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Overview

@ Motivation: SPDEs

@ Stochastic singular integral operators

© Stochastic Calderén—Zygmund theory

@ Sparse domination and weighted results
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Stochastic abstract Cauchy problem

{du+Audt= GdW  on R,

u(0)=0
o —A the generator of an analytic semigroup
e A on X
e For example A= —-A "

X a UMD Banach space

e For example X = L9 for g € (1,00) o

W a standard Brownian motion
G € L5 (R} x Q; X) for some p € (1,00)
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Stochastic abstract Cauchy problem

du+ Audt=GdW  on R,
{ u(0)=0
o —A the generator of an analytic semigroup
e A on X
e For example A= —-A
e X a UMD Banach space
e For example X = L9 for g € (1,00)

a(A)

e W a standard Brownian motion
o Ge L% (Ry x Q; X) for some p € (1,00)

The mild solution u is given by the variation of constants formula

u(t) = /Ote_(t_s)AG(s) dW(s), teRy
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Stochastic maximal regularity

Definition
We say that A has stochastic maximal LP-regularity if
Aty e [P(Ry x Q; X)
or in other words, if S: L5 (R; x Q; X) — LP(Ry x Q; X) given by

t
SG(t) := / Aze~(t=9)AG(s) dW(s), teRy
0

is a bounded operator.
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Stochastic maximal regularity

Definition
We say that A has stochastic maximal LP-regularity if
Aty e LP(Ry x Q; X)
or in other words, if S: L% (R} x Q; X) — LP(Ry x Q; X) given by

t
SG(t) ::/ Ao (=9AG(s)dW(s), teR,
0
is a bounded operator.

Previously studied by:
e Da Prato et al. for p =2 and X Hilbert
e Krylovetal forA=—-Aand X=L7with2<g<p<

e van Neerven—Veraar—Weis for A with bounded H*°-calculus for
p € (2,00) and X = L9 with g € [2, c0)
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Stochastic singular integral operators

Goal
Study the p-independence of the LP-boundedness of
SKG(t) = /OO K(t,5)G(s)AW(s), tcR,
where K: Ry x Ry — E(X; is a singular kernel. Of particular interest is
K(t,s) = Azelt=)A1,
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Stochastic singular integral operators
Goal
Study the p-independence of the LP-boundedness of
SkG(t) := /00 K(t,s)G(s) dW(s), te Ry
where K: Ry x Ry — E(X; is a singular kernel. Of particular interest is

K(t,s) = Azelt=)A1,

o We call S L5 (Ry x Q; X) = LP(Ry x Q; X) a singular stochastic
integral operator

o Deterministic case studied through Calderén—Zygmund theory

e No Calderén—Zygmund theory yet in the stochastic setting
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Stochastic singular integral operators
Goal
Study the p-independence of the LP-boundedness of
SkG(t) ::/ K(t,s)G(s) dW(s), te Ry
0
where K: Ry x Ry — L£(X) is a singular kernel. Of particular interest is
K(t,s) = Azelt=)A1,
o We call S L5 (Ry x Q; X) = LP(Ry x Q; X) a singular stochastic
integral operator

o Deterministic case studied through Calderén—Zygmund theory

e No Calderén—Zygmund theory yet in the stochastic setting

Topic of this talk!
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Stochastic Calderén—Zygmund theory

Stochastic Calderén—Zygmund theorem (L., Veraar '19)

Let X be a UMD Banach space with type 2, py € [2,00) and let
K : Ry x Ry — L(X) satisfy the 2-Hérmander condition. If

Sk L2(Ry x @ X) — LP(Ry x Q; X),
is bounded, then

Sk LA(Ry x Q; X) — LP(Ry x 2, X)
is bounded for all p € (2, x0).

2
TUDelft




Stochastic Calderén—Zygmund theory

Stochastic Calderén—Zygmund theorem (L., Veraar '19)

Let X be a UMD Banach space with type 2, py € [2,00) and let
K : Ry x Ry — L(X) satisfy the 2-Hérmander condition. If

Skt L2(Ry x @ X) = LP(Ry x Q; X),
is bounded, then

Sk LA(Ry x Q; X) — LP(Ry x 2, X)
is bounded for all p € (2, x0).

o X has type 2 if for any xi, - ,x, € X

HZ kX 2@x) ~ (Z”X"”)

where (e4)7_; is a Rademacher sequence.
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Stochastic Calderén—Zygmund theory

Stochastic Calderén—Zygmund theorem (L., Veraar '19)

Let X be a UMD Banach space with type 2, py € [2,00) and let
K : Ry x Ry — L(X) satisfy the 2-Hérmander condition. If

Skt L2(Ry x @ X) = LP(Ry x Q; X),
is bounded, then

Sk LA(Ry x Q; X) — LP(Ry x 2, X)
is bounded for all p € (2, x0).

o X has type 2 if for any xi, - ,x, € X

HZ kX 2@x) ~ (Z”X"”)

where (e4)7_; is a Rademacher sequence.
e L9 for g € [2,00) is a UMD Banach space with type 2
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Stochastic Calderén—Zygmund theory

Stochastic Calderén—Zygmund theorem (L., Veraar '19)

Let X be a UMD Banach space with type 2, py € [2,00) and let
K : Ry x Ry — L(X) satisfy the 2-Hérmander condition. If

Sk L2(Ry x @ X) — LP(Ry x Q; X),
is bounded, then

Sk LA(Ry x Q; X) — LP(Ry x 2, X)
is bounded for all p € (2, x0).

o If K: Ry x Ry — L(X) satisfies

0 0 C
max{ || 52K (t,9)||. || 5 K (£ 9)]| | <

e 7T

then it satisfies the 2-Hormander condition.
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Comments on the proof

o Extrapolation upwards from pg to p € (pg, 00)
e Prove BMO-endpoint and interpolate

%
TUDelft




Comments on the proof

o Extrapolation upwards from pg to p € (pg, 00)
e Prove BMO-endpoint and interpolate
o Extrapolation downwards from pg to p € (2, po)
e Use [*-Calderén-Zygmund decomposition
e Cannot exploit mean zero of “bad” part of decomposition
e Using ideas from Duong—Mclntosh '99
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Comments on the proof

o Extrapolation upwards from pg to p € (pg, 00)
e Prove BMO-endpoint and interpolate
o Extrapolation downwards from pg to p € (2, po)
e Use [*-Calderén-Zygmund decomposition
e Cannot exploit mean zero of “bad” part of decomposition
e Using ideas from Duong—Mclntosh '99

Some differences with classical Calderén—Zygmund theory:
e For X = L9 by the Itd isomorphism it is equivalent to consider the

operators . 12
. 2
Tf(t) = (/ K(ts)f(s)fds) ", teR,
0 %/_/
for f € LP(R.; L9) et
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Comments on the proof

o Extrapolation upwards from pg to p € (pg, 00)
e Prove BMO-endpoint and interpolate

o Extrapolation downwards from pg to p € (2, po)
e Use [*-Calderén-Zygmund decomposition
e Cannot exploit mean zero of “bad” part of decomposition
e Using ideas from Duong—Mclntosh '99

Some differences with classical Calderén—Zygmund theory:
e For X = L9 by the Itd isomorphism it is equivalent to consider the
operators

Trf(t) = (/Ot |K(t, s)f(s)|2ds)1/2, te Ry

for f € LP(R.; L9) et
e The integrals converge absolutely, cancellation takes the form

Hs — (/R |K(t,s)x|* ds)1/2HLL7 Sl e teRy, xeld
+
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Comments on the proof

o Extrapolation upwards from pg to p € (pg, 00)
e Prove BMO-endpoint and interpolate

o Extrapolation downwards from pg to p € (2, po)
e Use [*-Calderén-Zygmund decomposition
e Cannot exploit mean zero of “bad” part of decomposition
e Using ideas from Duong—Mclntosh '99

Some differences with classical Calderén—Zygmund theory:
e For X = L9 by the Itd isomorphism it is equivalent to consider the
operators

Trf(t) = (/Ot |K(t, s)f(s)|2ds)1/2, te Ry

for f € LP(R.; L9) et
e The integrals converge absolutely, cancellation takes the form

Hs — (/R |K(t,s)x|* ds)1/2HLL7 Sl e teRy, xeld
+

o If X =C and K(t,s) = k(t — s), then Sk is bounded if and only if
k € [2(R,) (analog of k € L}(R,) in deterministic setting)
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Applications

Corollary

Let X be a UMD Banach space with type 2, py € [2,00) and let —A be the
generator of a bounded analytic Cy-semigroup. If A has stochastic maximal
LPo-regularity, then A has maximal LP-regularity for all p € (2, 00).
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Applications

Corollary

Let X be a UMD Banach space with type 2, py € [2,00) and let —A be the
generator of a bounded analytic Cy-semigroup. If A has stochastic maximal
LPo-regularity, then A has maximal LP-regularity for all p € (2, 00).

Other applications include stochastic maximal LP-regularity for:
e —A on Lebesgue, Besov and Bessel potential spaces

o General A on real interpolation spaces Da(6, q)
(Da Prato—Lunardi, BrzeZzniak—Hausenblas)

e The heat equation on an angular domain (Cioica-Licht-Kim—Lee-Lindner)
* Non-autonomous SPDEs on a domain with Neumann boundary (Veraar)

e Volterra equations (Desch—Londen)
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Weighted Calderén—Zygmund theory
o A locally integrable w : RY — (0, 00) is called a weight. For p € (1, 00)

we say w € A, if and only if

p—1
[W]a, == sup ][ w - <][ W_ﬁ) < 00,
B B

BCRY
where the supremum is taken over all balls B C R¢.
o The space LP(RY, w; X) consist of all strongly measurable functions

f :RY — X such that
Il = ([ IFOIEw(e) )" < oc
Rd
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Weighted Calderén—Zygmund theory

o A locally integrable w : RY — (0, 00) is called a weight. For p € (1, 00)
we say w € A, if and only if

p—1
[W]a, == sup ][ w - <][ w Pll) < 00,
B B

BCRY
where the supremum is taken over all balls B C R¢
o The space LP(RY, w; X) consist of all strongly measurable functions

f :RY — X such that
([ renzmoar)’ <o

11l o iy =

Deterministic Ap-theorem (Hytonen '12)
Let T be a singular integral operator with a standard kernel, then for all
[ ]max{l,p T}

weE A,
Tl 2o (e wy— Lo @, w)

z
TUDelft 7]



Sparse domination (Lerner, Ombrosi '19)

Take po, p1 € [1,00) and set p := max{pg, p1}. Suppose that
o T is a bounded sublinear operator from LP(R?) to LP>>°(RY)
o M% is bounded from LP*(RY) to LP>°(R9) for some o > 3.

Then for any compactly supported f € LP(R?) there exists an 7)-sparse
collection of cubes S such that for a.e. t € R?

7)< 3 (f167) 1a)

QeS

T
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Sparse domination (Lerner, Ombrosi '19)

Take po, p1 € [1,00) and set p := max{pg, p1}. Suppose that
o T is a bounded sublinear operator from LP(R?) to LP>>°(RY)
o M%® is bounded from LP{(RY) to LP->°(R?) for some a > 3.

Then for any compactly supported f € LP(R?) there exists an 7)-sparse
collection of cubes S such that for a.e. t € R?

p 1/p
|Tf(t)|sc)§€;(]{?|f| ) 14(0).

Here /\/l#’a is the grand maximal truncation operator given by

M#’O‘f(t) = sup esssup|T(f IRd\aQ)(t ) — T(f I]RCI\OtQ)(t”)|7 t e RY

Q>t t/ t''e

in which the supremum is taken over all cubes @ containing t.
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Vector-valued sparse domination (L. '19)

Let X and Y be Banach spaces.
Take po, p1 € [1,00) and set p := max{pg, p1}. Suppose that

e T is a bounded sublinear operator from LP(R?; X) to LP>>°(RY; Y)
o M%* is bounded from LP{(RY; X) to LP>°(R9) for some o > 3.

Then for any compactly supported f € LP(R?; X) there exists an 7-sparse
collection of cubes S such that for a.e. t € RY

. 1/p
ITF@y < QL;(][Q I1715) " 1o(e)

Here /\/l#’a is the grand maximal truncation operator given by

MEF(t) = sup esssup || T(f 1pora@)(t) — T(F 1gnao)(t")ly, teR?
Q3t t/,t"eQ

in which the supremum is taken over all cubes @ containing t.
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Vector-valued sparse domination in a SHT (L. '19)
Let X and Y be Banach spaces and (S, d, 1) a space of homogeneous type.
Take po, p1 € [1,00) and set p := max{pg, p1}. Suppose that

e T is a bounded sublinear operator from LP(S; X) to LP>*°(S; Y)

o M%® is bounded from LP(S; X) to LP1>°(S) for some a > 3/6.

Then for any compactly supported f € LP(S; X) there exists an 7-sparse
collection of cubes S such that for a.e. t € S

1Tl s 3 ][ 1#15) """ 10(e).

QeS

Here /\/l#’a is the grand maximal truncation operator given by

./\/l# “f(t) ;= sup esssup [T(f1s\a@)(t") — T(f 1s\a)(t")lly, tes

Q>t t/t'e

in which the supremum is taken over all cubes @ containing t.
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Vector-valued ("-sparse domination in a SHT (L. '19)

Let X and Y be Banach spaces and (S, d, ;1) a space of homogeneous type.
Take po, p1,r € [1,00) and set p := max{pg, p1}. Suppose that

e T is a bounded sublinear operator from LP(S; X) to LP>°(S; Y)

o M%® is bounded from LP(S; X) to LPv>°(S) for some o > 3.

e There is a constant C > 0 such that for any disjointly supported
f,f € LP(S; X)

IT(h+R)OIy < | TAD + C[TR@|y, tes.

Then for any compactly supported f € LP(S; X) there exists an 7-sparse
collection of cubes S such that for a.e. t € S

7y < (3 (£ 115) " 10te)) ™
Qes

Here M#’O‘ is the grand maximal truncation operator given by

M (1) = sup esssup | T(FLsvao)(¢) = T(FLsva)(tlly,  t€S

in which the supremum is taken over all cubes @ containing t.
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Stochastic “Ap-theorem” (L., Veraar '19)

Let X be a UMD Banach space with type 2, py € [2,00) and let
K : Ry x Ry — L£(X) satisfy the 2-Dini condition. If

Sk LRy x @ X) = LP(Ry x 5 X),
is bounded, then
Sk LE(Ry x Q,w; X) — LP(Ry x Q, w; X)
is bounded for all p € (2,00) and all w € A, /5(R, ). In particular

max{l,p%}
15ll < Wla, )~
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Stochastic “Ap-theorem” (L., Veraar '19)

Let X be a UMD Banach space with type 2, py € [2,00) and let
K : Ry x Ry — L£(X) satisfy the 2-Dini condition. If

Sk LRy x @ X) = LP(Ry x 5 X),
is bounded, then
Sk LE(Ry x Q,w; X) — LP(Ry x Q, w; X)
is bounded for all p € (2,00) and all w € A, /5(R; ). In particular

ISkl S Win i a=?.
If K: Ry x Ry — L(X) satisfies
P P C
max{ || 52K (e.)[|. | 5K (£:9)]| | < .

3 t#£s
then it satisfies the 2-Dini condition.

_s|

T
TUDelft 0/



Comments on the proof
o Apply sparse domination with pg = p; = r = 2.
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Comments on the proof

o Apply sparse domination with pg = p; = r = 2.
o Tk is actually weak L?-bounded by unweighted theory
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Comments on the proof

o Apply sparse domination with pg = p; = r = 2.
o Tk is actually weak L?-bounded by unweighted theory
o For f € L2(R4; X) we have by the 2-Dini condition

MECF(E) < Mo(IFlx)(E),  teRy

and M, is weak L2-bounded.
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Comments on the proof
o Apply sparse domination with pg = p; = r = 2.
o Tk is actually weak L?-bounded by unweighted theory
o For f € L2(R4; X) we have by the 2-Dini condition
MESF(D) < Ma(Flx)(8),  teRy
and M, is weak L2-bounded.

o The 2-sublinearity of Tk is implied by

2 2
I+ xllx | I —xllx
2 2
which is equivalent (up to renorming) to martingale type 2 of X.

< lxlkx+Clhelk,  xeeX.
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Comments on the proof
o Apply sparse domination with pg = p; = r = 2.
o Tk is actually weak L?-bounded by unweighted theory
o For f € L2(R4; X) we have by the 2-Dini condition
MESF(D) < Ma(Flx)(8),  teRy
and M, is weak L2-bounded.

o The 2-sublinearity of Tk is implied by

[+ %l |, b —
2 2
which is equivalent (up to renorming) to martingale type 2 of X.

2
X2
I < a2+ ClalZ e X

e It is by now well-known that the sparse operator

0 (S (f,)) a0

is bounded on LP(Ry; w) for p e (2, 00) with the required estimate.
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Sharpness of the weighted estimate
o The stochastic singular integral operator Sk with K(t,s) = is
related to the Hilbert operator

f(t) —

_1
(trs)17?

f(s)

—=ds teR
R+t+$ ) +

which implies
S ~ —1
|| K||LP(]R+)—>LP(R+) - sin(27r/D)1/27

with higher dimensional analogs by Osekowski '17.
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Sharpness of the weighted estimate
o The stochastic singular integral operator Sk with K(t,s) = is
related to the Hilbert operator

f(t) —

1
(t15)172

f
f) 4s ter,,
R, t+s

which implies
S N 1
[ K||LP(]R+)—>LP(R+) - Wa
with higher dimensional analogs by Osekowski '17.
o By a result of Luque—Pérez—Rela '15 (extended by Frey—Nieraeth '19) this
implies that if
15kl S W2, ey

then 3 > max{3, P—iz} so our result is sharp.
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Applications

¢ All previous examples admit weights w € A, /»(R )

e In particular the power weights w(t) = t* for o € (—1,p/2 — 1) can be
used to allow for rough initial data
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Applications

¢ All previous examples admit weights w € A, /»(R )
e In particular the power weights w(t) = t* for o € (—1,p/2 — 1) can be
used to allow for rough initial data
Other applications of the sparse domination theorem:

e Vector-valued Littlewood—Paley—Rubio de Francia estimates
(Potapov—Sukochev—Xu '12)

Deterministic vector—valued A,-theorem in spaces of homogeneous type
(Hanninen—Hytdnen '14), (Nazarov—Resnikov—Volberg '13)

Operators beyond Calder6n—Zygmund theory
(Bernicot—Frey—Petermichl '16)

Lattice Hardy-Littlewood maximal operator

(Hanninen-L. '19)

Maximal regularity for parabolic (S)PDE’s with space-time weights
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Thank you for your attention!
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