Large deviation probabilities of condition numbers of sample covariance matrices

Martin Singull ${ }^{1}$ Denise Uwamariya ${ }^{2}$ and Xiangfeng Yang ${ }^{3}$

${ }^{1,2,3}$ Linköping University, Sweden

Abstract

A square matrix is defined as $\mathbf{W}_{p \times p}=\mathbf{X} \mathbf{X}^{T} / n$ for $2 \leq p \leq n$, where \mathbf{X} is a $p \times n$ random matrix whose entries $X_{i j}$ are i.i.d. with zero mean and unit variance. The aim of this paper is to study the large deviation probabilities of the condition number of \mathbf{W} as $n \rightarrow \infty$. Results are obtained (i) when $X_{i j}$ are standard normal and $p=o(n)$, and (ii) when $X_{i j}$ are general and $p=o(n / \ln \ln n)$.

Keywords

Condition number, Wishart matrix, Large deviation.

References

[1] Anderson, W. and M. Wells (2009). The exact distribution of the condition number of a Gaussian matrix. SIAM J. Matrix Anal. Appl. 31, 1125-1130.
[2] Bai, Z., J. Silverstein and Y. Yin (1988). A note on the largest eigenvalue of a large-dimensional sample covariance matrix. J. Multivariate Anal. 26, 166-168.
[3] Chen, Z. and J. Dongarra (2005). Condition numbers of Gaussian random matrices. SIAM J. Matrix Anal. Appl. 27, 603-620.
[4] Dembo, A. and O. Zeitouni (2010). Large deviations techniques and applications. (Corrected reprint of the 2nd ed). Springer-Verlag.
[5] Edelman, A. (1988). Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9, 543-560.
[6] Edelman, A. and B. Sutton (2005). Tails of condition number distributions. SIAM J. Matrix Anal. Appl. 27, 547-560.
[7] Fey, A., R. van der Hofstad and M. Klok (2008). Large deviations for eigenvalues of sample covariance matrices, with applications to mobile communication systems. Adv. in Appl. Probab. 40, 1048-1071.
[8] Gustafson, K. (2012). Antieigenvalue analysis. World Scientific Publishing Co.
[9] James, A. (1964). Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35, 475-501.
[10] Jiang, T. and D. Li (2015). Approximation of rectangular beta-Laguerre ensembles and large deviations. J. Theoret. Probab. 28, 804-847.
[11] Kevei, P. (2010). A note on asymptotics of linear combinations of iid random variables. Period. Math. Hungar. 60, 25-36.
[12] Muirhead, R. (1982). Aspects of multivariate statistical theory. John Wiley \& Sons, Inc.
[13] Rogers, C. (1963). Covering a sphere with spheres. Mathematika 10, 157-164.
[14] Silverstein, J. (1985). The smallest eigenvalue of a large-dimensional Wishart matrix. Ann. Probab. 13, 1364-1368.
[15] Solomyak, B. (1995). On the random series $\sum \pm \lambda^{n}$ (an Erdős problem) Ann. of Math. 142, 611-625.
[16] Srivastava, M. and C. Khatri (1979). An introduction to multivariate statistics. North-Holland.

