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Stochastic abstract Cauchy problem{
du + Au dt = G dW on R+

u(0) = 0

• −A the generator of an analytic semigroup
e−tA on X

• For example A = −∆

• X a UMD Banach space
• For example X = Lq for q ∈ (1,∞)

• W a standard Brownian motion

• G ∈ LpF (R+ × Ω;X ) for some p ∈ (1,∞)

The mild solution u is given by the variation of constants formula

u(t) =

∫ t

0

e−(t−s)AG (s) dW (s), t ∈ R+
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Stochastic maximal regularity

Definition
We say that A has stochastic maximal Lp-regularity if

A
1
2 u ∈ Lp(R+ × Ω;X )

or in other words, if S : LpF (R+ × Ω;X )→ Lp(R+ × Ω;X ) given by

SG (t) :=

∫ t

0

A
1
2 e−(t−s)AG (s) dW (s), t ∈ R+

is a bounded operator.

Previously studied by:

• Da Prato et al. for p = 2 and X Hilbert

• Krylov et al. for A = −∆ and X = Lq with 2 ≤ q ≤ p <∞
• van Neerven–Veraar–Weis for A with bounded H∞-calculus for
p ∈ (2,∞) and X = Lq with q ∈ [2,∞)
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Stochastic singular integral operators

Goal
Study the p-independence of the Lp-boundedness of

SKG (t) :=

∫ ∞
0

K (t, s)G (s) dW (s), t ∈ R+

where K : R+ × R+ → L(X ) is a singular kernel. Of particular interest is

K (t, s) = A
1
2 e(t−s)A 1t>s

• We call SK : LpF (R+ × Ω;X )→ Lp(R+ × Ω;X ) a singular stochastic
integral operator

• Deterministic case studied through Calderón–Zygmund theory

• No Calderón–Zygmund theory yet in the stochastic setting

Topic of this talk!
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Stochastic Calderón–Zygmund theory

Stochastic Calderón–Zygmund theorem (L., Veraar ’19)

Let X be a UMD Banach space with type 2, p0 ∈ [2,∞) and let
K : R+ × R+ → L(X ) satisfy the 2-Hörmander condition. If

SK : Lp0

F (R+ × Ω;X )→ Lp0 (R+ × Ω;X ),

is bounded, then

SK : LpF (R+ × Ω;X )→ Lp(R+ × Ω;X )

is bounded for all p ∈ (2,∞).
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SK : LpF (R+ × Ω;X )→ Lp(R+ × Ω;X )

is bounded for all p ∈ (2,∞).

• X has type 2 if for any x1, · · · , xn ∈ X∥∥∥ n∑
k=1

εkxk

∥∥∥
L2(Ω;X )

.
( n∑
k=1

‖xk‖2
)1/2

where (εk)nk=1 is a Rademacher sequence.

• Lq for q ∈ [2,∞) is a UMD Banach space with type 2
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Comments on the proof
• Extrapolation upwards from p0 to p ∈ (p0,∞)

• Prove BMO-endpoint and interpolate
• Extrapolation downwards from p0 to p ∈ (2, p0)

• Use L2-Calderón–Zygmund decomposition
• Cannot exploit mean zero of “bad” part of decomposition
• Using ideas from Duong–McIntosh ’99

Some differences with classical Calderón–Zygmund theory:
• For X = Lq by the Itô isomorphism it is equivalent to consider the

operators

TK f (t) :=
(∫ t

0

|K (t, s)f (s)|︸ ︷︷ ︸
∈Lq

2
ds
)1/2

, t ∈ R+

for f ∈ Lp(R+; Lq)
• The integrals converge absolutely, cancellation takes the form∥∥∥s 7→ (∫

R+

|K (t, s)x |2 ds
)1/2

∥∥∥
Lq

. ‖x‖Lq , t ∈ R+, x ∈ Lq

• If X = C and K (t, s) = k(t − s), then SK is bounded if and only if
k ∈ L2(R+) (analog of k ∈ L1(R+) in deterministic setting)
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Applications

Corollary

Let X be a UMD Banach space with type 2, p0 ∈ [2,∞) and let −A be the
generator of a bounded analytic C0-semigroup. If A has stochastic maximal
Lp0 -regularity, then A has maximal Lp-regularity for all p ∈ (2,∞).

Other applications include stochastic maximal Lp-regularity for:

• −∆ on Lebesgue, Besov and Bessel potential spaces

• General A on real interpolation spaces DA(θ, q)
(Da Prato–Lunardi, Brzeźniak–Hausenblas)

• The heat equation on an angular domain (Cioica-Licht–Kim–Lee–Lindner)

• Non-autonomous SPDEs on a domain with Neumann boundary (Veraar)

• Volterra equations (Desch–Londen)
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Weighted Calderón–Zygmund theory

• A locally integrable w : Rd → (0,∞) is called a weight. For p ∈ (1,∞)
we say w ∈ Ap if and only if

[w ]Ap := sup
B⊆Rd

∫
B

w ·
(∫

B

w−
1

p−1

)p−1

<∞,

where the supremum is taken over all balls B ⊆ Rd .

• The space Lp(Rd ,w ;X ) consist of all strongly measurable functions
f : Rd → X such that

‖f ‖Lp(Rd ,w ;X ) :=
(∫

Rd

‖f (t)‖pXw(t) dt
) 1

p

<∞

Deterministic A2-theorem (Hytönen ’12)

Let T be a singular integral operator with a standard kernel, then for all
w ∈ Ap

‖T‖Lp(Rd ,w)→Lp(Rd ,w) . [w ]
max{1, 1

p−1}
Ap
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Sparse domination (Lerner, Ombrosi ’19)

Take p0, p1 ∈ [1,∞) and set p := max{p0, p1}. Suppose that

• T is a bounded sublinear operator from Lp0 (Rd) to Lp0,∞(Rd)

• M#,α
T is bounded from Lp1 (Rd) to Lp1,∞(Rd) for some α ≥ 3.

Then for any compactly supported f ∈ Lp(Rd) there exists an η-sparse
collection of cubes S such that for a.e. t ∈ Rd

|Tf (t)| .
∑
Q∈S

(∫
Q

|f |p
)1/p

1Q(t).
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Here M#,α
T is the grand maximal truncation operator given by

M#,α
T f (t) := sup

Q3t
ess sup
t′,t′′∈Q

|T (f 1Rd\αQ)(t ′)− T (f 1Rd\αQ)(t ′′)|, t ∈ Rd

in which the supremum is taken over all cubes Q containing t.
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Vector-valued sparse domination (L. ’19)

Let X and Y be Banach spaces.
Take p0, p1 ∈ [1,∞) and set p := max{p0, p1}. Suppose that

• T is a bounded sublinear operator from Lp0 (Rd ;X ) to Lp0,∞(Rd ;Y )

• M#,α
T is bounded from Lp1 (Rd ;X ) to Lp1,∞(Rd) for some α ≥ 3.

Then for any compactly supported f ∈ Lp(Rd ;X ) there exists an η-sparse
collection of cubes S such that for a.e. t ∈ Rd

‖Tf (t)‖Y .
∑
Q∈S

(∫
Q

‖f ‖pX
)1/p

1Q(t).

Here M#,α
T is the grand maximal truncation operator given by
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Q3t
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Vector-valued sparse domination in a SHT (L. ’19)

Let X and Y be Banach spaces and (S , d , µ) a space of homogeneous type.
Take p0, p1 ∈ [1,∞) and set p := max{p0, p1}. Suppose that

• T is a bounded sublinear operator from Lp0 (S ;X ) to Lp0,∞(S ;Y )

• M#,α
T is bounded from Lp1 (S ;X ) to Lp1,∞(S) for some α ≥ 3/δ.

Then for any compactly supported f ∈ Lp(S ;X ) there exists an η-sparse
collection of cubes S such that for a.e. t ∈ S

‖Tf (t)‖Y .
∑
Q∈S
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Vector-valued `r -sparse domination in a SHT (L. ’19)

Let X and Y be Banach spaces and (S , d , µ) a space of homogeneous type.
Take p0, p1, r ∈ [1,∞) and set p := max{p0, p1}. Suppose that

• T is a bounded sublinear operator from Lp0 (S ;X ) to Lp0,∞(S ;Y )

• M#,α
T is bounded from Lp1 (S ;X ) to Lp1,∞(S) for some α ≥ 3.

• There is a constant C > 0 such that for any disjointly supported
f1, f2 ∈ Lp(S ;X )

‖T (f1 + f2)(t)‖rY ≤
∥∥Tf1(t)

∥∥r
Y

+ C
∥∥Tf2(t)

∥∥r
Y
, t ∈ S .

Then for any compactly supported f ∈ Lp(S ;X ) there exists an η-sparse
collection of cubes S such that for a.e. t ∈ S

‖Tf (t)‖Y .
(∑
Q∈S

(∫
Q

‖f ‖pX
)r/p

1Q(t)
)1/r

.

Here M#,α
T is the grand maximal truncation operator given by
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Stochastic “A2-theorem” (L., Veraar ’19)

Let X be a UMD Banach space with type 2, p0 ∈ [2,∞) and let
K : R+ × R+ → L(X ) satisfy the 2-Dini condition. If

SK : Lp0

F (R+ × Ω;X )→ Lp0 (R+ × Ω;X ),

is bounded, then

SK : LpF (R+ × Ω,w ;X )→ Lp(R+ × Ω,w ;X )

is bounded for all p ∈ (2,∞) and all w ∈ Ap/2(R+). In particular

‖SK‖ . [w ]
max{ 1

2 ,
1

p−2}
Ap/2(R+) .

If K : R+ × R+ → L(X ) satisfies

max
{∥∥ ∂

∂s
K (t, s)

∥∥,∥∥ ∂
∂t

K (t, s)
∥∥} ≤ C

|t − s|3/2
, t 6= s

then it satisfies the 2-Dini condition.
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Comments on the proof
• Apply sparse domination with p0 = p1 = r = 2.

• TK is actually weak L2-bounded by unweighted theory

• For f ∈ L2(R+;X ) we have by the 2-Dini condition

M#,α
TK

f (t) ≤ M2(‖f ‖X )(t), t ∈ R+

and M2 is weak L2-bounded.

• The 2-sublinearity of TK is implied by

‖x1 + x2‖2
X

2
+
‖x1 − x2‖2

X

2
≤ ‖x1‖2

X + C ‖x2‖2
X , x1, x2 ∈ X .

which is equivalent (up to renorming) to martingale type 2 of X .

• It is by now well-known that the sparse operator

f (t) 7→
(∑
Q∈S

(∫
Q

|f |2
))1/2

1Q(t).

is bounded on Lp(R+;w) for p ∈ (2,∞) with the required estimate.
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is bounded on Lp(R+;w) for p ∈ (2,∞) with the required estimate.
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Sharpness of the weighted estimate
• The stochastic singular integral operator SK with K (t, s) = 1

(t+s)1/2 is

related to the Hilbert operator

f (t) 7→
∫
R+

f (s)

t + s
ds, t ∈ R+,

which implies

‖SK‖Lp(R+)→Lp(R+) '
1

sin(2π/p)1/2
,

with higher dimensional analogs by Osȩkowski ’17.

• By a result of Luque–Pérez–Rela ’15 (extended by Frey–Nieraeth ’19) this
implies that if

‖SK‖ . [w ]βAp/2(R+),

then β ≥ max{ 1
2 ,

1
p−2}, so our result is sharp.
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Applications
• All previous examples admit weights w ∈ Ap/2(R+)

• In particular the power weights w(t) = tα for α ∈ (−1, p/2− 1) can be
used to allow for rough initial data

Other applications of the sparse domination theorem:

• Vector-valued Littlewood–Paley–Rubio de Francia estimates
(Potapov–Sukochev–Xu ’12)

• Deterministic vector–valued A2-theorem in spaces of homogeneous type
(Hänninen–Hytönen ’14), (Nazarov–Resnikov–Volberg ’13)

• Operators beyond Calderón–Zygmund theory
(Bernicot–Frey–Petermichl ’16)

• Lattice Hardy–Littlewood maximal operator
(Hänninen–L. ’19)

• Maximal regularity for parabolic (S)PDE’s with space-time weights

12 / 12



Applications
• All previous examples admit weights w ∈ Ap/2(R+)

• In particular the power weights w(t) = tα for α ∈ (−1, p/2− 1) can be
used to allow for rough initial data

Other applications of the sparse domination theorem:

• Vector-valued Littlewood–Paley–Rubio de Francia estimates
(Potapov–Sukochev–Xu ’12)

• Deterministic vector–valued A2-theorem in spaces of homogeneous type
(Hänninen–Hytönen ’14), (Nazarov–Resnikov–Volberg ’13)

• Operators beyond Calderón–Zygmund theory
(Bernicot–Frey–Petermichl ’16)

• Lattice Hardy–Littlewood maximal operator
(Hänninen–L. ’19)

• Maximal regularity for parabolic (S)PDE’s with space-time weights

12 / 12



Thank you for your attention!
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