Flexibility of Lyapunov exponents

Jairo Bochi

Joint work with:
A. Katok \& F. Rodriguez Hertz

2020 Vision for Dynamics Będlewo, August 11-16, 2019

State College, 2016

www.newtrends.mat.uc.cl

SETTING AND QUESTIONS

A. Katok's flexibility program

Fix:

- a class of smooth dynamical systems (action of \mathbb{Z}_{+} or \mathbb{Z} or \mathbb{R});
- one or more dynamically invariant quantities (like entropies or Lyapunov exponents with respect to a relevant measure).
Flexibility paradigm:
There should be no restrictions on the dynamical quantities apart from a few "obvious" ones.

뭅 Alena Erchenko's talk yesterday.

Setting for today: conservative diffeos; Lyapunov exponents

- $M=$ compact connected manifold of dimension $d \geq 2$.
- $m=$ normalized volume measure on M.

If $f: M \rightarrow M$ is a conservative (i.e., m-preserving) ergodic diffeomorphism, the Lyapunov exponents are:

$$
\lambda_{i}(f):=\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left(i \text {-th singular value of } D f^{n}(x)\right)
$$

(for m-a.e. $x \in M$).
Note: $\lambda_{1}(f) \geq \cdots \geq \lambda_{d}(f)$ and $\sum_{i=1}^{d} \lambda_{i}(f)=0$.

- Lyapunov spectrum $\vec{\lambda}(f)=\left(\lambda_{1}(f), \ldots, \lambda_{d}(f)\right)$.
- The Lyapunov spectrum is called simple if these

Flexibility conjectures

Problem

Which Lyapunov spectra $\vec{\lambda}(f)=\left(\lambda_{1}(f), \ldots, \lambda_{d}(f)\right)$ may appear for C^{∞} ergodic diffeomorphisms f ?

Apart from the obvious restrictions that the λ_{i} 's should be ordered and their sum should be zero, no other conditions are known.

Conjecture (Weak flexibility - general)
Fix (M, m). Given $\xi_{1} \geq \cdots \geq \xi_{d}$ with $\sum_{i} \xi_{i}=0$, then there exists ergodic $f \in \operatorname{Diff}_{m}^{\infty}(M)$ such that $\vec{\lambda}(f)=\left(\xi_{1}, \ldots, \xi_{d}\right)$.

Existence of ergodic smooth diffeomorphisms

- All exponents zero: Anosov-Katok (early 70's)
- No exponents zero: Katok (1979) for $d=2$; Dolgopyat-Pesin (2002)

Flexibility conjectures

Even more ambitious: fix homotopy class.
Conjecture (Strong flexibility - general)
Fix (M, m). Fix a connected component $\mathcal{C} \subseteq$ Diff $_{m}^{\infty}(M)$. Given $\xi_{1} \geq \cdots \geq \xi_{d}$ with $\sum_{i} \xi_{i}=0$, then there exists ergodic $f \in \mathcal{C}$ such that $\vec{\lambda}(f)=\left(\xi_{1}, \ldots, \xi_{d}\right)$.

Terminology:

- "Strong" means prescribed homotopy class.
- "Weak" means we don't care about homotopy class

Flexibility conjectures for Anosov diffeos on \mathbb{T}^{d}

Let's work on the more manageable class of conservative Anosov smooth diffeomorphisms (which are automatically ergodic).

Conjecture (Weak flexibility - Anosov)
Given $\xi_{1} \geq \cdots \geq \xi_{d}$ with $\sum_{i} \xi_{i}=0$ and each $\xi_{i} \neq 0$, then there exists an Anosov $f \in$ Diff $_{m}^{\infty}\left(\mathbb{T}^{d}\right)$ such that $\vec{\lambda}(f)=\left(\xi_{1}, \ldots, \xi_{d}\right)$.

As a corollary of our main result, we prove this conjecture in the case of simple spectrum:
$\xi_{1}>\cdots>\xi_{d}$.

For Anosov, there is a new "obvious" restriction (given the homotopy class)

Given a conservative smooth Anosov $f: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$, take $L=\pi_{1}(f) \in \mathrm{GL}(d, \mathbb{Z})$; then f is homotopic (and topologically conjugate) to the automorphism
$F_{L}: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$. Let u be the unstable index $\left(\operatorname{dim} E^{u}\right)$ of either f or F_{L}. Then:

$$
\sum_{i=1}^{u} \lambda_{i}(f) \leq \sum_{i=1}^{u} \lambda_{i}(L)
$$

"entropy condition"

$$
\text { Proof: } \quad \begin{aligned}
\sum_{i=1}^{u} \lambda_{i}(f) & =h_{m}(f) & & \text { (Pesin's formula) } \\
& \leq h_{\text {top }}(f) & & \text { (variational principle) } \\
& =h_{\text {top }}\left(F_{L}\right) & & \text { (topological conjugacy) } \\
& =\sum_{i=1}^{u} \lambda_{i}(L) & &
\end{aligned}
$$

Strong flexibility for Anosov?

Are there other restrictions?

Problem (Strong flexibility - Anosov)

Let $L \in \mathrm{GL}(d, \mathbb{Z})$ be hyperbolic matrix with unstable index u. Given $\xi_{1} \geq \cdots \geq \xi_{u}>0>\xi_{u+1} \geq \cdots \geq \xi_{d}$ such that

$$
\sum_{i=1}^{d} \xi_{i}=0 \quad \text { and } \quad \sum_{i=1}^{u} \xi_{i} \leq \sum_{i=1}^{u} \lambda_{i}(L),
$$

does there exist a conservative Anosov diffeomorphism f homotopic to F_{L} such that $\vec{\lambda}(f)=\left(\xi_{1}, \ldots, \xi_{d}\right)$?
(1) More about this problem in a couple of minutes.

A RESULT FOR \mathbb{T}^{3}

Dominated splittings

A simple dominated splitting (SDS) for $f \in \operatorname{Diff}_{m}^{1}(M)$ is a Df-inv. splitting

$$
T M=E_{1} \oplus \cdots \oplus E_{d} \quad \text { with each } \operatorname{dim} E_{i}=1
$$

such that $\exists n_{0}>0$ s.t. $\forall x \in M$ and all unit vectors $v_{1} \in E_{1}(x), \ldots, v_{d} \in E_{d}(x)$,

$$
\left\|D f^{n_{0}}\left(v_{1}\right)\right\|>\cdots>\left\|D f^{n_{0}}\left(v_{d}\right)\right\| .
$$

Then Lyapunov exponents are given by integrals:

$$
\lambda_{i}(f)=\int \log \left\|\left.D f\right|_{E_{i}}\right\| d m
$$

and the spectrum is simple: $\lambda_{1}(f)>\cdots>\lambda_{d}(f)$.

Flexibility for Anosov with SDS on \mathbb{T}^{3}

Theorem (B-K-RH)

Fix $L \in G L(3, \mathbb{Z})$ hyperbolic matrix with simple spectrum.
Suppose $\xi_{1}>\xi_{2}>\xi_{3}$ have the same signs as $\lambda_{1}(L)>\lambda_{2}(L)>\lambda_{3}(L)$,

$$
\begin{aligned}
\xi_{1} & \leq \lambda_{1}(L), \\
\xi_{1}+\xi_{2} & \leq \lambda_{1}(L)+\lambda_{2}(L), \quad \text { and } \\
\xi_{1}+\xi_{2}+\xi_{3} & =0 .
\end{aligned}
$$

Then there exists a Anosov $f \in \operatorname{Diff}_{m}^{\infty}(T)$ with SDS homotopic to F_{L} such that $\vec{\lambda}(f)=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$.

Furthermore, the converse holds.
Note that there is an extra not-so-obvious inequality (related to SDS).

Proof of the "converse" (inequalities are necessary)

- Taking inverses if necessary, assume $\lambda_{2}(L)>0$, i.e., $\operatorname{dim} E^{u}=2$.
- Then $\lambda_{1}(f)+\lambda_{2}(f) \leq \lambda_{1}(L)+\lambda_{2}(L)$ is the "entropy condition".
- By contradiction, suppose that $\lambda_{1}(f)>\lambda_{1}(L)$.
- For a.e. x, and $n \gg 1$ the curve $\Gamma=f^{n}\left(W_{\text {loc }}^{u u}(x)\right)$ has length $\gtrsim e^{\lambda_{1}(f) n}$.
- The distance between the endpoints of the lifted curve $\tilde{\Gamma} \subset \mathbb{R}^{3}$ is $\sim e^{\lambda_{1}(L) n}$ (much smaller).
- This contradicts Brin-Burago-Ivanov’09 ($\widetilde{W}^{u u}$ leaves are quasi-isometric).

An exotic Anosov diffeomorphism?

Here is a more modest version of the Problem "Strong Flexibility - Anosov":

Problem

Is there a C^{∞} conservative Anosov diffeo of \mathbb{T}^{3} with $\operatorname{dim} E^{u}=2$ and $\lambda_{1}(f)>\lambda_{1}(L)$ (where $L \in G L(3, \mathbb{Z})$ is the homotopy type)?
f cannot have a simple dominated splitting, so it cannot be a C^{1}-perturbation of its linear part. The Pesin 1-dim manifolds $W^{u u}(x)$ should be very twisted inside the 2-dim leaves $W^{u}(x)$.
Idea: $\operatorname{Try} f=L^{1}$-perturbation of another (well-chosen) linear Anosov...

MAIN RESULT

The majorization partial order

Let $\vec{\xi}=\left(\xi_{1}, \ldots, \xi_{d}\right)$ be an ordered vector $\left(\xi_{i} \geq \xi_{i+1}\right)$ with $\xi_{1}+\cdots+\xi_{d}=0$.
Define a partial order on the set of such vectors:
$\vec{\xi} \preccurlyeq \vec{\eta} \quad \Leftrightarrow \quad \xi_{1}+\cdots+\xi_{i} \leq \eta_{1}+\cdots+\eta_{i} \quad \forall i \in\{1, \ldots, d-1\}$.
We say $\vec{\xi}$ is majorized by $\vec{\eta}$.
If the inequalities are strict: $\vec{\xi} \prec \vec{\eta}$ ($\vec{\xi}$ is strictly majorized by $\vec{\eta}$.)
Two concave graphs, one above the other:

Our main result

Let M be a compact manifold. Let $\mathcal{A S} \subset \operatorname{Diff}_{m}^{\infty}(M)$ be be formed by Anosov diffeomorphisms with SDS (simple dominated splitting).

Theorem (B,K,RH)

Let $f \in \mathcal{A S}$; let $u=\operatorname{dim} E^{u}$.
Let $\vec{\xi}=\left(\xi_{1}, \ldots, \xi_{d}\right)$ be such that:

$$
\begin{gathered}
\xi_{1}>\cdots>\xi_{u}>0>\xi_{u+1}>\cdots>\xi_{d} \\
\xi_{1}+\cdots+\xi_{d}=0, \\
\xi \prec \vec{\lambda}(f) \text { (strict majorization) }
\end{gathered}
$$

Then there exists a continuous path $\left(f_{t}\right)_{t \in[0,1]}$ in $\mathcal{A S}$ starting from $f_{0}=f$ such that $\vec{\lambda}\left(f_{1}\right)=\vec{\xi}$.

Keywords of the proof

The proof is essentially a optimized and global version of Baraviera-Bonatti perturbation method, which needs:

- special adapted metrics (a la Gourmelon) with a new "L¹-property";
- careful linear algebra (in order to mix several exponents simultaneously);
- tower methods (Rokhlin + Vitali).

喚 More details later.

Corollary: Weak flexibility on \mathbb{T}^{d}

Corollary

For all nonzero numbers $\xi_{1}>\cdots>\xi_{d}$ whose sum is 0 , there exists a C^{∞} conservative Anosov diffeo $f: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ with SDS such that $\vec{\lambda}(f)=\vec{\xi}:=\left(\xi_{1}, \ldots, \xi_{d}\right)$.

Proof.

Given $\vec{\xi}$, we take a linear Anosov $L \in \operatorname{SL}(d, \mathbb{Z})$ with the same unstable index, and "large" enough so that:

$$
\vec{\lambda}(L) \succ \vec{\xi}
$$

Then we apply the Main Theorem.

PROOF

Review of Baraviera-Bonatti

As the proof of our main result relies on the Baraviera-Bonatti strategy, let us recall (a particular case of) their result:

Theorem (Baraviera-Bonatti, 2003)

Let f be a stably ergodic C^{∞} conservative diffeomorphism with a simple dominated splitting. Then, for each $i \in\{1, \ldots, d\}$, there exists a C^{∞} conservative diffeomorphism \tilde{f} arbitrarily C^{1}-close to f such that $\lambda_{i}(\tilde{f}) \neq \lambda_{i}(f)$.

Remark

Origin of the method: Shub-Wilkinson, 2000.

Construction of the Baraviera-Bonatti perturbation

- Consider e.g. $d=3, i=1$.
- Take a small ball B centered at a non-periodic point.
- Perturb f inside B in a conservative way, approximately preserving and rotating the $E_{1} \oplus E_{2}$ planes, obtaining some \tilde{f}.
(See fig. next slide)
- Then one can show that the first two exponents "mix" a little (while the third almost doesn't move); in particular, $\lambda_{1}(\tilde{f})<\lambda_{1}(f)$.

Rotating the $E_{1} \oplus E_{2}$ planes

Rem: On each sphere concentric to ∂B the perturbation is a rotation.
Figure by Avila-Crovisier-Wilkinson

Why does λ_{1} drop?

The new bundle \tilde{E}_{3} is very close to the original E_{3}. The other bundles move as follows:

So $N \gg 1 \Rightarrow \Varangle\left(\tilde{E}_{1}, E_{1}\right) \ll 1$ on B.

Why does λ_{1} drop? (continued)

To simplify notation, assume $T_{X} M=\mathbb{R}^{d}, E_{i}=\mathbb{R} e_{i}$.
Take nowhere-zero vector fields $v \equiv e_{1}$ and \tilde{v} tangent to
E_{1} and \tilde{E}_{1}, respectively.
The seminorm $\left\|\left(a_{1}, \ldots, a_{d}\right)\right\|_{1}:=\left|a_{1}\right|$ is good enough to compute the first Lyapunov exponent:

$$
\begin{aligned}
& \lambda_{1}(f)=\int_{M} \log \frac{\|D f(x) v(x)\|_{1}}{\|v(x)\|_{1}} d m(x) \\
& \lambda_{1}(\tilde{f})=\int_{M} \log \frac{\|D \tilde{f}(x) \tilde{v}(x)\|_{1}}{\|\tilde{v}(x)\|_{1}} d m(x)
\end{aligned}
$$

The two integrands are everywhere equal, except on B. On B we use that $\tilde{v} \simeq v$ to compare the integrals. Jensen inequality $\Rightarrow \lambda_{1}(\tilde{f})<\lambda_{1}(f)$.

Our proof

We rotate several $E_{i} \oplus E_{i+1}$ planes so to manipulate (i.e., "mix") all the Lyapunov exponents simultaneously (careful Linear Algebra).

In order to maximize the effect of the
Baraviera-Bonatti-like perturbations, it will be fundamental to use especially adapted coordinates.

A new adapted metric for dominated splitting

Given the simple dominated splitting $T M=E_{1} \oplus \cdots \oplus E_{d}$ and a Riemannian norm $\|\|\cdot\|$, define expansion functions $\rho_{1}, \ldots, \rho_{d}: M \rightarrow \mathbb{R}$:

$$
\left.\rho_{j}(x):=\log \frac{\|D f(x) v\| \|}{\|v\|} \quad \text { arbitrary nonzero } v \in E_{j}(x)\right) .
$$

Each ρ_{j} is continuous and its integral is $\lambda_{j}(f)$. We say that the Riemannian metric is adapted if:

$$
\rho_{1}(x)>\rho_{2}(x)>\cdots>\rho_{d}(x) \quad \text { and } \quad E_{i} \perp E_{j} \forall i \neq j .
$$

Proposition (Adapted metric with L^{1} estimate)

Given $\varepsilon>0$, we can choose an adpated metric such that $\int_{M}\left|\rho_{i}(x)-\lambda_{i}(f)\right| d m(x)<\varepsilon$ for every i.

Proof of existence of adapted metric with L^{1}-estimate

Since we are assuming simple dominated splitting, the situation becomes essentially one-dimensional.
The proof is a very simple and explicit averaging trick:

$$
v \in E_{j}(x) \Rightarrow\|v\|\left\|:=\prod_{n=0}^{N-1}\right\| D f^{n}(x) v \|^{1 / N} \quad(N \gg 1)
$$

Sketch of proof of the main theorem

We must be able to change (i.e., "mix") the Lyapunov spectrum $\vec{\lambda}(f)$ of f by some small but constant amount that depends not on f but only on $\vec{\lambda}(f)$ itself.

- We take a disjoint family of small "good" balls B_{i} (in the adapted coordinates) whose union has $N \gg 1$ disjoint iterates from itself (a tower).
- On each of these balls, we do Baraviera-Bonatti-like perturbations (rotating several planes).
- By Rokhlin Lemma, we can take $m\left(\square B_{i}\right)$ approximately equal to $1 / N$.

Sketch of proof of the main theorem (cont)

- Actually we will take height $N \simeq C / G A P$, where $C \gg 1$ is fixed and GAP $:=\min _{j}\left[\lambda_{j}(f)-\lambda_{j+1}(f)\right]$. Using the L^{1} estimate for the adapted metrics, we see that for most points, time N is sufficient for cones to contract and therefore for the Baraviera-Bonatti perturbation to have a controllable and significant effect on the Lyapunov exponents.
- More precisely, the effect on the Lyapunov exponents is approximately proportional to

$$
m\left(\bigsqcup B_{i}\right) \sim \frac{1}{N} \sim O(\mathrm{GAP}) .
$$

- So we are able to change the Lyapunov spectrum by some small amount that depends not on f but only on $\vec{\lambda}(f)$ itself. Done!

In the situation of our flexibility theorem on \mathbb{T}^{3}, the starting Anosov diffeomophism is F_{L}. In particular, the invariant foliations are smooth. We can apply Baraviera-Bonatti preserving the (2-dim) center-unstable foliation (say) and therefore keeping $\lambda_{3}\left(f_{t}\right)=\lambda_{3}(L)$ along the deformation.

So we are able to realize spectra $\preccurlyeq \vec{\lambda}(L)$ (non-strict majorization).
(In large dimension it doesn't work so well. . .)

EXTENSIONS OF THE RESULTS?

Next results?

Our (upgraded Baraviera-Bonatti) method is very adaptable: being Anosov is not really important, but domination is.

Beyond PH/dominated systems, we should be able to allow domination to degenerate in a controlled way in a small "singular" set (like Katok'79, Dolgopyat-Pesin'02).
Q So the general flexibility conjectures (arbitrary manifold) seem attackable, at least in some cases... A Another direction: symplectic maps.

