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SETTING AND QUESTIONS
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A. Katok’s flexibility program

Fix:
a class of smooth dynamical systems (action of Z+

or Z or R);
one or more dynamically invariant quantities (like
entropies or Lyapunov exponents with respect to a
relevant measure).

Flexibility paradigm:

There should be no restrictions on the dynamical
quantities apart from a few “obvious” ones.

�Alena Erchenko’s talk yesterday.
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Setting for today: conservative diffeos;
Lyapunov exponents

M = compact connected manifold of dimension
d ≥ 2.
m = normalized volume measure on M.

If f : M→M is a conservative (i.e., m-preserving) ergodic
diffeomorphism, the Lyapunov exponents are:

λi(f ) := lim
n→+∞

1

n
log
�

i-th singular value of Dfn(x)
�

(for m-a.e. x ∈M).

Note: λ1(f ) ≥ · · · ≥ λd(f ) and
d
∑

i=1

λi(f ) = 0 .

Lyapunov spectrum ~λ(f ) =
�

λ1(f ), . . . , λd(f )
�

.
The Lyapunov spectrum is called simple if these
numbers are all different.Setting and questions Result in dim. 3 Results in any dim. Proofs Future



Flexibility conjectures

Problem

Which Lyapunov spectra ~λ(f ) =
�

λ1(f ), . . . , λd(f )
�

may
appear for C∞ ergodic diffeomorphisms f?

Apart from the obvious restrictions that the λi’s should
be ordered and their sum should be zero, no other
conditions are known.

Conjecture (Weak flexibility – general)

Fix (M,m). Given ξ1 ≥ · · · ≥ ξd with
∑

i ξi = 0, then there

exists ergodic f ∈ Diff∞
m

(M) such that ~λ(f ) = (ξ1, . . . , ξd) .
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Existence of ergodic smooth diffeomorphisms

All exponents zero: Anosov–Katok (early 70’s)
No exponents zero: Katok (1979) for d = 2;
Dolgopyat–Pesin (2002)
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Flexibility conjectures

Even more ambitious: fix homotopy class.

Conjecture (Strong flexibility – general)

Fix (M,m). Fix a connected component C ⊆ Diff∞
m

(M).
Given ξ1 ≥ · · · ≥ ξd with

∑

i ξi = 0, then there exists

ergodic f ∈ C such that ~λ(f ) = (ξ1, . . . , ξd) .

Terminology:

“Strong” means prescribed homotopy class.

“Weak” means we don’t care about homotopy class
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Flexibility conjectures for Anosov diffeos on Td

Let’s work on the more manageable class of
conservative Anosov smooth diffeomorphisms (which
are automatically ergodic).

Conjecture (Weak flexibility – Anosov)

Given ξ1 ≥ · · · ≥ ξd with
∑

i ξi = 0 and each ξi 6= 0, then
there exists an Anosov f ∈ Diff∞

m
(Td) such that

~λ(f ) = (ξ1, . . . , ξd) .

As a corollary of our main result, we prove this
conjecture in the case of simple spectrum:
ξ1 > · · · > ξd.
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For Anosov, there is a new “obvious” restriction
(given the homotopy class)

Given a conservative smooth Anosov f : Td → Td, take
L = π1(f ) ∈ GL(d,Z); then f is homotopic (and
topologically conjugate) to the automorphism
FL : Td → Td. Let u be the unstable index (dimEu) of
either f or FL. Then:

u
∑

i=1

λi(f ) ≤
u
∑

i=1

λi(L) “entropy condition”

Proof:
∑u

i=1 λi(f ) = hm(f ) (Pesin’s formula)

≤ htop(f ) (variational principle)
= htop(FL) (topological conjugacy)

=
∑u

i=1 λi(L)
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Strong flexibility for Anosov?

Are there other restrictions?

Problem (Strong flexibility – Anosov)

Let L ∈ GL(d,Z) be hyperbolic matrix with unstable
index u. Given ξ1 ≥ · · · ≥ ξu > 0 > ξu+1 ≥ · · · ≥ ξd such
that

d
∑

i=1

ξi = 0 and
u
∑

i=1

ξi ≤
u
∑

i=1

λi(L) ,

does there exist a conservative Anosov diffeomorphism
f homotopic to FL such that ~λ(f ) = (ξ1, . . . , ξd)?

�More about this problem in a couple of minutes.
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A RESULT FOR T3
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Dominated splittings

A simple dominated splitting (SDS) for f ∈ Diff1
m

(M) is a
Df -inv. splitting

TM = E1 ⊕ · · · ⊕ Ed with each dimEi = 1

such that ∃n0 > 0 s.t. ∀x ∈M and all unit vectors
v1 ∈ E1(x), . . . ,vd ∈ Ed(x),

‖Dfn0(v1)‖ > · · · > ‖Dfn0(vd)‖ .

Then Lyapunov exponents are given by integrals:

λi(f ) =

∫

log ‖Df |Ei‖dm

and the spectrum is simple: λ1(f ) > · · · > λd(f ).
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Flexibility for Anosov with SDS on T3

Theorem (B-K-RH)
Fix L ∈ GL(3,Z) hyperbolic matrix with simple spectrum.
Suppose ξ1 > ξ2 > ξ3 have the same signs as
λ1(L) > λ2(L) > λ3(L),

ξ1 ≤ λ1(L),

ξ1 + ξ2 ≤ λ1(L) + λ2(L), and

ξ1 + ξ2 + ξ3 = 0 .

Then there exists a Anosov f ∈ Diff∞
m

(T) with SDS

homotopic to FL such that ~λ(f ) = (ξ1, ξ2, ξ3).

Furthermore, the converse holds.

Note that there is an extra not-so-obvious inequality
(related to SDS).
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Proof of the “converse” (inequalities are
necessary)

Taking inverses if necessary, assume λ2(L) > 0, i.e.,
dimEu = 2.
Then λ1(f ) + λ2(f ) ≤ λ1(L) + λ2(L) is the “entropy
condition”.
By contradiction, suppose that λ1(f ) > λ1(L).
For a.e. x, and n� 1 the curve Γ = fn(Wuu

loc(x)) has
length ¦ eλ1(f )n.
The distance between the endpoints of the lifted
curve Γ̃ ⊂ R3 is ∼ eλ1(L)n (much smaller).
This contradicts Brin–Burago–Ivanov’09 (fWuu leaves
are quasi-isometric).
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An exotic Anosov diffeomorphism?

Here is a more modest version of the Problem “Strong
Flexibility – Anosov”:

Problem

Is there a C∞ conservative Anosov diffeo of T3 with
dimEu = 2 and λ1(f ) > λ1(L) (where L ∈ GL(3,Z) is the
homotopy type)?

� f cannot have a simple dominated splitting, so it
cannot be a C1-perturbation of its linear part.
� The Pesin 1-dim manifolds Wuu(x) should be very
twisted inside the 2-dim leaves Wu(x).

Idea: Try f = L1-perturbation of another (well-chosen)
linear Anosov. . .
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MAIN RESULT
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The majorization partial order

Let ~ξ = (ξ1, . . . , ξd) be an ordered vector (ξi ≥ ξi+1) with
ξ1 + · · ·+ ξd = 0.
Define a partial order on the set of such vectors:
~ξ ´ ~η ⇔ ξ1+· · ·+ξi ≤ η1+· · ·+ηi ∀i ∈ {1, . . . ,d− 1}.

We say ~ξ is majorized by ~η.
If the inequalities are strict: ~ξ ≺ ~η ( ~ξ is strictly
majorized by ~η.)
Two concave graphs, one above the other:
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Our main result

Let M be a compact manifold. Let AS ⊂ Diff∞
m

(M) be be
formed by Anosov diffeomorphisms with SDS (simple
dominated splitting).

Theorem (B,K,RH)
Let f ∈ AS; let u = dimEu.
Let ~ξ = (ξ1, . . . , ξd) be such that:

ξ1 > · · · > ξu > 0 > ξu+1 > · · · > ξd
ξ1 + · · ·+ ξd = 0,

~ξ ≺ ~λ(f ) (strict majorization)

Then there exists a continuous path (ft)t∈[0,1] in AS
starting from f0 = f such that ~λ(f1) = ~ξ.
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Keywords of the proof

The proof is essentially a optimized and global version
of Baraviera–Bonatti perturbation method, which
needs:

special adapted metrics (a la Gourmelon) with a
new “L1-property”;
careful linear algebra (in order to mix several
exponents simultaneously);
tower methods (Rokhlin + Vitali).

� More details later.
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Corollary: Weak flexibility on Td

Corollary

For all nonzero numbers ξ1 > · · · > ξd whose sum is 0,
there exists a C∞ conservative Anosov diffeo f : Td → Td

with SDS such that ~λ(f ) = ~ξ := (ξ1, . . . , ξd).

Proof.

Given ~ξ, we take a linear Anosov L ∈ SL(d,Z) with the
same unstable index, and “large” enough so that:

~λ(L) � ~ξ .

Then we apply the Main Theorem.
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PROOF
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Review of Baraviera–Bonatti

As the proof of our main result relies on the
Baraviera–Bonatti strategy, let us recall (a particular
case of) their result:

Theorem (Baraviera–Bonatti, 2003)
Let f be a stably ergodic C∞ conservative
diffeomorphism with a simple dominated splitting.
Then, for each i ∈ {1, . . . ,d}, there exists a C∞

conservative diffeomorphism f̃ arbitrarily C1-close to f
such that λi(f̃ ) 6= λi(f ).

Remark
Origin of the method: Shub–Wilkinson, 2000.
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Construction of the Baraviera–Bonatti
perturbation

Consider e.g. d = 3, i = 1.
Take a small ball B centered at a non-periodic point.
Perturb f inside B in a conservative way,
approximately preserving and rotating the E1 ⊕ E2
planes, obtaining some f̃ .
(See fig. next slide)
Then one can show that the first two exponents
“mix” a little (while the third almost doesn’t move);
in particular, λ1(f̃ ) < λ1(f ).
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Rotating the E1 ⊕ E2 planes

Rem: On each sphere concentric to ∂B the perturbation is a rotation.
Figure by Avila–Crovisier–Wilkinson
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Why does λ1 drop?

The new bundle Ẽ3 is very close to the original E3.
The other bundles move as follows:

fN(B) = f̃N(B)

fN−1 = f̃N−1

B

E1

E2

Ẽ1

Ẽ2

f 6= f̃ f (B) = f̃ (B)

E1

E2
Ẽ1

Ẽ2

So N� 1 ⇒ Þ(Ẽ1,E1)� 1 on B.
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Why does λ1 drop? (continued)

To simplify notation, assume TxM = Rd, Ei = Rei.
Take nowhere-zero vector fields v ≡ e1 and ṽ tangent to
E1 and Ẽ1, respectively.
The seminorm ‖(a1, . . . ,ad)‖1 := |a1| is good enough to
compute the first Lyapunov exponent:

λ1(f ) =

∫

M

log
‖Df (x)v(x)‖1
‖v(x)‖1

dm(x)

λ1(f̃ ) =

∫

M

log
‖Df̃ (x)ṽ(x)‖1
‖ṽ(x)‖1

dm(x)

The two integrands are everywhere equal, except on B.
On B we use that ṽ ' v to compare the integrals.
Jensen inequality ⇒ λ1(f̃ ) < λ1(f ).
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Our proof

We rotate several Ei ⊕ Ei+1 planes so to manipulate (i.e.,
“mix”) all the Lyapunov exponents simultaneously
(careful Linear Algebra).

In order to maximize the effect of the
Baraviera–Bonatti-like perturbations, it will be
fundamental to use especially adapted coordinates.
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A new adapted metric for dominated splitting

Given the simple dominated splitting TM = E1 ⊕ · · · ⊕ Ed
and a Riemannian norm |||·|||, define expansion functions
ρ1, . . . , ρd : M→ R:

ρj(x) := log
|||Df (x)v|||

|||v|||
(arbitrary nonzero v ∈ Ej(x)).

Each ρj is continuous and its integral is λj(f ). We say
that the Riemannian metric is adapted if:

ρ1(x) > ρ2(x) > · · · > ρd(x) and Ei ⊥ Ej ∀i 6= j .

Proposition (Adapted metric with L1 estimate)

Given ϵ > 0, we can choose an adpated metric such
that

∫

M |ρi(x)− λi(f )|dm(x) < ϵ for every i.
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Proof of existence of adapted metric with
L1-estimate

Since we are assuming simple dominated splitting, the
situation becomes essentially one-dimensional.
The proof is a very simple and explicit averaging trick:

v ∈ Ej(x) ⇒ |||v||| :=
N−1
∏

n=0

‖Dfn(x)v‖1/N (N� 1)
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Sketch of proof of the main theorem

We must be able to change (i.e., “mix”) the Lyapunov
spectrum ~λ(f ) of f by some small but constant amount
that depends not on f but only on ~λ(f ) itself.

We take a disjoint family of small “good” balls Bi (in
the adapted coordinates) whose union has N� 1
disjoint iterates from itself (a tower).
On each of these balls, we do Baraviera–Bonatti-like
perturbations (rotating several planes).
By Rokhlin Lemma, we can take m (

⊔

Bi)
approximately equal to 1/N.
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Sketch of proof of the main theorem (cont)

Actually we will take height N ' C/GAP , where
C� 1 is fixed and GAP := minj

�

λj(f )− λj+1(f )
�

.
Using the L1 estimate for the adapted
metrics, we see that for most points, time N is
sufficient for cones to contract and therefore
for the Baraviera–Bonatti perturbation to have a
controllable and significant effect on the Lyapunov
exponents.
More precisely, the effect on the Lyapunov
exponents is approximately proportional to

m
�
⊔

Bi
�

∼
1

N
∼ O(GAP).

So we are able to change the Lyapunov spectrum
by some small amount that depends not on f but
only on ~λ(f ) itself. Done!
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The flexibility theorem on T3

In the situation of our flexibility theorem on T3, the
starting Anosov diffeomophism is FL. In particular, the
invariant foliations are smooth. We can apply
Baraviera–Bonatti preserving the (2-dim)
center-unstable foliation (say) and therefore keeping
λ3(ft) = λ3(L) along the deformation.

So we are able to realize spectra ´ ~λ(L) (non-strict
majorization).

(In large dimension it doesn’t work so well. . . )
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EXTENSIONS OF THE RESULTS?
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Next results?

Our (upgraded Baraviera–Bonatti) method is very
adaptable: being Anosov is not really important, but
domination is.

Beyond PH/dominated systems, we should be able to
allow domination to degenerate in a controlled way in a
small “singular” set (like Katok’79, Dolgopyat–Pesin’02).

� So the general flexibility conjectures (arbitrary
manifold) seem attackable, at least in some cases. . .

� Another direction: symplectic maps.
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