On semigroups associated with the Dunkl operators
Joint work with Jacek Dziubański

Agnieszka Hejna
Instytut Matematyczny
Uniwersytet Wrocławski

Będlewo, 21.05.2019
1. Introduction
 - Fourier analysis in the rational Dunkl setting

2. Dunkl translations

3. Semigroups of operators
 - Radial case - heat semigroup associated with the Dunkl Laplacian
 - Nonradial cases

4. Idea of the proofs
 - Convolution with radial function
 - Support of $\tau_x f(\cdot)$
Some classical semigroups

Classical heat semigroup

- Generator: $\Delta = \sum_{j=1}^{N} \partial_j^2$
- Associated multiplier: $e^{-|\xi|^2}$
Some classical semigroups

Classical heat semigroup

- **Generator:** $\Delta = \sum_{j=1}^{N} \partial_j^2$
- **Associated multiplier:** $e^{-|\xi|^2}$

Upper heat kernel estimate ($t = 1$)

$$\frac{1}{(4\pi)^{N/2}} e^{-\frac{1}{4}|x-y|^2}$$
Some classical semigroups

Classical heat semigroup

- Generator: \(\Delta = \sum_{j=1}^{N} \partial_j^2 \)
- Associated multiplier: \(e^{-|\xi|^2} \)

Upper heat kernel estimate (\(t = 1 \))

\[
\frac{1}{(4\pi)^{N/2}} e^{-\frac{1}{4}|x-y|^2}
\]

Semigroups associated with higher order derivatives

- Generator:
 \[
 L = (-1)^{\ell+1} \sum_{j=1}^{N} \partial_j^{2\ell}
 \]
- Associated multiplier:
 \[
 e^{-\sum_{j=1}^{N} |\xi_j|^{2\ell}}
 \]
Classical heat semigroup

- **Generator:** \(\Delta = \sum_{j=1}^{N} \partial_{j}^2 \)
- **Associated multiplier:**
 \[e^{-|\xi|^2} \]

Upper heat kernel estimate \((t = 1) \)

\[
\frac{1}{(4\pi)^{N/2}} e^{-\frac{1}{4}|x-y|^2}
\]

Semigroups associated with higher order derivatives

- **Generator:**
 \(L = (-1)^{\ell + 1} \sum_{j=1}^{N} \partial_{j}^{2\ell} \)
- **Associated multiplier:**
 \[e^{-\sum_{j=1}^{N} |\xi_{j}|^{2\ell}} \]

Upper integral kernel estimate \((t = 1) \)

\[
Ce^{-c|x-y|^{\frac{2\ell}{2\ell-1}}}
\]
Some Dunkl semigroups

Dunkl heat semigroup
- Generator: $\Delta = \sum_{j=1}^{N} T_j^2$
- Associated multiplier: $e^{-|\xi|^2}$

Upper heat kernel estimate ($t = 1$)

$$w(B(x, 1))^{-1} e^{-cd(x,y)^2}$$

Semigroups associated with higher order Dunkl operators
- Generator: $L = (-1)^{\ell + 1} \sum_{j=1}^{N} T_j^{2\ell}$
- Associated multiplier: $e^{-\sum_{j=1}^{N} |\xi_j|^{2\ell}}$

Upper integral kernel estimate ($t=1$)

$$w(B(x, 1))^{-1} e^{-cd(x,y)^{\frac{2\ell}{2\ell-1}}}$$
Hörmander’s multiplier theorem

Theorem (Hörmander)

Let \(\psi \) be a smooth radial function such that \(\text{supp} \, \psi \subseteq \{ \xi : \frac{1}{4} \leq \| \xi \| \leq 4 \} \) and \(\psi(\xi) \equiv 1 \) for \(\{ \xi : \frac{1}{2} \leq \| \xi \| \leq 2 \} \). If \(m \) satisfies

\[
M = \sup_{t > 0} \| \psi(\cdot)m(t\cdot) \|_{W^s_2} < \infty
\]

for some \(s > \frac{N}{2} \), then

\[
\hat{T}_m f = (m\hat{f}),
\]

is

(A) of weak type \((1,1)\),

(B) of strong type \((p,p)\) for \(1 < p < \infty\),

(C) bounded on the Hardy space \(H^1_{\text{atom}} \).
Hörmander’s multiplier theorem

Theorem (J. Dziubański, A.H.)

Let \(\psi \) be a smooth radial function such that \(\text{supp} \psi \subseteq \{ \xi : \frac{1}{4} \leq \| \xi \| \leq 4 \} \) and \(\psi(\xi) \equiv 1 \) for \(\{ \xi : \frac{1}{2} \leq \| \xi \| \leq 2 \} \). If \(m \) satisfies

\[
M = \sup_{t > 0} \| \psi(\cdot)m(t\cdot) \|_{W_2^s} < \infty
\]

for some \(s > N \), then

\[
\mathcal{I}_m f = \mathcal{F}^{-1}(m\mathcal{F}f),
\]

is

(A) of weak type \((1, 1)\),

(B) of strong type \((p, p)\) for \(1 < p < \infty \),

(C) bounded on the Hardy space \(H^1_{\text{atom}} \).
We consider the Euclidean space \mathbb{R}^N with the scalar product $\langle x, y \rangle = \sum_{j=1}^{N} x_j y_j$, $x = (x_1, \ldots, x_N)$, $y = (y_1, \ldots, y_N)$.

Reflection

For a nonzero vector $\alpha \in \mathbb{R}^N$ the reflection σ_α with respect to the orthogonal hyperplane α^\perp orthogonal to a nonzero vector α is given by

$$\sigma_\alpha x = x - 2\frac{\langle x, \alpha \rangle}{\|\alpha\|^2} \alpha.$$
Root system

A finite set \(R \subset \mathbb{R}^N \setminus \{0\} \) is called a root system if \(\sigma_\alpha(R) = R \) for every \(\alpha \in R \).
Root system

A finite set $R \subset \mathbb{R}^N \setminus \{0\}$ is called a root system if $\sigma_\alpha(R) = R$ for every $\alpha \in R$.

Weyl group

The finite group G generated by the reflections σ_α is called the Weyl group (reflection group) of the root system.
Examples - product root systems

A_1
Examples - product root systems

$A_1 \times A_1$

$A_1 \times A_1 \times A_1$
Examples of root systems

\[A_2 \quad B_2 \]
Examples of root systems

G_2

$I_2(5)$
A multiplicity function is a G-invariant function $k : R \to \mathbb{C}$ which will be fixed and ≥ 0.
Let
\[N = N + \sum_{\alpha \in R} k(\alpha) \]

\((N \text{ is the } \text{homogeneous dimension}).\)
Let

\[N = N + \sum_{\alpha \in R} k(\alpha) \]

(N is the **homogeneous dimension**). We define the measure

\[w(x) = \prod_{\alpha \in R} |\langle \alpha, x \rangle|^{k(\alpha)}. \]
Let

\[N = N + \sum_{\alpha \in R} k(\alpha) \]

(N is the **homogeneous dimension**). We define the measure

\[w(x) = \prod_{\alpha \in R} |\langle \alpha, x \rangle|^{k(\alpha)}. \]

We have

\[w(B(x, r)) \sim r^N \prod_{\alpha \in R} (|\langle x, \alpha \rangle| + r)^{k(\alpha)}, \]

so \(dw(x) \) is doubling.
Dunkl operators

Given a root system R and multiplicity function $k(\alpha)$ the Dunkl operator T_ξ is the following k-deformation of the directional derivative ∂_ξ by a difference operator:

$$T_\xi f(x) = \partial_\xi f(x)$$
Dunkl operators

Given a root system R and multiplicity function $k(\alpha)$ the Dunkl operator T_ξ is the following k-deformation of the directional derivative ∂_ξ by a difference operator:

$$T_\xi f(x) = \partial_\xi f(x) + \sum_{\alpha \in R} \frac{k(\alpha)}{2} \langle \alpha, \xi \rangle \frac{f(x) - f(\sigma_\alpha x)}{\langle \alpha, x \rangle}.$$
Dunkl operators

Given a root system R and multiplicity function $k(\alpha)$ the Dunkl operator T_ξ is the following k-deformation of the directional derivative ∂_ξ by a difference operator:

$$T_\xi f(x) = \partial_\xi f(x) + \sum_{\alpha \in R} \frac{k(\alpha)}{2} \langle \alpha, \xi \rangle \frac{f(x) - f(\sigma_\alpha x)}{\langle \alpha, x \rangle}.$$

Example for $N = 1$

$$T f(x) = \partial f(x) + k(\alpha) \frac{f(x) - f(-x)}{x}.$$
Given a root system R and multiplicity function $k(\alpha)$ the Dunkl operator T_ξ is the following k-deformation of the directional derivative ∂_ξ by a difference operator:

$$T_\xi f(x) = \partial_\xi f(x) + \sum_{\alpha \in R} \frac{k(\alpha)}{2} \langle \alpha, \xi \rangle \frac{f(x) - f(\sigma_\alpha x)}{\langle \alpha, x \rangle}.$$

Example for $N = 1$

$$Tf(x) = \partial f(x) + k(\alpha) \frac{f(x) - f(-x)}{x}.$$

Difference

No Leibniz rule!
Dunkl kernel

For fixed \(y \in \mathbb{R}^N \) the \textit{Dunkl kernel} \(E(x, y) \) is the unique solution of the system

\[
T_\xi f = \langle \xi, y \rangle f, \quad f(0) = 1.
\]

In particular,

\[
T_{j, x} E(x, y) = T_{e_j, x} E(x, y) = y_j E(x, y).
\]
Dunkl kernel

For fixed \(y \in \mathbb{R}^N \) the Dunkl kernel \(E(x, y) \) is the unique solution of the system

\[
T_\xi f = \langle \xi, y \rangle f, \quad f(0) = 1.
\]

In particular,

\[
T_{j,x}E(x, y) = T_{e_j,x}E(x, y) = y_j E(x, y).
\]

\(E(x, y) \) is a generalization of \(\exp(\langle x, y \rangle) \).
For fixed $y \in \mathbb{R}^N$ the Dunkl kernel $E(x, y)$ is the unique solution of the system

$$T_\xi f = \langle \xi, y \rangle f, \quad f(0) = 1.$$

In particular,

$$T_{j,x}E(x, y) = Te_{j,x}E(x, y) = y_j E(x, y).$$

$E(x, y)$ is a generalization of $\exp(\langle x, y \rangle)$.

The Dunkl transform is defined on $L^1(dw)$ by

$$\mathcal{F}f(\xi) = c_k^{-1} \int_{\mathbb{R}^N} f(x)E(x, -i\xi) \, dw(x).$$
1. Introduction
 - Fourier analysis in the rational Dunkl setting

2. Dunkl translations

3. Semigroups of operators
 - Radial case - heat semigroup associated with the Dunkl Laplacian
 - Nonradial cases

4. Idea of the proofs
 - Convolution with radial function
 - Support of $\tau_x f(-\cdot)$
Dunkl translations \(= \text{generalization of translations}\)

The Dunkl translation \(\tau_x f\) of \(f \in S(\mathbb{R}^N)\) by \(x \in \mathbb{R}^N\) is defined by

\[
\tau_x f(y) = c_k^{-1} \int_{\mathbb{R}^N} E(i\xi, x) E(i\xi, y) \mathcal{F}f(\xi) \, dw(\xi).
\]
Dunkl translations = generalization of translations

The *Dunkl translation* \(\tau_x f \) of \(f \in S(\mathbb{R}^N) \) by \(x \in \mathbb{R}^N \) is defined by

\[
\tau_x f(y) = c_k^{-1} \int_{\mathbb{R}^N} E(i\xi, x) E(i\xi, y) \mathcal{F} f(\xi) \, dw(\xi).
\]

Dunkl convolution = generalization of convolution

The *Dunkl convolution* of two reasonable functions is defined by

\[
(f \ast g)(x) = c_k \mathcal{F}^{-1}[(\mathcal{F}f)(\mathcal{F}g)](x) = \int_{\mathbb{R}^N} \tau_x f(-y)g(y) \, dw(y).
\]
Dunkl translations don’t form a group

\[\tau_x \tau_y \neq \tau_{x+y} \]
Positivity of the Dunkl translations (radial function)

Suppose that $f \in L^2(dw)$ is radial and $f \geq 0$ a.e. Then $\tau_x f \geq 0$ a.e. for all $x \in \mathbb{R}^N$.

Nonpositivity of the Dunkl translations

There are: root system R, multiplicity function k, $x \in \mathbb{R}^N$, and $L^2(dw) \ni f < 0$ a.e. such that $\tau_x f < 0$ on the set of positive Lebesgue measure.
Positivity of the Dunkl translations (radial function)

Suppose that $f \in L^2(dw)$ is radial and $f \geq 0$ a.e. Then $\tau_x f \geq 0$ a.e. for all $x \in \mathbb{R}^N$.

Nonpositivity of the Dunkl translations

There are: root system R, multiplicity function $k \geq 0$, $x \in \mathbb{R}^N$, and $L^2(dw) \ni f \geq 0$ a.e. such that $\tau_x f < 0$ on the set of positive Lebesgue measure.
$L^2(dw)$-case

By the Plancherel’s theorem for the Dunkl transform

$$\sup_{x \in \mathbb{R}^N} \| \tau_x \|_{L^2(dw) \rightarrow L^2(dw)} = 1.$$
Boundedness of the Dunkl translations

$L^2(dw)$-case

By the Plancherel’s theorem for the Dunkl transform

$$\sup_{x \in \mathbb{R}^N} \| \tau_x \|_{L^2(dw) \rightarrow L^2(dw)} = 1.$$

Open problem

Let $1 < p < \infty$. Then

$$\sup_{x \in \mathbb{R}^N} \| \tau_x \|_{L^p(dw) \rightarrow L^p(dw)} < \infty.$$
If \(f \in L^p(dw) \) is radial, then for all \(x \in \mathbb{R}^N \) we have

\[
\| \tau_x f \|_{L^p(dw)} \leq \| f \|_{L^p(dw)}.
\]

Conclusion: Dunkl translation of radial function is easier to treat.
Radial case

Exception

If \(f \in L^p(dw) \) is radial, then for all \(x \in \mathbb{R}^N \) we have

\[
\| \tau_x f \|_{L^p(dw)} \leq \| f \|_{L^p(dw)}.
\]

Conclusion: Dunkl translation of radial function is easier to treat.
1. Introduction
 - Fourier analysis in the rational Dunkl setting

2. Dunkl translations

3. Semigroups of operators
 - Radial case - heat semigroup associated with the Dunkl Laplacian
 - Nonradial cases

4. Idea of the proofs
 - Convolution with radial function
 - Support of $\tau_x f(-\cdot)$
Let us define the distance of the orbits $\mathcal{O}(x)$ and $\mathcal{O}(y)$ to be

$$d(x, y) = \min_{\sigma \in G} \|\sigma(x) - y\|.$$
Let us define the distance of the orbits $\mathcal{O}(x)$ and $\mathcal{O}(y)$ to be

$$d(x, y) = \min_{\sigma \in G} \| \sigma(x) - y \|.$$
Let us define the distance of the orbits $\mathcal{O}(x)$ and $\mathcal{O}(y)$ to be

$$d(x, y) = \min_{\sigma \in G} \| \sigma(x) - y \| \leq \| x - y \|.$$
Dunkl Laplacian

The *Dunkl Laplacian* associated with G and k is the differential-difference operator

$$\Delta = \sum_{j=1}^{N} T_j^2.$$
Dunkl Laplacian

The Dunkl Laplacian associated with G and k is the differential-difference operator

$$\Delta = \sum_{j=1}^{N} T_j^2.$$

Heat semigroup

The operator Δ generates the semigroup $H_t = e^{t\Delta}$ of linear self-adjoint contractions on $L^2(dw)$. The semigroup has the form

$$e^{t\Delta}f(x) = \int_{\mathbb{R}^N} \tau_x h_t(-y)f(y) \, dw(y),$$

where h_t is classical heat kernel, which is radial.
Theorem (J.-P. Anker, J. Dziubański, A.H.)

There are $C, c > 0$ such that for all $x, y \in \mathbb{R}^N$ and $t > 0$ we have

$$h_t(x, y) \leq C w(B(x, \sqrt{t}))^{-1} e^{-c d(x,y)^2/t},$$

$$|h_t(x, y) - h_t(x, y')| \leq C \left(\frac{||y - y'||}{\sqrt{t}} \right) w(B(x, \sqrt{t}))^{-1} e^{-c d(x,y)^2/t}.$$
1. Introduction
 - Fourier analysis in the rational Dunkl setting

2. Dunkl translations

3. Semigroups of operators
 - Radial case - heat semigroup associated with the Dunkl Laplacian
 - Nonradial cases

4. Idea of the proofs
 - Convolution with radial function
 - Support of $\tau_x f(-\cdot)$
Semigroup operator associated with Dunkl derivatives of higher order

We define

\[L = (-1)^{\ell+1} \sum_{j=1}^{N} T_j^{2\ell}. \]

It is generator of semigroup of operators on \(L^2(dw) \) with kernels of the form \(q_t(x, y) = \tau_x(Fq)_t(-y) \), where \(q \) is the associated nonradial multiplier.
Semigroup operator associated with Dunkl derivatives of higher order

We define

\[L = (-1)^{\ell+1} \sum_{j=1}^{N} T_j^{2\ell}. \]

It is generator of semigroup of operators on \(L^2(dw) \) with kernels of the form \(q_t(x, y) = \tau_x(\mathcal{F}q)_t(-y) \), where \(q \) is the associated nonradial multiplier.

Theorem (J. Dziubański, A.H.)

There are constants \(C, c > 0 \) such that for all \(x, y \in \mathbb{R}^N \) we have

\[|q_1(x, y)| \leq C(w(B(x, 1)))^{-1} \exp(-cd(x, y)^{2\ell/(2\ell-1)}). \]
Theorem (J. Dziubański, A.H.)

Let \(\psi \) be a smooth radial function such that \(\text{supp} \psi \subseteq \{ \xi : \frac{1}{4} \leq \|\xi\| \leq 4 \} \) and \(\psi(\xi) \equiv 1 \) for \(\{ \xi : \frac{1}{2} \leq \|\xi\| \leq 2 \} \). If \(m \) satisfies

\[
M = \sup_{t > 0} \|\psi(\cdot)m(t\cdot)\|_{W^s_2} < \infty
\]

for some \(s > N \), then

\[
T_m f = \mathcal{F}^{-1}(m\mathcal{F}f),
\]

is

(A) of weak type \((1, 1)\),
(B) of strong type \((p, p)\) for \(1 < p < \infty \),
(C) bounded on the Hardy space \(H^1_{\text{atom}} \).
1. Introduction
 • Fourier analysis in the rational Dunkl setting

2. Dunkl translations

3. Semigroups of operators
 • Radial case - heat semigroup associated with the Dunkl Laplacian
 • Nonradial cases

4. Idea of the proofs
 • Convolution with radial function
 • Support of $\tau_x f(-\cdot)$
Idea of the proofs

Kernel estimate for L

2. Prove Gårding inequality and use theorem of Lions.

3. Pass to kernel pointwise estimate.

4. Perturbation of operator by Laplacian in order to use convolution with radial function technique.
Idea of the proofs

Kernel estimate for L

2. Prove Gårding inequality and use theorem of Lions
Idea of the proofs

Kernel estimate for L

2. Prove Gårding inequality and use theorem of Lions **no Leibniz rule!**
Idea of the proofs

Kernel estimate for L

2. Prove Gårding inequality and use theorem of Lions no Leibniz rule!

3. Pass to kernel pointwise estimate
Idea of the proofs

Kernel estimate for L

2. Prove Gārding inequality and use theorem of Lions no Leibniz rule!

3. Pass to kernel pointwise estimate no group property of translations!
Idea of the proofs

Kernel estimate for L

2. Prove Gårding inequality and use theorem of Lions no Leibniz rule!

3. Pass to kernel pointwise estimate no group property of translations!

4. Perturbation of operator by Laplacian in order to use convolution with radial function technique.
Idea of the proofs

Kernel estimate for L

2. Prove Gårding inequality and use theorem of Lions no Leibniz rule!

3. Pass to kernel pointwise estimate no group property of translations!

4. Perturbation of operator by Laplacian in order to use convolution with radial function technique.

Hörmander’s multiplier theorem

1. Imitate the classical proof of Hörmander.
Idea of the proofs

Kernel estimate for L

2. Prove Gårding inequality and use theorem of Lions no Leibniz rule!

3. Pass to kernel pointwise estimate no group property of translations!

4. Perturbation of operator by Laplacian in order to use convolution with radial function technique.

Hörmander’s multiplier theorem

1. Imitate the classical proof of Hörmander.

2. Convolution with radial function technique.
Convolution with radial function technique

\[L = (-1)^{\ell+1} \sum_{j=1}^{N} T_j^{2\ell}, \text{ associated multiplier } q(\xi) = \exp(- \sum_{j=1}^{N} |\xi_j|^{2\ell}). \]
Convolution with radial function technique

\[L = (-1)^{\ell+1} \sum_{j=1}^{N} T_j^{2\ell}, \text{ associated multiplier } q(\xi) = \exp(-\sum_{j=1}^{N} |\xi_j|^{2\ell}). \]

Introduce \(L^{(\varepsilon)} = L - \varepsilon \Delta \), associated multiplier is

\[q^{(\varepsilon)}(\xi) = \exp(-\sum_{j=1}^{N} |\xi_j|^{2\ell} + \varepsilon |\xi|^2). \]
Convolution with radial function technique

\(L = (-1)^{\ell+1} \sum_{j=1}^{N} T_j^{2\ell} \), associated multiplier \(q(\xi) = \exp\left(- \sum_{j=1}^{N} |\xi_j|^{2\ell} \right) \).

Introduce \(L^{(\varepsilon)} = L - \varepsilon \Delta \), associated multiplier is

\[
q^{(\varepsilon)}(\xi) = \exp\left(- \sum_{j=1}^{N} |\xi_j|^{2\ell} + \varepsilon |\xi|^2 \right).
\]

Then

\[
q(\xi) = q^{(\varepsilon)}(\xi) e^{-\varepsilon |\xi|^2},
\]
Convolution with radial function technique

\[L = (-1)^{\ell+1} \sum_{j=1}^{N} T_j^{2\ell}, \text{ associated multiplier } q(\xi) = \exp(-\sum_{j=1}^{N} |\xi_j|^{2\ell}). \]

Introduce \(L(\varepsilon) = L - \varepsilon \Delta \), associated multiplier is

\[q^{(\varepsilon)}(\xi) = \exp(-\sum_{j=1}^{N} |\xi_j|^{2\ell} + \varepsilon |\xi|^{2}). \]

Then

\[q(\xi) = q^{(\varepsilon)}(\xi) e^{-\varepsilon |\xi|^2}, \]

so

\[\tau_x(\mathcal{F}q)(-y) = \tau_x(\mathcal{F}q^{(\varepsilon)} * h_{\varepsilon})(-y) = (\mathcal{F}q^{(\varepsilon)}) * \tau_x(h_{\varepsilon})(-y). \]

Translation is on radial function!
Further problem

\(g \)-radial, \(f \) - not necessary radial
Further problem

g-radial, \(f \) - not necessary radial

Classical case (trivial)

\[
\| \tau_x (f \ast g) \|_{L^1(dw)} \leq \| f \|_{L^1(dw)} \| g \|_{L^\infty}
\]
Further problem

g-radial, f - not necessary radial

Classical case (trivial)

\[
\| \tau_x (f \ast g) \|_{L^1(dw)} \leq \| f \|_{L^1(dw)} \| g \|_{L^\infty}
\]

**Dunkl case (no L^1-boundedness!)

\[
\| \tau_x (f \ast g) \|_{L^1(dw)} \leq \| f(\cdot)(1 + |\cdot|)^{N/2} \|_{L^1(dw)} \| g(\cdot)(1 + |\cdot|)^N \|_{L^\infty}
\]
Further problem

\(g \)-radial, \(f \) - not necessary radial

Classical case (trivial)

\[\| \tau_x (f \ast g) \|_{L^1(dw)} \leq \| f \|_{L^1(dw)} \| g \|_{L^\infty} \]

Dunkl case (no \(L^1 \)-boundedness!)

\[\| \tau_x (f \ast g) \|_{L^1(dw)} \leq \| f(\cdot)(1 + |\cdot|)^{N/2} \|_{L^1(dw)} \| g(\cdot)(1 + |\cdot|)^N \|_{L^\infty} \]

Idea: Pass to \(L^2 \) by Cauchy–Schwarz.

\[\| \tau_x (f \ast g) \|_{L^1(dw)} \leq w(\text{supp } \tau_x (f \ast g))^{1/2} \| \tau_x (f \ast g) \|_{L^2(dw)} \]
1. Introduction
 - Fourier analysis in the rational Dunkl setting

2. Dunkl translations

3. Semigroups of operators
 - Radial case - heat semigroup associated with the Dunkl Laplacian
 - Nonradial cases

4. Idea of the proofs
 - Convolution with radial function
 - Support of $\tau_x f(\cdot)$
Suppose that $f \in L^2(dw)$ is such that $\text{supp } f \subseteq B(0, 1)$.
Suppose that $f \in L^2(dw)$ is such that $\text{supp } f \subseteq B(0, 1)$. If we consider $f_x = f(x - \cdot)$, then $\text{supp } f_x \subseteq B(x, 1)$.
Question

Suppose that $f \in L^2(dw)$ is such that $\text{supp } f \subseteq B(0, 1)$. If we consider $f_x = f(x - \cdot)$, then $\text{supp } f_x \subseteq B(x, 1)$.

Question: What about $\text{supp } \tau_x f(\cdot)$?
Results of Amri, Anker and Sifi (Paley-Wiener approach) imply

$$\text{supp} \, \tau_x f(-\cdot) \subseteq \{y : \|x\| - 1 \leq \|y\| \leq \|x\| + 1\}.$$
Results of Rösler imply that if f is \textit{radial}, then
\[
\text{supp } \tau_x f(- \cdot) \subseteq \mathcal{O}(B(x, 1)) = \bigcup_{g \in G} B(g(x), 1).
\]
Theorem (J. Dziubański, A.H.)

Let \(f \in L^2(dw) \), \(\text{supp} \ f \subseteq B(0, 1) \), and \(x \in \mathbb{R}^N \). Then

\[
\text{supp } \tau_x f (- \cdot) \subseteq O(B(x, 1)).
\]
What is the point?

The measure of $O(B(x, 1))$ is much smaller than the measure of
\[\{ y : \|x\| - 1 \leq \|y\| \leq \|x\| + 1 \}. \]
Let us denote

\[g_L(x) = \max\{0, (1 - \|x\|^2)^L\}. \]
Let us denote
\[g_L(x) = \max\{0, (1 - \|x\|^2)\}^L. \]

For \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_N) \in \mathbb{N}_0^N = (\mathbb{N} \cup \{0\})^N \) we define
\[T_0^\alpha = I, \quad T_1^\alpha := T_1^{\alpha_1} \circ T_2^{\alpha_2} \circ \ldots \circ T_N^{\alpha_N}. \]
Let us denote

$$g_L(x) = \max\{0, (1 - \|x\|^2)\}^L.$$

For $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_N) \in \mathbb{N}_0^N = (\mathbb{N} \cup \{0\})^N$ we define

$$T_j^0 = I, \quad T^\alpha := T_1^{\alpha_1} \circ T_2^{\alpha_2} \circ \ldots \circ T_N^{\alpha_N}.$$

1. By induction we show that if p is a polynomial of degree d, then $p(x)g_L(x)$ can be written as

$$p(x)g_L(x) = \sum_{\ell=0}^d \sum_{\|\alpha\| \leq \ell} c_{\ell,\alpha} T^\alpha(g_{L+\ell})(x) \text{ for some } c_{\ell,\alpha} \in \mathbb{C}.$$
Let us denote
\[g_L(x) = \max\{0, (1 - \|x\|^2)^L\}. \]

For \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_N) \in \mathbb{N}_0^N = (\mathbb{N} \cup \{0\})^N \) we define
\[T^0_j = I, \quad T^\alpha : = T^{\alpha_1}_1 \circ T^{\alpha_2}_2 \circ \ldots \circ T^{\alpha_N}_N. \]

By induction we show that if \(p \) is a polynomial of degree \(d \), then \(p(x)g_L(x) \) can be written as
\[p(x)g_L(x) = \sum_{\ell=0}^d \sum_{\|\alpha\| \leq \ell} c_{\ell,\alpha} T^\alpha(g_L + \ell)(x) \]
for some \(c_{\ell,\alpha} \in \mathbb{C}. \)

The key point is the fact that the Leibniz rule can be applied
\[T_j(pg_L) = g_L(T_jp) + p(T_jg_L). \]
2 The set \(\{ p(\cdot)g_1(\cdot) : p \text{ is a polynomial} \} \) is dense in \(L^2(B(0, 1), dw) \).
The set \(\{ p(\cdot)g_1(\cdot) : p \text{ is a polynomial} \} \) is dense in \(L^2(B(0,1), dw) \).

\(\tau_x \) is a contraction on \(L^2(dw) \), so for any \(\varepsilon > 0 \) there is a polynomial \(p \) such that

\[
\| \tau_x f - \tau_x (pg_1) \|_{L^2(dw)} \leq \| f - pg_1 \|_{L^2(dw)} < \varepsilon. \tag{*}
\]
2 The set \(\{ p(\cdot)g_1(\cdot) : p \text{ is a polynomial} \} \) is dense in \(L^2(B(0,1), dw) \).

3 \(\tau_x \) is a contraction on \(L^2(dw) \), so for any \(\varepsilon > 0 \) there is a polynomial \(p \) such that

\[
\| \tau_x f - \tau_x(pg_1) \|_{L^2(dw)} \leq \| f - pg_1 \|_{L^2(dw)} < \varepsilon. \tag{*}
\]

4 The Dunkl translations commute with the Dunkl operators, so

\[
\tau_x(pg_1)(-y) = \sum_{\ell=0}^{d} \sum_{\|\alpha\| \leq \ell} c_{\ell,\alpha} T^\alpha \tau_x(g_{1+\ell})(-y).
\]
2. The set \(\{ p(\cdot)g_1(\cdot) : p \text{ is a polynomial} \} \) is dense in \(L^2(B(0,1), dw) \).

3. \(\tau_x \) is a contraction on \(L^2(dw) \), so for any \(\varepsilon > 0 \) there is a polynomial \(p \) such that

\[
\| \tau_x f - \tau_x(pg_1) \|_{L^2(dw)} \leq \| f - pg_1 \|_{L^2(dw)} < \varepsilon. \quad (\star)
\]

4. The Dunkl translations commute with the Dunkl operators, so

\[
\tau_x(pg_1)(-y) = \sum_{\ell=0}^{d} \sum_{\|\alpha\| \leq \ell} c_{\ell,\alpha} T^\alpha \tau_x(g_1+\ell)(-y).
\]

5. By the results of Rösler \(\text{supp} \ T^\alpha \tau_x(g_1+\ell) \subseteq O(B(x,1)) \), so \((\star) \) implies the claim.
Thank you for your attention.

J. Dziubański and A. Hejna, *On semigroups generated by sums of even powers of Dunkl operators*, arxiv.