A review of the linear prediction sufficiency in the linear model with new observations

Simo Puntanen

University of Tampere, Finland

Abstract

We consider the general linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, denoted as $M = \{\mathbf{y}, \mathbf{X}\boldsymbol{\beta}, \mathbf{V}\}$, supplemented with the new unobservable random vector \mathbf{y}_* , coming from $\mathbf{y}_* = \mathbf{X}_*\boldsymbol{\beta} + \boldsymbol{\varepsilon}_*$, where the covariance matrix of \mathbf{y}_* is known as well as the cross-covariance matrix between \mathbf{y}_* and \mathbf{y} . A linear statistic $\mathbf{F}\mathbf{y}$ is called linearly sufficient for $\mathbf{X}_*\boldsymbol{\beta}$ if there exists a matrix \mathbf{A} such that $\mathbf{AF}\mathbf{y}$ is the best linear unbiased estimator, BLUE, for $\mathbf{X}_*\boldsymbol{\beta}$. The concept of linear sufficiency with respect to a predictable random vector is defined in the corresponding way but considering the best linear unbiased predictor, BLUP, instead of BLUE. In this paper, we consider the linear sufficiency of $\mathbf{F}\mathbf{y}$ with respect to $\mathbf{y}_*, \mathbf{X}_*\boldsymbol{\beta}$, and $\boldsymbol{\varepsilon}_*$, when the prediction is based on M. We also apply our results into the linear mixed model.

Keywords

BLUE, BLUP, Linear sufficiency, Linear model with new observations, Linear mixed model, Transformed linear model.

Acknowledgements

This research is joint work with Stephen J. Haslett, Jarkko Isotalo, Radosław Kala and Augustyn Markiewicz.

References

- Baksalary, J.K. and R. Kala (1981). Linear transformations preserving best linear unbiased estimators in a general Gauss-Markoff model. Ann. Stat. 9, 913–916.
- [2] Baksalary, J.K. and R. Kala (1986). Linear sufficiency with respect to a given vector of parametric functions. J. Stat. Plan. Inf. 14, 331–338.
- [3] Baksalary, J.K. and T. Mathew (1986). Linear sufficiency and completeness in an incorrectly specified general Gauss–Markov model. Sankhyā Ser. A, 48, 169–180.
- [4] Drygas, H. (1983). Sufficiency and completeness in the general Gauss-Markov model. Sankhyā Ser. A, 45, 88–98.

- [5] Haslett, S.J., X.-Q. Liu, A. Markiewicz and S. Puntanen (2017). Some properties of linear sufficiency and the BLUPs in the linear mixed model. *Stat. Papers*, available online.
- [6] Isotalo, J., A. Markiewicz and S. Puntanen (2018). Some properties of linear prediction sufficiency in the linear model. In: M. Tez and D. von Rosen (Eds.), *Trends and Perspectives in Linear Statistical Inference: LinStat, Istanbul, 2016* (pp. 111–129). Springer.
- [7] Kala, R., A. Markiewicz and S. Puntanen (2016). Some further remarks on the linear sufficiency in the linear model. In: N. Bebiano (Eds.), *Applied* and Computational Matrix Analysis (pp. 275–294). Springer.
- [8] Kala, R., S. Puntanen and Y. Tian (2017). Some notes on linear sufficiency. Stat. Papers 58, 1–17.
- [9] Markiewicz, A. and S. Puntanen (2018a). Further properties of linear prediction sufficiency and the BLUPs in the linear model with new observations. *Afrika Statistika 13*, 1511–1530.
- [10] Markiewicz, A. and S. Puntanen (2019a). Further properties of the linear sufficiency in the partitioned linear model. In: S.E. Ahmed, F. Carvalho and S. Puntanen (Eds.), *Matrices, Statistics and Big Data*. Springer, in press.
- [11] Markiewicz, A. and S. Puntanen (2019b). Linear prediction sufficiency in the misspecified linear model. *Commun. Stat. Theory Methods*, in press.

2