Flexibility of Lyapunov exponents

Jairo Bochi

Joint work with: A. Katok & F. Rodriguez Hertz

2020 Vision for Dynamics Będlewo, August 11–16 , 2019

Setting and questions

Result in dim. 3

Results in any dim.

State College, 2016

Setting and questions

Result in dim. 3

Results in any dim.

Proofs 0000000

Setting and questions

Result in dim. 3

Results in any dim.

Proofs

SETTING AND QUESTIONS

Setting and questions •00000000 Result in dim. 3

Results in any dim.

Proofs

Fix:

- a class of smooth dynamical systems (action of \mathbb{Z}_+ or \mathbb{Z} or \mathbb{R});
- one or more dynamically invariant quantities (like entropies or Lyapunov exponents with respect to a relevant measure).

Flexibility paradigm:

There should be no restrictions on the dynamical quantities apart from a few "obvious" ones.

☞Alena Erchenko's talk yesterday.

Setting for today: conservative diffeos; Lyapunov exponents

- M = compact connected manifold of dimension $d \ge 2$.
- *m* = normalized volume measure on *M*.

If $f: M \rightarrow M$ is a conservative (i.e., *m*-preserving) ergodic diffeomorphism, the *Lyapunov exponents* are:

$$\lambda_i(f) \coloneqq \lim_{n \to +\infty} \frac{1}{n} \log(i \text{-th singular value of } Df^n(x))$$

(for *m*-a.e. $x \in M$).

Note:
$$\lambda_1(f) \geq \cdots \geq \lambda_d(f)$$
 and $\sum_{i=1}^d \lambda_i(f) = 0$.

• Lyapunov spectrum $\vec{\lambda}(f) = (\lambda_1(f), \dots, \lambda_d(f))$. • The Lyapunov spectrum is called *simple* if these

Setting and questions

Result in dim. 3

abore are all different

Results in any dim.

Problem

Which Lyapunov spectra $\vec{\lambda}(f) = (\lambda_1(f), \dots, \lambda_d(f))$ may appear for C^{∞} ergodic diffeomorphisms f?

Apart from the obvious restrictions that the λ_i 's should be ordered and their sum should be zero, no other conditions are known.

Conjecture (Weak flexibility – general)

Fix (M, m). Given $\xi_1 \ge \cdots \ge \xi_d$ with $\sum_i \xi_i = 0$, then there exists ergodic $f \in \text{Diff}_m^{\infty}(M)$ such that $\left| \vec{\lambda}(f) = (\xi_1, \dots, \xi_d) \right|$.

Setting and questions

Result in dim. 3

Results in any dim.

Existence of ergodic smooth diffeomorphisms

- All exponents zero: Anosov–Katok (early 70's)
- No exponents zero: Katok (1979) for d = 2; Dolgopyat–Pesin (2002)

Even more ambitious: fix homotopy class.

Conjecture (Strong flexibility – general)

Fix (M, m). Fix a connected component $C \subseteq \text{Diff}_m^{\infty}(M)$. Given $\xi_1 \geq \cdots \geq \xi_d$ with $\sum_i \xi_i = 0$, then there exists ergodic $f \in C$ such that $\overline{\lambda}(f) = (\xi_1, \dots, \xi_d)$.

Terminology:

- "Strong" means prescribed homotopy class.
- "Weak" means we don't care about homotopy class

Let's work on the more manageable class of *conservative Anosov smooth diffeomorphisms* (which are automatically ergodic).

Conjecture (Weak flexibility – Anosov)

Given $\xi_1 \ge \cdots \ge \xi_d$ with $\sum_i \xi_i = 0$ and each $\xi_i \ne 0$, then there exists an Anosov $f \in \text{Diff}_m^{\infty}(\mathbb{T}^d)$ such that

 $\vec{\lambda}(f) = (\xi_1, \ldots, \xi_d)$

As a corollary of our main result, we prove this conjecture in the case of simple spectrum: $\xi_1 > \cdots > \xi_d$.

Results in any dim.

For Anosov, there is a new "obvious" restriction (given the homotopy class)

Given a conservative smooth Anosov $f: \mathbb{T}^d \to \mathbb{T}^d$, take $L = \pi_1(f) \in GL(d, \mathbb{Z})$; then f is homotopic (and topologically conjugate) to the automorphism $F_L: \mathbb{T}^d \to \mathbb{T}^d$. Let u be the unstable index (dim E^u) of either f or F_L . Then:

$$\sum_{i=1}^{u} \lambda_i(f) \leq \sum_{i=1}^{u} \lambda_i(L)$$

"entropy condition"

Proof:

 $\sum_{i=1}^{u} \lambda_i(f) = h_m(f)$ (Pesin's formula) $\leq h_{top}(f)$ (variational principle) $= h_{top}(F_L)$ (topological conjugacy) $= \sum_{i=1}^{u} \lambda_i(L)$

Results in any dim.

Are there other restrictions?

Problem (Strong flexibility – Anosov)

Let $L \in GL(d, \mathbb{Z})$ be hyperbolic matrix with unstable index u. Given $\xi_1 \ge \cdots \ge \xi_u > 0 > \xi_{u+1} \ge \cdots \ge \xi_d$ such that

$$\sum_{i=1}^d \xi_i = 0$$
 and $\sum_{i=1}^u \xi_i \leq \sum_{i=1}^u \lambda_i(L)$,

does there exist a conservative Anosov diffeomorphism f homotopic to F_L such that $\vec{\lambda}(f) = (\xi_1, \dots, \xi_d)$?

^{IP}More about this problem in a couple of minutes.

Setting and questions

Result in dim. 3

Results in any dim.

A RESULT FOR \mathbb{T}^3

Setting and questions

Result in dim. 3

Results in any dim. 000000 Proofs 00000000

Dominated splittings

A simple dominated splitting (SDS) for $f \in \text{Diff}_m^1(M)$ is a *Df*-inv. splitting

 $TM = E_1 \oplus \cdots \oplus E_d$ with each dim $E_i = 1$

such that $\exists n_0 > 0$ s.t. $\forall x \in M$ and all unit vectors $v_1 \in E_1(x), \ldots, v_d \in E_d(x)$,

$$||Df^{n_0}(v_1)|| > \cdots > ||Df^{n_0}(v_d)||.$$

Then Lyapunov exponents are given by integrals:

$$\lambda_i(f) = \int \log \|Df|_{E_i}\|\,dm$$

and the spectrum is simple: $\lambda_1(f) > \cdots > \lambda_d(f)$.

Setting and questions

Results in any dim.

Theorem (B-K-RH)

Fix $L \in GL(3, \mathbb{Z})$ hyperbolic matrix with simple spectrum. Suppose $\xi_1 > \xi_2 > \xi_3$ have the same signs as $\lambda_1(L) > \lambda_2(L) > \lambda_3(L)$,

$$\xi_1 \le \lambda_1(L),$$

 $\xi_1 + \xi_2 \le \lambda_1(L) + \lambda_2(L), \text{ and }$
 $\xi_1 + \xi_2 + \xi_3 = 0.$

Then there exists a Anosov $f \in \text{Diff}_m^{\infty}(T)$ with SDS homotopic to F_L such that $\vec{\lambda}(f) = (\xi_1, \xi_2, \xi_3)$.

Furthermore, the converse holds.

Note that there is an **extra** not-so-obvious inequality (related to SDS).

Setting and questions

Result in dim. 3

Results in any dim.

Proof of the "converse" (inequalities are necessary)

- Taking inverses if necessary, assume $\lambda_2(L) > 0$, i.e., dim $E^u = 2$.
- Then $\lambda_1(f) + \lambda_2(f) \le \lambda_1(L) + \lambda_2(L)$ is the "entropy condition".
- By contradiction, suppose that $\lambda_1(f) > \lambda_1(L)$.
- For a.e. x, and $n \gg 1$ the curve $\Gamma = f^n(W_{loc}^{uu}(x))$ has length $\gtrsim e^{\lambda_1(f)n}$.
- The distance between the endpoints of the lifted curve $\tilde{\Gamma} \subset \mathbb{R}^3$ is ~ $e^{\lambda_1(L)n}$ (much smaller).
- This contradicts Brin–Burago–Ivanov'09 (\widetilde{W}^{uu} leaves are quasi-isometric).

Here is a more modest version of the Problem "Strong Flexibility – Anosov":

Problem

Is there a C^{∞} conservative Anosov diffeo of \mathbb{T}^3 with dim $E^u = 2$ and $\lambda_1(f) > \lambda_1(L)$ (where $L \in GL(3, \mathbb{Z})$ is the homotopy type)?

If cannot have a simple dominated splitting, so it cannot be a C^1 -perturbation of its linear part. If The Pesin 1-dim manifolds $W^{uu}(x)$ should be very twisted inside the 2-dim leaves $W^u(x)$.

Idea: Try $f = L^1$ -perturbation of another (well-chosen) linear Anosov...

Setting and questions

Result in dim. 3 0000● Results in any dim.

MAIN RESULT

Setting and questions

Result in dim. 3

Results in any dim. •00000

Proofs 0000000

The majorization partial order

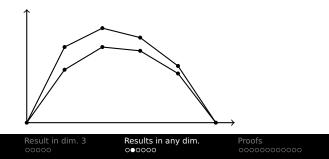
Setting and guestions

Let $\vec{\xi} = (\xi_1, \dots, \xi_d)$ be an ordered vector $(\xi_i \ge \xi_{i+1})$ with $\xi_1 + \dots + \xi_d = 0$.

Define a partial order on the set of such vectors:

 $\vec{\xi} \preccurlyeq \vec{\eta} \iff \xi_1 + \dots + \xi_i \le \eta_1 + \dots + \eta_i \quad \forall i \in \{1, \dots, d-1\}.$ We say $\vec{\xi}$ is majorized by $\vec{\eta}$. If the inequalities are strict: $\vec{\xi} \prec \vec{\eta}$ ($\vec{\xi}$ is strictly majorized by $\vec{\eta}$.)

Two concave graphs, one above the other:



Let *M* be a compact manifold. Let $AS \subset \text{Diff}_m^{\infty}(M)$ be be formed by Anosov diffeomorphisms with SDS (simple dominated splitting).

Theorem (B,K,RH)

Let $f \in \mathcal{AS}$; let $u = \dim E^u$. Let $\vec{\xi} = (\xi_1, \dots, \xi_d)$ be such that: $\xi_1 > \dots > \xi_u > 0 > \xi_{u+1} > \dots > \xi_d$ $\xi_1 + \dots + \xi_d = 0$, $\vec{\xi} \prec \vec{\lambda}(f)$ (strict majorization)

Then there exists a continuous path $(f_t)_{t \in [0,1]}$ in AS starting from $f_0 = f$ such that $\vec{\lambda}(f_1) = \vec{\xi}$.

Setting and questions

Result in dim. 3

Results in any dim.

The proof is essentially a optimized and global version of **Baraviera–Bonatti** perturbation method, which needs:

- special adapted metrics (a la Gourmelon) with a new "L¹-property";
- careful linear algebra (in order to mix several exponents simultaneously);
- tower methods (Rokhlin + Vitali).
- More details later.

Corollary

For all nonzero numbers $\xi_1 > \cdots > \xi_d$ whose sum is 0, there exists a C^{∞} conservative Anosov diffeo $f : \mathbb{T}^d \to \mathbb{T}^d$ with SDS such that $\vec{\lambda}(f) = \vec{\xi} := (\xi_1, \dots, \xi_d)$.

Proof.

Given $\vec{\xi}$, we take a linear Anosov $L \in SL(d, \mathbb{Z})$ with the same unstable index, and "large" enough so that:

$$\vec{\lambda}(L) \succ \vec{\xi}$$
.

Then we apply the Main Theorem.

Setting and questions

Result in dim. 3

Results in any dim.

PROOF

Setting and questions

Result in dim. 3

Results in any dim.

Proofs 00000000

As the proof of our main result relies on the Baraviera–Bonatti strategy, let us recall (a particular case of) their result:

Theorem (Baraviera–Bonatti, 2003)

Let f be a stably ergodic C^{∞} conservative diffeomorphism with a simple dominated splitting. Then, for each $i \in \{1, ..., d\}$, there exists a C^{∞} conservative diffeomorphism \tilde{f} arbitrarily C^1 -close to f such that $\lambda_i(\tilde{f}) \neq \lambda_i(f)$.

Remark

Origin of the method: Shub–Wilkinson, 2000.

Setting and questions

Result in dim. 3

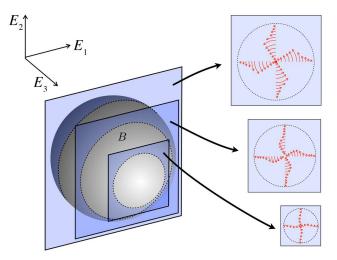
Results in any dim.

Proofs ●oooooooooooo

Construction of the Baraviera–Bonatti perturbation

- Consider e.g. *d* = 3, *i* = 1.
- Take a small ball *B* centered at a non-periodic point.
- Perturb f inside B in a conservative way, approximately preserving and rotating the E₁ ⊕ E₂ planes, obtaining some f̃. (See fig. next slide)
- Then one can show that the first two exponents "mix" a little (while the third almost doesn't move); in particular, $\lambda_1(\tilde{f}) < \lambda_1(f)$.

Rotating the $E_1 \oplus E_2$ planes



Rem: On each sphere concentric to ∂B the perturbation is a rotation. Figure by Avila–Crovisier–Wilkinson

Setting	and	questions

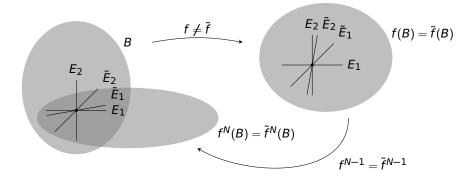
Result in dim.

Results in any dim.

Proofs ००●००००००००

Why does λ_1 drop?

The new bundle \tilde{E}_3 is very close to the original E_3 . The other bundles move as follows:



So $N \gg 1 \Rightarrow \measuredangle(\tilde{E}_1, E_1) \ll 1$ on B.

Setting and questions

Result in dim. 3

Results in any dim.

Proofs ०००●०००००००

Why does λ_1 drop? (continued)

To simplify notation, assume $T_X M = \mathbb{R}^d$, $E_i = \mathbb{R}e_i$. Take nowhere-zero vector fields $v \equiv e_1$ and \tilde{v} tangent to E_1 and \tilde{E}_1 , respectively.

The seminorm $||(a_1, ..., a_d)||_1 := |a_1|$ is good enough to compute the first Lyapunov exponent:

$$\lambda_{1}(f) = \int_{M} \log \frac{\|Df(x)v(x)\|_{1}}{\|v(x)\|_{1}} dm(x)$$
$$\lambda_{1}(\tilde{f}) = \int_{M} \log \frac{\|D\tilde{f}(x)\tilde{v}(x)\|_{1}}{\|\tilde{v}(x)\|_{1}} dm(x)$$

The two integrands are everywhere equal, except on *B*. On *B* we use that $\tilde{v} \simeq v$ to compare the integrals. Jensen inequality $\Rightarrow \lambda_1(\tilde{f}) < \lambda_1(f)$.

Setting and questions

Result in dim. 3

Results in any dim.

Proofs ००००●०००००० We rotate several $E_i \oplus E_{i+1}$ planes so to manipulate (i.e., "mix") all the Lyapunov exponents simultaneously (careful Linear Algebra).

In order to maximize the effect of the Baraviera–Bonatti-like perturbations, it will be fundamental to use especially **adapted coordinates**.

A new adapted metric for dominated splitting

Given the simple dominated splitting $TM = E_1 \oplus \cdots \oplus E_d$ and a Riemannian norm $\|\|\cdot\|\|$, define *expansion functions* $\rho_1, \ldots, \rho_d \colon M \to \mathbb{R}$:

 $\rho_j(x) \coloneqq \log \frac{\||Df(x)v|\|}{\||v|\|} \quad (\text{arbitrary nonzero } v \in E_j(x)).$

Each ρ_j is continuous and its integral is $\lambda_j(f)$. We say that the Riemannian metric is *adapted* if:

 $\rho_1(x) > \rho_2(x) > \cdots > \rho_d(x) \quad \text{and} \quad E_i \perp E_j \; \forall i \neq j \,.$

Proposition (Adapted metric with L^1 estimate)

Given $\varepsilon > 0$, we can choose an adpated metric such that $\int_{M} |\rho_{i}(x) - \lambda_{i}(f)| dm(x) < \varepsilon$ for every *i*.

Setting and questions

Result in dim. 3

Results in any dim.

Proofs ○○○○○○●○○○○○ Since we are assuming simple dominated splitting, the situation becomes essentially one-dimensional. The proof is a very simple and explicit averaging trick:

$$v \in E_j(x) \Rightarrow |||v||| \coloneqq \prod_{n=0}^{N-1} ||Df^n(x)v||^{1/N} \quad (N \gg 1)$$

We must be able to change (i.e., "mix") the Lyapunov spectrum $\vec{\lambda}(f)$ of f by some small but constant amount that depends **not on** f **but only on** $\vec{\lambda}(f)$ **itself.**

- We take a disjoint family of small "good" balls B_i (in the adapted coordinates) whose union has $N \gg 1$ disjoint iterates from itself (a tower).
- On each of these balls, we do Baraviera–Bonatti-like perturbations (rotating several planes).
- By Rokhlin Lemma, we can take $m(\bigsqcup B_i)$ approximately equal to 1/N.

Results in any dim.

Sketch of proof of the main theorem (cont)

- Actually we will take height $N \simeq C/GAP$, where $C \gg 1$ is fixed and $GAP := \min_j [\lambda_j(f) \lambda_{j+1}(f)]$. Using the L^1 estimate for the adapted metrics, we see that for most points, time N is sufficient for cones to contract and therefore for the Baraviera–Bonatti perturbation to have a controllable and significant effect on the Lyapunov exponents.
- More precisely, the effect on the Lyapunov exponents is approximately proportional to

$$m(\bigsqcup B_i) \sim \frac{1}{N} \sim O(\text{GAP}).$$

 So we are able to change the Lyapunov spectrum by some small amount that depends not on f but only on λ(f) itself. Done!

Setting and questions

Results in any dim.

Proofs ○○○○○○○○●○○ In the situation of our flexibility theorem on \mathbb{T}^3 , the starting Anosov diffeomophism is F_L . In particular, the invariant foliations are smooth. We can apply Baraviera–Bonatti preserving the (2-dim) center-unstable foliation (say) and therefore keeping $\overline{\lambda_3(f_t) = \lambda_3(L)}$ along the deformation.

So we are able to realize spectra $\preccurlyeq \vec{\lambda}(L)$ (non-strict majorization).

(In large dimension it doesn't work so well...)

EXTENSIONS OF THE RESULTS?

Setting and questions

Result in dim. 3

Results in any dim.

Proofs oooooooooooooo

Our (upgraded Baraviera–Bonatti) method is very adaptable: being Anosov is not really important, but domination is.

Beyond PH/dominated systems, we should be able to allow domination to degenerate in a controlled way in a small "singular" set (like Katok'79, Dolgopyat–Pesin'02).

So the general flexibility conjectures (arbitrary manifold) seem attackable, at least in some cases...

Another direction: symplectic maps.