Singular stochastic integral operators

Emiel Lorist

Delft University of Technology, The Netherlands

Będlewo, Poland May 21, 2019

Joint work with Mark Veraar

Overview

1 Motivation: SPDEs

2 Stochastic singular integral operators

3 Stochastic Calderón–Zygmund theory

4 Sparse domination and weighted results

Stochastic abstract Cauchy problem

$$\begin{cases} \mathrm{d}u + Au\,\mathrm{d}t = G\,\mathrm{d}W \quad \text{on } \mathbb{R}_+\\ u(0) = 0 \end{cases}$$

- -A the generator of an analytic semigroup e^{-tA} on X
 - For example $A = -\Delta$
- X a UMD Banach space
 - For example $X = L^q$ for $q \in (1,\infty)$
- W a standard Brownian motion
- $G \in L^p_{\mathcal{F}}(\mathbb{R}_+ imes \Omega; X)$ for some $p \in (1,\infty)$

$$u(t) = \int_0^t \mathrm{e}^{-(t-s)\mathcal{A}}G(s)\,\mathrm{d}W(s), \qquad t\in\mathbb{R}_+$$

Stochastic abstract Cauchy problem

$$\begin{cases} \mathrm{d}u + Au\,\mathrm{d}t = G\,\mathrm{d}W \quad \text{on } \mathbb{R}_+\\ u(0) = 0 \end{cases}$$

- -A the generator of an analytic semigroup e^{-tA} on X
 - For example $A = -\Delta$
- X a UMD Banach space
 - For example $X = L^q$ for $q \in (1,\infty)$
- W a standard Brownian motion
- $G \in L^p_\mathcal{F}(\mathbb{R}_+ imes \Omega; X)$ for some $p \in (1,\infty)$

The mild solution u is given by the variation of constants formula

$$u(t) = \int_0^t e^{-(t-s)A} G(s) dW(s), \qquad t \in \mathbb{R}_+$$

Stochastic maximal regularity

Definition

We say that A has stochastic maximal L^p -regularity if

$$A^{\frac{1}{2}}u \in L^{p}(\mathbb{R}_{+} \times \Omega; X)$$

or in other words, if $S \colon L^p_{\mathcal{F}}(\mathbb{R}_+ \times \Omega; X) \to L^p(\mathbb{R}_+ \times \Omega; X)$ given by

$$SG(t) := \int_0^t A^{\frac{1}{2}} \mathrm{e}^{-(t-s)A} G(s) \,\mathrm{d}W(s), \qquad t \in \mathbb{R}_+$$

is a bounded operator.

Previously studied by:

- Da Prato et al. for p = 2 and X Hilbert
- Krylov et al. for $A = -\Delta$ and $X = L^q$ with $2 \le q \le p < \infty$
- van Neerven-Veraar-Weis for A with bounded H[∞]-calculus for p ∈ (2,∞) and X = L^q with q ∈ [2,∞)

Stochastic maximal regularity

Definition

We say that A has stochastic maximal L^p -regularity if

$$A^{\frac{1}{2}}u \in L^{p}(\mathbb{R}_{+} \times \Omega; X)$$

or in other words, if $S \colon L^p_{\mathcal{F}}(\mathbb{R}_+ \times \Omega; X) \to L^p(\mathbb{R}_+ \times \Omega; X)$ given by

$$SG(t) := \int_0^t A^{\frac{1}{2}} \mathrm{e}^{-(t-s)A} G(s) \,\mathrm{d}W(s), \qquad t \in \mathbb{R}_+$$

is a bounded operator.

Previously studied by:

- Da Prato et al. for p = 2 and X Hilbert
- Krylov et al. for $A = -\Delta$ and $X = L^q$ with $2 \le q \le p < \infty$
- van Neerven–Veraar–Weis for A with bounded H^{∞} -calculus for $p \in (2, \infty)$ and $X = L^q$ with $q \in [2, \infty)$

Stochastic singular integral operators

Goal

Study the p-independence of the L^p -boundedness of

$$S_{\mathcal{K}}G(t) := \int_0^\infty \mathcal{K}(t,s)G(s) \,\mathrm{d} \mathcal{W}(s), \qquad t \in \mathbb{R}_+$$

where $K \colon \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$ is a singular kernel. Of particular interest is $K(t,s) = A^{\frac{1}{2}} e^{(t-s)A} \mathbf{1}_{t>s}$

- We call S_K: L^p_F(ℝ₊ × Ω; X) → L^p(ℝ₊ × Ω; X) a singular stochastic integral operator
- Deterministic case studied through Calderón–Zygmund theory
- No Calderón–Zygmund theory yet in the stochastic setting

Topic of this talk!

Stochastic singular integral operators

Goal

Study the p-independence of the L^p -boundedness of

$$S_{\mathcal{K}}G(t) := \int_0^\infty \mathcal{K}(t,s)G(s) \,\mathrm{d} W(s), \qquad t \in \mathbb{R}_+$$

where $K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$ is a singular kernel. Of particular interest is

$$K(t,s) = A^{\frac{1}{2}} \mathrm{e}^{(t-s)A} \, \mathbf{1}_{t>s}$$

- We call S_K: L^p_F(ℝ₊ × Ω; X) → L^p(ℝ₊ × Ω; X) a singular stochastic integral operator
- Deterministic case studied through Calderón-Zygmund theory
- No Calderón-Zygmund theory yet in the stochastic setting

Topic of this talk!

Stochastic singular integral operators

Goal

Study the p-independence of the L^p -boundedness of

$$S_{\mathcal{K}}G(t) := \int_0^\infty \mathcal{K}(t,s)G(s) \,\mathrm{d} W(s), \qquad t \in \mathbb{R}_+$$

where $K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$ is a singular kernel. Of particular interest is

$$K(t,s) = A^{\frac{1}{2}} \mathrm{e}^{(t-s)A} \, \mathbf{1}_{t>s}$$

- We call S_K: L^p_F(ℝ₊ × Ω; X) → L^p(ℝ₊ × Ω; X) a singular stochastic integral operator
- Deterministic case studied through Calderón-Zygmund theory
- No Calderón-Zygmund theory yet in the stochastic setting

Topic of this talk!

Stochastic Calderón-Zygmund theorem (L., Veraar '19)

Let X be a UMD Banach space with type 2, $p_0 \in [2, \infty)$ and let $K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$ satisfy the 2-Hörmander condition. If

$$S_{\mathcal{K}}: L^{p_0}_{\mathcal{F}}(\mathbb{R}_+ \times \Omega; X) \to L^{p_0}(\mathbb{R}_+ \times \Omega; X),$$

is bounded, then

$$S_{\mathcal{K}}: L^{p}_{\mathcal{F}}(\mathbb{R}_{+} \times \Omega; X) \to L^{p}(\mathbb{R}_{+} \times \Omega; X)$$

is bounded for all $p \in (2, \infty)$.

Stochastic Calderón-Zygmund theorem (L., Veraar '19)

Let X be a UMD Banach space with type 2, $p_0 \in [2, \infty)$ and let $K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$ satisfy the 2-Hörmander condition. If

$$S_{\mathcal{K}}: L^{p_0}_{\mathcal{F}}(\mathbb{R}_+ \times \Omega; X) \to L^{p_0}(\mathbb{R}_+ \times \Omega; X),$$

is bounded, then

$$\mathcal{S}_{\mathcal{K}}\colon L^p_{\mathcal{F}}(\mathbb{R}_+ imes \Omega;X) o L^p(\mathbb{R}_+ imes \Omega;X)$$

is bounded for all $p \in (2, \infty)$.

• X has type 2 if for any
$$x_1, \cdots, x_n \in X$$
$$\left\|\sum_{k=1}^n \varepsilon_k x_k\right\|_{L^2(\Omega;X)} \lesssim \left(\sum_{k=1}^n \|x_k\|^2\right)^{1/2}$$

where $(\varepsilon_k)_{k=1}^n$ is a Rademacher sequence.

• L^q for $q \in [2, \infty)$ is a UMD Banach space with type 2

Stochastic Calderón-Zygmund theorem (L., Veraar '19)

Let X be a UMD Banach space with type 2, $p_0 \in [2, \infty)$ and let $K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$ satisfy the 2-Hörmander condition. If

$$S_{\mathcal{K}}: L^{p_0}_{\mathcal{F}}(\mathbb{R}_+ \times \Omega; X) \to L^{p_0}(\mathbb{R}_+ \times \Omega; X),$$

is bounded, then

$$\mathcal{S}_{\mathcal{K}}\colon L^p_{\mathcal{F}}(\mathbb{R}_+ imes \Omega;X) o L^p(\mathbb{R}_+ imes \Omega;X)$$

is bounded for all $p \in (2, \infty)$.

• X has type 2 if for any
$$x_1, \dots, x_n \in X$$
$$\left\|\sum_{k=1}^n \varepsilon_k x_k\right\|_{L^2(\Omega;X)} \lesssim \left(\sum_{k=1}^n \|x_k\|^2\right)^{1/2}$$

where $(\varepsilon_k)_{k=1}^n$ is a Rademacher sequence.

• L^q for $q \in [2,\infty)$ is a UMD Banach space with type 2

Stochastic Calderón-Zygmund theorem (L., Veraar '19)

Let X be a UMD Banach space with type 2, $p_0 \in [2, \infty)$ and let $K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$ satisfy the 2-Hörmander condition. If

$$S_{\mathcal{K}}: L^{p_0}_{\mathcal{F}}(\mathbb{R}_+ \times \Omega; X) \to L^{p_0}(\mathbb{R}_+ \times \Omega; X),$$

is bounded, then

$$\mathcal{S}_{\mathcal{K}}\colon L^p_{\mathcal{F}}(\mathbb{R}_+ imes \Omega;X) o L^p(\mathbb{R}_+ imes \Omega;X)$$

is bounded for all $p \in (2, \infty)$.

• If
$$K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$$
 satisfies

$$\max \Big\{ \Big\| \frac{\partial}{\partial t} K(t,s) \Big\|, \Big\| \frac{\partial}{\partial s} K(t,s) \Big\| \Big\} \le \frac{C}{|t-s|^{3/2}}, \qquad t \neq s$$

then it satisfies the 2-Hörmander condition.

- Extrapolation upwards from p_0 to $p\in(p_0,\infty)$
 - Prove BMO-endpoint and interpolate
- Extrapolation downwards from p_0 to $p \in (2, p_0)$
 - Use *L*²-Calderón–Zygmund decomposition
 - Cannot exploit mean zero of "bad" part of decomposition
 - Using ideas from Duong-McIntosh '99

Some differences with classical Calderón–Zygmund theory:

• For $X = L^q$ by the ltô isomorphism it is equivalent to consider the operators

$$\Gamma_{\mathcal{K}}f(t) := \left(\int_{0}^{t} \left[rac{\left[K(t,s)f(s)
ight]^2}{e^{ts}} \, \mathrm{d}s
ight)^{1/2}, \qquad t \in \mathbb{R}_+$$

for $f \in L^p(\mathbb{R}_+; L^q)$

• The integrals converge absolutely, cancellation takes the form

 $\left\| s \mapsto \left(\int_{\mathbb{R}^{n}} \left\| K(t,s) x \right\|^{2} \mathrm{d}s \right)^{1/2} \right\|_{L^{q}} \lesssim \left\| x \right\|_{L^{q}}, \qquad t \in \mathbb{R}_{+}, \, x \in L^{q}$

■ If $X = \mathbb{C}$ and $\overline{K}(t, s) = k(t - s)$, then S_K is bounded if and only if $k \in L^2(\mathbb{R}_+)$ (analog of $k \in L^1(\mathbb{R}_+)$ in deterministic setting)

- Extrapolation upwards from p_0 to $p\in(p_0,\infty)$
 - Prove BMO-endpoint and interpolate
- Extrapolation downwards from p_0 to $p \in (2, p_0)$
 - Use L²-Calderón–Zygmund decomposition
 - Cannot exploit mean zero of "bad" part of decomposition
 - Using ideas from Duong-McIntosh '99

Some differences with classical Calderón–Zygmund theory:

For X = L^q by the Itô isomorphism it is equivalent to consider the operators

$$\Gamma_{K}f(t) := \left(\int_{0}^{t} \left[\frac{K(t,s)f(s)}{s}\right]^{2} \mathrm{d}s\right)^{1/2}, \qquad t \in \mathbb{R}.$$

for $f \in L^{p}(\mathbb{R}_{+}; L^{q})$ The integrals converge absolutely, cancellation takes the form $\|s \mapsto \left(\int |K(t, s)x|^{2} ds \right)^{1/2} \| \leq \|x\|_{t^{q}}, \quad t \in \mathbb{R}_{+}, x \in \mathbb{R}_{+}$

• If $X = \mathbb{C}$ and $\widetilde{K}(t, s) = k(t - s)$, then S_K is bounded if and only if $k \in L^2(\mathbb{R}_+)$ (analog of $k \in L^1(\mathbb{R}_+)$ in deterministic setting)

- Extrapolation upwards from p_0 to $p \in (p_0,\infty)$
 - Prove BMO-endpoint and interpolate
- Extrapolation downwards from p_0 to $p \in (2, p_0)$
 - Use *L*²-Calderón–Zygmund decomposition
 - · Cannot exploit mean zero of "bad" part of decomposition
 - Using ideas from Duong–McIntosh '99

Some differences with classical Calderón–Zygmund theory:

• For $X = L^q$ by the ltô isomorphism it is equivalent to consider the operators

$$T_{\mathcal{K}}f(t) := \left(\int_{0}^{t} \underbrace{|\mathcal{K}(t,s)f(s)|}_{\in L^{q}}^{2} \mathrm{d}s
ight)^{1/2}, \qquad t \in \mathbb{R}_{+}$$

for $f \in L^p(\mathbb{R}_+; L^q)$

The integrals converge absolutely, cancellation takes the form

 $s\mapsto ig(\int_{\mathbb{R}_+} |K(t,s)x|^2\,\mathrm{d}sig)^{1/2}\Big\|_{L^q}\lesssim \|x\|_{L^q},\qquad t\in\mathbb{R}_+,\,x\in L^q$

If X = C and K(t,s) = k(t − s), then S_K is bounded if and only if k ∈ L²(R₊) (analog of k ∈ L¹(R₊) in deterministic setting)

- Extrapolation upwards from p_0 to $p \in (p_0,\infty)$
 - Prove BMO-endpoint and interpolate
- Extrapolation downwards from p_0 to $p \in (2, p_0)$
 - Use *L*²-Calderón–Zygmund decomposition
 - · Cannot exploit mean zero of "bad" part of decomposition
 - Using ideas from Duong–McIntosh '99

Some differences with classical Calderón–Zygmund theory:

• For $X = L^q$ by the ltô isomorphism it is equivalent to consider the operators

$$T_{\mathcal{K}}f(t) := \left(\int_{0}^{t} \underbrace{|\mathcal{K}(t,s)f(s)|}_{\in L^{q}} \mathrm{d}s\right)^{1/2}, \qquad t \in \mathbb{R}_{+}$$

for $f \in L^p(\mathbb{R}_+; L^q)$

• The integrals converge absolutely, cancellation takes the form

$$\left\| s \mapsto \left(\int_{\mathbb{R}_+} \left| \mathcal{K}(t,s) x \right|^2 \mathrm{d}s
ight)^{1/2}
ight\|_{L^q} \lesssim \|x\|_{L^q}, \qquad t \in \mathbb{R}_+, \, x \in L^q$$

• If $X = \mathbb{C}$ and K(t, s) = k(t - s), then S_K is bounded if and only if $k \in L^2(\mathbb{R}_+)$ (analog of $k \in L^1(\mathbb{R}_+)$ in deterministic setting)

- Extrapolation upwards from p_0 to $p\in(p_0,\infty)$
 - Prove BMO-endpoint and interpolate
- Extrapolation downwards from p_0 to $p \in (2, p_0)$
 - Use *L*²-Calderón–Zygmund decomposition
 - · Cannot exploit mean zero of "bad" part of decomposition
 - Using ideas from Duong–McIntosh '99

Some differences with classical Calderón–Zygmund theory:

• For $X = L^q$ by the ltô isomorphism it is equivalent to consider the operators

$$T_{\mathcal{K}}f(t) := \Bigl(\int_0^t \underbrace{|\mathcal{K}(t,s)f(s)|}_{\in L^q} \mathrm{d}s \Bigr)^{1/2}, \qquad t \in \mathbb{R}_+$$

for $f \in L^p(\mathbb{R}_+; L^q)$

• The integrals converge absolutely, cancellation takes the form

$$\left| s \mapsto \left(\int_{\mathbb{R}_+} \left| K(t,s) x \right|^2 \mathrm{d}s \right)^{1/2} \right\|_{L^q} \lesssim \|x\|_{L^q}, \qquad t \in \mathbb{R}_+, \, x \in L^q$$

• If $X = \mathbb{C}$ and K(t, s) = k(t - s), then S_K is bounded if and only if $k \in L^2(\mathbb{R}_+)$ (analog of $k \in L^1(\mathbb{R}_+)$ in deterministic setting)

Applications

Corollary

Let X be a UMD Banach space with type 2, $p_0 \in [2, \infty)$ and let -A be the generator of a bounded analytic C_0 -semigroup. If A has stochastic maximal L^{p_0} -regularity, then A has maximal L^{p} -regularity for all $p \in (2, \infty)$.

Other applications include stochastic maximal L^p-regularity for:

- $-\Delta$ on Lebesgue, Besov and Bessel potential spaces
- General A on real interpolation spaces D_A(θ, q) (Da Prato-Lunardi, Brzeźniak-Hausenblas)
- The heat equation on an angular domain (Cioica-Licht–Kim–Lee–Lindner)
- Non-autonomous SPDEs on a domain with Neumann boundary (Veraar)
- Volterra equations (Desch–Londen)

Applications

Corollary

Let X be a UMD Banach space with type 2, $p_0 \in [2, \infty)$ and let -A be the generator of a bounded analytic C_0 -semigroup. If A has stochastic maximal L^{p_0} -regularity, then A has maximal L^{p} -regularity for all $p \in (2, \infty)$.

Other applications include stochastic maximal L^p -regularity for:

- $-\Delta$ on Lebesgue, Besov and Bessel potential spaces
- General A on real interpolation spaces D_A(θ, q) (Da Prato-Lunardi, Brzeźniak-Hausenblas)
- The heat equation on an angular domain (Cioica-Licht-Kim-Lee-Lindner)
- Non-autonomous SPDEs on a domain with Neumann boundary (Veraar)
- Volterra equations (Desch–Londen)

Weighted Calderón–Zygmund theory

• A locally integrable $w : \mathbb{R}^d \to (0,\infty)$ is called a weight. For $p \in (1,\infty)$ we say $w \in A_p$ if and only if

$$[w]_{A_p} := \sup_{B \subseteq \mathbb{R}^d} \oint_B w \cdot \left(\oint_B w^{-\frac{1}{p-1}} \right)^{p-1} < \infty,$$

where the supremum is taken over all balls $B \subseteq \mathbb{R}^d$.

• The space $L^p(\mathbb{R}^d, w; X)$ consist of all strongly measurable functions $f: \mathbb{R}^d \to X$ such that

$$\|f\|_{L^p(\mathbb{R}^d,w;X)} := \left(\int_{\mathbb{R}^d} \|f(t)\|_X^p w(t) \,\mathrm{d}t\right)^{\frac{1}{p}} < \infty$$

Deterministic A_2 -theorem (Hytönen '12)

Let T be a singular integral operator with a standard kernel, then for all $w \in A_p$ $\|T\| \leq \int_{W^1} ||T|| \leq \int_{W^1} ||T||^{\max\{1, \frac{1}{p-1}\}}$

Weighted Calderón–Zygmund theory

• A locally integrable $w : \mathbb{R}^d \to (0,\infty)$ is called a weight. For $p \in (1,\infty)$ we say $w \in A_p$ if and only if

$$[w]_{A_{p}} := \sup_{B \subseteq \mathbb{R}^{d}} \oint_{B} w \cdot \left(\oint_{B} w^{-\frac{1}{p-1}} \right)^{p-1} < \infty,$$

where the supremum is taken over all balls $B \subseteq \mathbb{R}^d$.

• The space $L^p(\mathbb{R}^d, w; X)$ consist of all strongly measurable functions $f: \mathbb{R}^d \to X$ such that

$$\|f\|_{L^p(\mathbb{R}^d,w;X)} := \left(\int_{\mathbb{R}^d} \|f(t)\|_X^p w(t) \,\mathrm{d}t\right)^{rac{1}{p}} < \infty$$

Deterministic A2-theorem (Hytönen '12)

Let *T* be a singular integral operator with a standard kernel, then for all $w \in A_p$ $\|T\| \leq \int_{W^1} ||T|| \leq \int_{W^1} ||T||^{2max\{1, \frac{1}{p-1}\}}$

$$\|T\|_{L^p(\mathbb{R}^d,w)\to L^p(\mathbb{R}^d,w)}\lesssim [w]_{A_p}^{\max\{1,\frac{1}{p-1}\}}$$

Sparse domination (Lerner, Ombrosi '19)

Take $p_0, p_1 \in [1,\infty)$ and set $p := \max\{p_0, p_1\}$. Suppose that

- T is a bounded sublinear operator from $L^{p_0}(\mathbb{R}^d)$ to $L^{p_0,\infty}(\mathbb{R}^d)$
- $\mathcal{M}_{T}^{\#,\alpha}$ is bounded from $L^{p_{1}}(\mathbb{R}^{d})$ to $L^{p_{1},\infty}(\mathbb{R}^{d})$ for some $\alpha \geq 3$.

Then for any compactly supported $f \in L^p(\mathbb{R}^d)$ there exists an η -sparse collection of cubes S such that for a.e. $t \in \mathbb{R}^d$

$$|\mathcal{T}f(t)|\lesssim \sum_{Q\in\mathcal{S}}\Bigl({{{{\int}_{Q}}{\left| f
ight|}^{p} }}\Bigr)^{1/p} \mathbf{1}_{Q}(t).$$

Sparse domination (Lerner, Ombrosi '19)

Take $p_0, p_1 \in [1,\infty)$ and set $p := \max\{p_0, p_1\}$. Suppose that

- T is a bounded sublinear operator from $L^{p_0}(\mathbb{R}^d)$ to $L^{p_0,\infty}(\mathbb{R}^d)$
- $\mathcal{M}_T^{\#,\alpha}$ is bounded from $L^{p_1}(\mathbb{R}^d)$ to $L^{p_1,\infty}(\mathbb{R}^d)$ for some $\alpha \geq 3$.

Then for any compactly supported $f \in L^p(\mathbb{R}^d)$ there exists an η -sparse collection of cubes S such that for a.e. $t \in \mathbb{R}^d$

$$|\mathcal{T}f(t)|\lesssim \sum_{Q\in\mathcal{S}}\Bigl({{{{\int}_{Q}}{\left({{{f}}
ight|}^{p}
ight)}^{1/p}}}\, {f 1}_{Q}(t).$$

Here $\mathcal{M}_{\mathcal{T}}^{\#,\alpha}$ is the grand maximal truncation operator given by

$$\mathcal{M}^{\#,lpha}_{T}f(t):=\sup_{Q
it t',t''\in Q} \mathrm{ess\,sup}\,|\,\mathcal{T}(f\,\mathbf{1}_{\mathbb{R}^d\setminus lpha Q})(t')-\mathcal{T}(f\,\mathbf{1}_{\mathbb{R}^d\setminus lpha Q})(t'')|,\qquad t\in \mathbb{R}^d$$

Vector-valued sparse domination (L. '19)

Let X and Y be Banach spaces.

Take $p_0, p_1 \in [1, \infty)$ and set $p := \max\{p_0, p_1\}$. Suppose that

- T is a bounded sublinear operator from $L^{p_0}(\mathbb{R}^d; X)$ to $L^{p_0,\infty}(\mathbb{R}^d; Y)$
- $\mathcal{M}_{T}^{\#,\alpha}$ is bounded from $L^{p_1}(\mathbb{R}^d; X)$ to $L^{p_1,\infty}(\mathbb{R}^d)$ for some $\alpha \geq 3$.

Then for any compactly supported $f \in L^p(\mathbb{R}^d; X)$ there exists an η -sparse collection of cubes S such that for a.e. $t \in \mathbb{R}^d$

$$\|Tf(t)\|_{\mathbf{Y}} \lesssim \sum_{Q\in\mathcal{S}} \left(\oint_{Q} \|f\|_{\mathbf{X}}^{p} \right)^{1/p} \mathbf{1}_{Q}(t).$$

Here $\mathcal{M}_T^{\#, \alpha}$ is the grand maximal truncation operator given by

$$\mathcal{M}_{T}^{\#,lpha}f(t):=\sup_{Q
it t',t''\in Q}\|\mathcal{T}(f\,\mathbf{1}_{\mathbb{R}^d\setminus lpha Q})(t')-\mathcal{T}(f\,\mathbf{1}_{\mathbb{R}^d\setminus lpha Q})(t'')\|_{\mathbf{Y}},\qquad t\in\mathbb{R}^d$$

Vector-valued sparse domination in a SHT (L. '19)

Let X and Y be Banach spaces and (S, d, μ) a space of homogeneous type. Take $p_0, p_1 \in [1, \infty)$ and set $p := \max\{p_0, p_1\}$. Suppose that

- T is a bounded sublinear operator from $L^{p_0}(S; X)$ to $L^{p_0,\infty}(S; Y)$
- $\mathcal{M}_{T}^{\#,\alpha}$ is bounded from $L^{p_{1}}(S; X)$ to $L^{p_{1},\infty}(S)$ for some $\alpha \geq 3/\delta$.

Then for any compactly supported $f \in L^p(S; X)$ there exists an η -sparse collection of cubes S such that for a.e. $t \in S$

$$\|\mathcal{T}f(t)\|_{Y} \lesssim \sum_{Q\in\mathcal{S}} \left(\oint_{Q} \|f\|_{X}^{p} \right)^{1/p} \mathbf{1}_{Q}(t).$$

Here $\mathcal{M}_{\mathcal{T}}^{\#,\alpha}$ is the grand maximal truncation operator given by

$$\mathcal{M}_{T}^{\#,\alpha}f(t) := \sup_{Q \ni t} \operatorname*{ess\,sup}_{t',t'' \in Q} \| T(f \, \mathbf{1}_{S \setminus \alpha Q})(t') - T(f \, \mathbf{1}_{S \setminus \alpha Q})(t'') \|_{Y}, \qquad t \in S$$

Vector-valued ℓ^r -sparse domination in a SHT (L. '19)

Let X and Y be Banach spaces and (S, d, μ) a space of homogeneous type. Take $p_0, p_1, r \in [1, \infty)$ and set $p := \max\{p_0, p_1\}$. Suppose that

- T is a bounded sublinear operator from $L^{p_0}(S; X)$ to $L^{p_0,\infty}(S; Y)$
- $\mathcal{M}_{T}^{\#,\alpha}$ is bounded from $L^{p_{1}}(S; X)$ to $L^{p_{1},\infty}(S)$ for some $\alpha \geq 3$.
- There is a constant C > 0 such that for any disjointly supported $f_1, f_2 \in L^p(S; X)$

 $\|T(f_1+f_2)(t)\|_Y^r \le \|Tf_1(t)\|_Y^r + C \|Tf_2(t)\|_Y^r, \quad t \in S.$

Then for any compactly supported $f \in L^p(S; X)$ there exists an η -sparse collection of cubes S such that for a.e. $t \in S$

$$\|Tf(t)\|_{Y} \lesssim \left(\sum_{Q\in\mathcal{S}} \left(\int_{Q} \|f\|_{X}^{p}\right)^{r/p} \mathbf{1}_{Q}(t)\right)^{1/r}.$$

Here $\mathcal{M}_{\mathcal{T}}^{\#,\alpha}$ is the grand maximal truncation operator given by

$$\mathcal{M}_{T}^{\#,\alpha}f(t) := \sup_{Q \ni t} \operatorname{ess\,sup}_{t',t'' \in Q} \|T(f \mathbf{1}_{S \setminus \alpha Q})(t') - T(f \mathbf{1}_{S \setminus \alpha Q})(t'')\|_{Y}, \qquad t \in S$$

Stochastic "A₂-theorem" (L., Veraar '19)

Let X be a UMD Banach space with type 2, $p_0 \in [2, \infty)$ and let $K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$ satisfy the 2-Dini condition. If

$$S_{\mathcal{K}}: L^{p_0}_{\mathcal{F}}(\mathbb{R}_+ \times \Omega; X) \to L^{p_0}(\mathbb{R}_+ \times \Omega; X),$$

is bounded, then

$$S_{\mathcal{K}} \colon L^{p}_{\mathcal{F}}(\mathbb{R}_{+} \times \Omega, w; X) \to L^{p}(\mathbb{R}_{+} \times \Omega, w; X)$$

s bounded for all $p \in (2, \infty)$ and all $w \in A_{p/2}(\mathbb{R}_{+})$. In particular
 $\|S_{\mathcal{K}}\| \lesssim [w]^{\max\{\frac{1}{2}, \frac{1}{p-2}\}}_{A_{p/2}(\mathbb{R}_{+})}.$

If $K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$ satisfies $\max \Big\{ \Big\| \frac{\partial}{\partial s} K(t, s) \Big\|, \Big\| \frac{\partial}{\partial t} K(t, s) \Big\| \Big\} \le \frac{C}{|t - s|^{3/2}}, \qquad t \neq s$

then it satisfies the 2-Dini condition.

Stochastic "A₂-theorem" (L., Veraar '19)

Let X be a UMD Banach space with type 2, $p_0 \in [2, \infty)$ and let $K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$ satisfy the 2-Dini condition. If

$$S_{\mathcal{K}}: L^{p_0}_{\mathcal{F}}(\mathbb{R}_+ \times \Omega; X) \to L^{p_0}(\mathbb{R}_+ \times \Omega; X),$$

is bounded, then

$$S_{\mathcal{K}} \colon L^{p}_{\mathcal{F}}(\mathbb{R}_{+} \times \Omega, w; X) \to L^{p}(\mathbb{R}_{+} \times \Omega, w; X)$$

bounded for all $p \in (2, \infty)$ and all $w \in A_{p/2}(\mathbb{R}_{+})$. In particular
 $\|S_{\mathcal{K}}\| \lesssim [w]^{\max\{\frac{1}{2}, \frac{1}{p-2}\}}_{A_{p/2}(\mathbb{R}_{+})}.$

If
$$K : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathcal{L}(X)$$
 satisfies

$$\max \Big\{ \Big\| \frac{\partial}{\partial s} K(t,s) \Big\|, \Big\| \frac{\partial}{\partial t} K(t,s) \Big\| \Big\} \le \frac{C}{|t-s|^{3/2}}, \qquad t \neq s$$

then it satisfies the 2-Dini condition.

is

• Apply sparse domination with $p_0 = p_1 = r = 2$.

- T_K is actually weak L^2 -bounded by unweighted theory
- For $f \in L^2(\mathbb{R}_+; X)$ we have by the 2-Dini condition

 $\mathcal{M}^{\#,lpha}_{\mathcal{T}_{\mathcal{K}}}f(t)\leq M_2(\|f\|_X)(t),\qquad t\in\mathbb{R}_+$

and M_2 is weak L^2 -bounded.

• The 2-sublinearity of T_K is implied by

$$\frac{|x_1 + x_2||_X^2}{2} + \frac{||x_1 - x_2||_X^2}{2} \le ||x_1||_X^2 + C ||x_2||_X^2, \qquad x_1, x_2 \in X.$$

which is equivalent (up to renorming) to martingale type 2 of X.

It is by now well-known that the sparse operator

$$f(t)\mapsto \left(\sum_{Q\in\mathcal{S}}\left(\oint_Q |f|^2\right)\right)^{1/2}\mathbf{1}_Q(t).$$

- Apply sparse domination with $p_0 = p_1 = r = 2$.
- T_K is actually weak L^2 -bounded by unweighted theory
- For $f \in L^2(\mathbb{R}_+; X)$ we have by the 2-Dini condition

 $\mathcal{M}^{\#,lpha}_{\mathcal{T}_{\mathcal{K}}}f(t)\leq M_2(\|f\|_X)(t),\qquad t\in\mathbb{R}_+$

and M_2 is weak L^2 -bounded.

• The 2-sublinearity of T_K is implied by

$$\frac{|x_1 + x_2||_X^2}{2} + \frac{||x_1 - x_2||_X^2}{2} \le ||x_1||_X^2 + C ||x_2||_X^2, \qquad x_1, x_2 \in X.$$

which is equivalent (up to renorming) to martingale type 2 of X.

It is by now well-known that the sparse operator

$$f(t)\mapsto \left(\sum_{Q\in\mathcal{S}}\left(\oint_Q |f|^2\right)\right)^{1/2}\mathbf{1}_Q(t).$$

- Apply sparse domination with $p_0 = p_1 = r = 2$.
- T_K is actually weak L^2 -bounded by unweighted theory
- For $f \in L^2(\mathbb{R}_+; X)$ we have by the 2-Dini condition

$$\mathcal{M}_{\mathcal{T}_{\mathcal{K}}}^{\#,lpha}f(t)\leq M_{2}(\|f\|_{X})(t), \qquad t\in\mathbb{R}_{+}$$

and M_2 is weak L^2 -bounded.

• The 2-sublinearity of *T_K* is implied by

$$\frac{\left|x_{1}+x_{2}\right|_{X}^{2}}{2}+\frac{\left\|x_{1}-x_{2}\right\|_{X}^{2}}{2}\leq\left\|x_{1}\right\|_{X}^{2}+C\left\|x_{2}\right\|_{X}^{2},\qquad x_{1},x_{2}\in X.$$

which is equivalent (up to renorming) to martingale type 2 of X.

It is by now well-known that the sparse operator

$$f(t) \mapsto \left(\sum_{Q \in \mathcal{S}} \left(\oint_Q |f|^2 \right) \right)^{1/2} \mathbf{1}_Q(t).$$

- Apply sparse domination with $p_0 = p_1 = r = 2$.
- T_K is actually weak L^2 -bounded by unweighted theory
- For $f \in L^2(\mathbb{R}_+; X)$ we have by the 2-Dini condition

$$\mathcal{M}_{T_{K}}^{\#,lpha}f(t)\leq M_{2}(\|f\|_{X})(t), \qquad t\in\mathbb{R}_{+}$$

and M_2 is weak L^2 -bounded.

• The 2-sublinearity of T_K is implied by

$$\frac{\|x_1 + x_2\|_X^2}{2} + \frac{\|x_1 - x_2\|_X^2}{2} \le \|x_1\|_X^2 + C \|x_2\|_X^2, \qquad x_1, x_2 \in X.$$

which is equivalent (up to renorming) to martingale type 2 of X.

It is by now well-known that the sparse operator

$$f(t)\mapsto \Bigl(\sum_{Q\in\mathcal{S}}\Bigl(\int_Q |f|^2\Bigr)\Bigr)^{1/2}\mathbf{1}_Q(t).$$

- Apply sparse domination with $p_0 = p_1 = r = 2$.
- T_K is actually weak L^2 -bounded by unweighted theory
- For $f \in L^2(\mathbb{R}_+; X)$ we have by the 2-Dini condition

$$\mathcal{M}_{T_{K}}^{\#,lpha}f(t)\leq M_{2}(\|f\|_{X})(t), \qquad t\in\mathbb{R}_{+}$$

and M_2 is weak L^2 -bounded.

• The 2-sublinearity of T_K is implied by

$$\frac{\|x_1 + x_2\|_X^2}{2} + \frac{\|x_1 - x_2\|_X^2}{2} \le \|x_1\|_X^2 + C \|x_2\|_X^2, \qquad x_1, x_2 \in X.$$

which is equivalent (up to renorming) to martingale type 2 of X.

It is by now well-known that the sparse operator

$$f(t)\mapsto \Bigl(\sum_{Q\in\mathcal{S}}\Bigl(\oint_Q |f|^2\Bigr)\Bigr)^{1/2}\mathbf{1}_Q(t).$$

Sharpness of the weighted estimate

• The stochastic singular integral operator S_K with $K(t,s) = \frac{1}{(t+s)^{1/2}}$ is related to the Hilbert operator

$$f(t)\mapsto \int_{\mathbb{R}_+}rac{f(s)}{t+s}\,\mathrm{d} s,\qquad t\in\mathbb{R}_+,$$

which implies

$$\|S_{\mathcal{K}}\|_{L^p(\mathbb{R}_+)\to L^p(\mathbb{R}_+)}\simeq \frac{1}{\sin(2\pi/p)^{1/2}},$$

with higher dimensional analogs by Osękowski '17.

• By a result of Luque–Pérez–Rela '15 (extended by Frey–Nieraeth '19) this implies that if

 $\|S_{\mathcal{K}}\| \lesssim [w]^{\beta}_{\mathcal{A}_{p/2}(\mathbb{R}_+)},$

then $\beta \ge \max\{\frac{1}{2}, \frac{1}{p-2}\}$, so our result is sharp.

Sharpness of the weighted estimate

• The stochastic singular integral operator S_K with $K(t,s) = \frac{1}{(t+s)^{1/2}}$ is related to the Hilbert operator

$$f(t)\mapsto \int_{\mathbb{R}_+}rac{f(s)}{t+s}\,\mathrm{d} s,\qquad t\in\mathbb{R}_+,$$

which implies

$$\|S_{\mathcal{K}}\|_{L^p(\mathbb{R}_+)\to L^p(\mathbb{R}_+)}\simeq \frac{1}{\sin(2\pi/p)^{1/2}},$$

with higher dimensional analogs by Osękowski '17.

 By a result of Luque–Pérez–Rela '15 (extended by Frey–Nieraeth '19) this implies that if

$$\|\mathcal{S}_{\mathcal{K}}\| \lesssim [w]^{eta}_{\mathcal{A}_{p/2}(\mathbb{R}_+)},$$

then $\beta \ge \max\{\frac{1}{2}, \frac{1}{p-2}\}$, so our result is sharp.

Applications

- All previous examples admit weights $w \in A_{p/2}(\mathbb{R}_+)$
- In particular the power weights w(t) = t^α for α ∈ (−1, p/2 − 1) can be used to allow for rough initial data

Other applications of the sparse domination theorem:

- Vector-valued Littlewood–Paley–Rubio de Francia estimates (Potapov–Sukochev–Xu '12)
- Deterministic vector-valued A₂-theorem in spaces of homogeneous type (Hänninen-Hytönen '14), (Nazarov-Resnikov-Volberg '13)
- Operators beyond Calderón–Zygmund theory (Bernicot–Frey–Petermichl '16)
- Lattice Hardy–Littlewood maximal operator (Hänninen–L. '19)
- Maximal regularity for parabolic (S)PDE's with space-time weights

Applications

- All previous examples admit weights $w \in A_{p/2}(\mathbb{R}_+)$
- In particular the power weights w(t) = t^α for α ∈ (-1, p/2 − 1) can be used to allow for rough initial data

Other applications of the sparse domination theorem:

- Vector-valued Littlewood–Paley–Rubio de Francia estimates (Potapov–Sukochev–Xu '12)
- Deterministic vector-valued A₂-theorem in spaces of homogeneous type (Hänninen-Hytönen '14), (Nazarov-Resnikov-Volberg '13)
- Operators beyond Calderón–Zygmund theory (Bernicot–Frey–Petermichl '16)
- Lattice Hardy-Littlewood maximal operator (Hänninen-L. '19)
- Maximal regularity for parabolic (S)PDE's with space-time weights

Thank you for your attention!

