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Abstract

For fifty years ago Karl Gustafson published a series of papers and
developed an antieigenvalue theory which has been applied, in a non-
statistical manner, to several different areas including, numerical anal-
ysis and wavelet analysis, quantum mechanics, finance and optimisa-
tion. The first antieigenvector u1 (actually there are two) is the vector
which is the one which is the most ”turned” by an action of a positive
definite matrix A with a connected antieigenvalue µ1 which indeed is
the cosine of the maximal ”turning” angle given as

µ1 =
2
√

λ1λp

λ1 + λp
,

where λ1 is the largest and λp is the smallest eigenvalue of A, respec-
tively. Antieigenvalues have been introduced in statistics, for example,
as a measures of efficiency of least squares estimators, and when testing
for sphericity, see [1, 2, 3]. In this talk we will consider the distribution
of the squared first antieigenvalue and discuss the use of it.
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