described in the first
diagram in this section. There are infinitely
many ways of implementing this
“impossible” logical operation.


