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Some basic (classic) problems in stochasticity of DS

Central limit theorem (CLT, IP,...) Gordin 1968...

Rare events (Poisson law, extremal distribition, entrance
time...) Pitskel 1991...

Large deviation Orey 1986...

Occupation times Aaronson 1981...

Local limts Rousseau-Egele 1983...

Differentiable statistical funtionals (Denker, Keller 1983...)
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The Problem

Let (X ,F ,T , µ) be an ergodic p.p. DS, f measurable and
Sn =

∑n1
i=0 f ◦ T i its ergodic sum.

The occupation time of {Sn} at level t at time n is
`(n, t) := #{i = 1, 2, · · · , n : Si = t}; `n = `n(0). Its distribution
is called the local time.

We are interested in the convergence of these local times and will
connect such convergence to local limits. We restrict to functions
f with values in Z.
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Some literature

Chung and Hunt (1949) studied the limit behavior of the
sequence of {`n} for simple random walk.
Révész (1981) proved an almost sure invariance principle by
Skorokhod embedding.
Borodin (1984): Weak convergence of `(x

√
n, [nt])/

√
n of a

recurrent random walk to the Brownian local time.
Aleškevičienė (1986): Asymptotic distribution and moments of
local times of an aperiodic recurrent random walk.
Bromberg and Kosloff (2012): Weak invariance principle for the
local times of partial sums of Markov chains.
Aaronson (1981) Distributional convergence in infinite m.p. DS.
Bromberg (2014): Extension to Gibbs-Markov processes.
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Conditional Local Limit Theorem

Definition

A centered integer-valued function f is said to have a conditional
local limit theorem at 0, if there exists a constant g(0) > 0 and
a sequence {Bn} of positive real numbers, such that for all x ∈ Z

lim
n→∞

Bnµ(Sn = x |(f ◦ T n+1, f ◦ T n+2, ...) = ·) = g(0) (1)

almost surely.
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The full formulation of the corresponding form of a local limit
theorem goes back to Shepp and Stone in the 60es and reads in
the conditional form as

lim
n→∞

Bnµ(Sn = kn|(f ◦ T n+1, f ◦ T n+2, ...) = ·) = g(κ) (2)

µ a.s. as kn−An
Bn
→ κ, for all κ ∈ R, where An is some centering

constant, and g is the densitiy of some distribution.
Condition (1) can be reformulated using the transfer operator PT .
The local limit theorem at 0 then reads

lim
n→∞

BnP
n
T (I{Sn=t}) = g(0) for all t ∈ Z, µ-a.s.. (3)
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Weak Convergence Theorem

Theorem (Convergence of local times)

Let the Z-valued function f have a conditional local limit theorem
at 0 as in (1) with regularly varying scaling constants
Bn = nβL(n), where β ∈ [ 1

2 , 1) and L is a slowly varying function.

Put an := g(0)
∑n

k=1

1

Bk
→∞.

Then
`n
an

converges to a r.v. Yα strongly in distribution, i.e.

∫
X
g

(
`n(x)

an

)
H(x)dµ(x)→ E [g(Yα)], (4)

for any bounded and continuous function g and any probability
density function H on (X ,F , µ), and Yα has the normalized
Mittag-Leffler distribution of order α = 1− β.
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Remark. In this theorem, β ∈ [ 1
2 , 1). This is because β = 1

d , when
the local limit holds towards a stable distribution with stability
parameter d ∈ (0, 2]. Also, to ensure an is divergent, β has to be
less than 1.
Strong convergence in distribution is stronger than weak
convergence.
A rondom variable Y has normalized Mittag-Leffler distribution
of order α if

E
(
etY
)

=
∞∑
p=0

Γ(1 + α)ptp

Γ(1 + αp)
.

For the definitions of strong convergence in distribution and
Mittag-Leffler distribution, see J. Aaronson’s book 1997 on infinite
ergodic theory, Sections 3.6 and 3.7.
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Theorem (Deviation and upper bound)

Suppose f satisfies all conditions in Weak Convergence Theorem.
Then for every γ > 1, there exists a constant nγ such that for all
nγ ≤ t ≤ L2(n)2, where L2(n) = log log n, one has

e−γ(1−α)t ≤ µ(`n ≥
Γ(1 + α)

αα
tan/t) ≤ e−

1
γ

(1−α)t
. (5)

In addition, if the return time process Rn of `n is uniformly or
strongly mixing from below, where Rn is the waiting time for `n to
arrive at 0 the n-th time, then

lim sup
n→∞

`n
a n

L2(n)
L2(n)

= Kα, a.s. (6)

where Kα =
Γ(1 + α)

αα(1− α)1−α .
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Corollary (Gibbs-Markov transformation)

Let (X ,F ,T , µ, α) be a mixing, probability preserving
Gibbs-Markov map (Aaronson and Denker 2001), and let
φ : X → Z be Lipschitz continuous on each a ∈ α, with

Dαφ := supa∈αDaφ = supa∈α sup
x ,y∈a

|φ(x)− φ(y)|
d(x , y)

<∞

and distribution G in the domain of attraction of a stable law with
order (stability parameter) 1 < d ≤ 2. Then φ has a conditional
local limit theorem with Bn = n1/dL(n), where L(n) is a slowly
varying function. Moreover, the scaled local time of Sn converges
to Mittag-Leffler distribution strongly and (5) holds.
If in addition, the return time process Rn of the local time `n is
uniformly or strongly mixing from below, then (6) holds.
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Example

Let (Ω,B,m, S , α) is the continued fraction transformation where
Ω = [0, 1]. It is a mixing and measure preserving Gibbs-Markov
map with respect to the Gauss measure dm = 1

ln 2
1

1+x dx and the
natural partition α given by inverse branches. Define the metric on
Ω to be d(x , y) = r inf{n:an(x)6=an(y)}, where r ∈ (0, 1). Let φ be
Lipschitz continuous on each set of the partition α, and in the
domain of attraction of a stable law with stability parameter
d ∈ (1, 2].
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Example

...continued.
Define (X ,F , µ,T , β) to be the direct product of (Ω,B,m, S , α)
with itself and dX ((x , y), (x ′, y ′)) = max{d(x , x ′), d(y , y ′)}. Then
one can check that (X ,F , µ,T , β) is still a mixing and measure
preserving Gibbs-Markov map. Let f : X → Z be defined by
f (x , y) = φ(x)− φ(y). Since φ is Lipschitz on partitions α, so is f .
f is in the domain of attraction of a stable law. The local time at
level 0 of Sn is denoted to be `n(x , y) =

∑n
i=1 I{Si (x ,y)=0}. By

applying the Corollary to the Gibbs-Markov map (X ,F , µ,T , β)
and the Lipschitz continuous function f , Sn has a conditional local
limit theorem and the local time `n converges to the Mittag-Leffler
distribution after scaling and (5) holds for `n. In particular this
applies to the number of times that the partial sum

∑
j≤i φ ◦ S j

agree at times i ≤ n when the initial values are chosen
independently.
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Example (β transformation)

Fix β > 1 and T : [0, 1]→ [0, 1] is defined by Tx := βx mod 1.
Let φ : [0, 1]→ Z be defined as φ(x) = [βx ] and
Xn(x) = φ ◦ T n−1(x) = [βT n−1x ]. There exists an absolutely
continuous invariant probability measure µ. By Aaronson, Denker,
Sarig, Zweimüller 2004, there is a conditional local limit theorem
for the partial sum Sn of f . Then the results can be applied to
([0, 1],F , µ,T ) and f , it follows that the scaled local time of
Sn − n

∫
fdµ converges to the Mittag-Leffler distribution and (5)

holds when
∫
fdµ is an integer. When

∫
fdµ is not an integer, a

similar product space as in the previous example can be
constructed and the same conclusion for the local time in the
product space holds.
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Sketch of proof

Consider the Z-extension of (X ,F ,T , µ). Define
T̃ : B := X × Z→ X × Z by T̃ (ω, n) = (T (x), n + f (x)), then by
induction, T̃ k(x , n) = (T k(x), n + Sk). Let ν be the counting
measure on the space Z, and Z be the Borel-σ algebra of Z. So
we consider (B,B,m = µ× ν, T̃ ). We denote by PT and PT̃ the

transfer operators of T and T̃ , respectively.
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Lemma

Suppose f has the conditional local limit theorem at 0 (cf. (1)).
Then

1 T̃ is conservative and measure preserving in (B,B,m).

2 There exists a probability space (Y , C, λ), and a collection of
measures {my : y ∈ Y } on (B,B) such that

1 For y ∈ Y , T̃ is a conservative ergodic measure-preserving
transformation of (B,B,my ).

2 For A ∈ B, the map y → my (A) is measurable and

m(A) =

∫
Y

µy (A)dλ(y).

3 λ-almost surely for y , (B,B, µy , T̃ ) is pointwise dual ergodic.
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From the lemma, (B,B,my , T̃ ) is pointwise dual-ergodic. Since an
is regularly varying, by applying Aaronsons version of the
Darling-Kac Theorem (Aaronson 1997), for any f ∈ L1(my ), f ≥ 0,
one has strong convergence, denoted by

S T̃
n (f )

an

L−→ C (y)my (f )Yα, (7)

which means∫
B
g

(
S T̃
n (f )(x , z)

an

)
hy (x , z)dµy (x , z)→ E [g(C (y)my (f )Yα)],

(8)
for any bounded and continuous function g and for any probability
density function hy of (B,B,my ). Here Yα has the normalized
Mittag-Leffler distribution of order α = 1− β. The Convergence
Of Local Times Theorem follows canonically observing that
C (y)my (f ) is independent of y .
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Definition

An integer-valued measurable function f is said to satisfy the L∞

conditional local limit theorem at 0 if there exists a sequence
gn ∈ R of real constants such that

lim
n→∞

gn =: g(0) > 0

and
‖BnPT n(ISn=x)− gn‖∞

decreases exponentially fast.

This condition is essentially stronger than condition (1) holding in
L∞(µ) and the convergence is exponentially fast.
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Theorem (Almost sure distributional limit theorem for the local
times)

Let f be an integer-valued function satisfying the L∞ conditional
local limit theorem at 0 with Bn = nβL(n) and slowly varying
function L(n) converging to c > 0. Moreover, assume that the
following two conditions are satisfied: for some constants K > 0
and δ > 0 and for all bounded Lipschitz continuous functions
g ,F ∈ Cb(R) and x ∈ Z it holds that

cov
(
g(`k),F ◦ T 2k)

)
≤ (log log k)−1−δ & (9)

∞∑
n=1

|E
(
I{Sn=x} − I{Sn=0}

)
| ≤ K (1 + |x |

α
1−α ), (α = 1− β) (10)
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Theorem (continued)

Then

lim
N→∞

1

logN

N∑
k=1

1

k
I{ `k

ak
≤x} = M(x) a.s. (11)

is equivalent to

lim
N→∞

1

logN

N∑
k=1

1

k
µ{ `k

ak
≤ x} = M(x), (12)

where M(x) is a cumulative distribution function.
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Corollary (Gibbs-Markov maps)

The almost sure distributional limit theorem for the local times
holds under the same setting as in the previous Corollary for
Gibbs-Markov transformation.

It is because the L∞ conditional local limit theorem in the sense of
the above definition holds and the assumptions on the transfer
operator are satisfied.

Example (β transformation)

Almost sure distributional limit theorem can be obtained for the
β-transformation.
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THANK YOU
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The following proposition will be used in the proof of ASDLT For
Local Times Theorem:

Proposition

Var

(
1

logN

N∑
k=1

1

k
g(
`k
ak

)

)
= O

(
(log logN)(−1−δ)

)
for some δ > 0, as N →∞, where g is any bounded Lipschitz
function with Lipschitz constant 1.
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Define the characteristic function operator Pt : L1(P)→ L1(P) by
Pt f := PT (e itφf ), which is the perturbation of PT . By induction,
Pn
t f = PT n(e itSn f ). Let the space L be the subspace in L1(P) of

all functions with norm: ‖f ‖ := ‖f ‖∞ + Df where Df is the
Lipschitz constant of f . We assume that Pt acts on L and has the
following properties:

There exists δ > 0, such that when t ∈ Cδ := [−δ, δ], Pt has a
representation: Pt = λtπt + Nt , πtNt = Ntπt = 0, and the πt
is a one-dimensional projection generated by an eigenfunction
Vt of Pt , i.e. PtVt = λtVt . It implies that Pn

t = λnt πt + Nn
t .

There exists constants K ,K1 and θ1 < 1 such that on Cδ,
‖πt‖ ≤ K1, ‖Nt‖ ≤ θ1 < 1, |λt | ≤ 1− K |t|d .

There exists θ2 < 1 such that for |t| > δ, ‖Pt‖ ≤ θ2 < 1.

φ is Lipschitz continuous.
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Conditions 9 and 10 can be proved under these assumptions. This
also will complete the proof of the corollaries since Gibbs-Markov
maps satisfy all the assumptions above. An example not satisfying
the above condition can be derived for functions of the fractional
Brownian motion as in Denker and Zheng 2019.
The proof of (9) illustrates the type of argument:
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Proof of (9).

Let g( `kak ) :=
∫

Ω g( `kak )dP + ĝ := Ck + ĝ , then by P2k
T = P + N2k ,

cov

(
g(
`k
ak

),F ◦ T 2k)

)
=

∫
Ω
g(
`k
ak

)(F ◦ T 2k)dP −
∫

Ω
g(
`k
ak

)dP

∫
Ω
F ◦ T 2kdP

=

∫
Ω
P2k
T

(
g(
`k
ak

)

)
FdP −

∫
Ω
g(
`k
ak

)dP

∫
Ω
FdP

=

∫
Ω
N2k(ĝ)FdP

≤ ‖N2k(ĝ)‖‖F‖1

≤ Cθ2k
1 ‖g‖

≤ C (log log(2k))−1−δ.
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