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Setting

Let M be a smooth compact Riemannian manifold.
Let f :M−→M be a diffeomorphism, preserving the volume µ
The Lyapunov exponent of a vector v ∈ TxM\ {0} at x ∈M is

χ(x , v) = lim
n→∞

1

n
log ‖df n

x v‖,

provided the limit exists.

By Birkhoff ergodic theorem, the limit exists at almost every point
with respect the volume µ.
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Regular vs. chaotic motions

In the early stages the theory of dynamical systems were
dominated by the study of regular dynamics including presence and
stability of periodic motions, translations on surfaces, etc. Here we
call a system regular if all the Lyapunov exponents are zero.

Typical chaotic motions are attributed to hyperbolicity. So we call
a system chaotic if all the Lyapunov exponents are nonzero up to a
set of measure zero.
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Definition of coexistence

Definition

A dynamical system (M, f , µ) exhibits coexistence of regular and
chaotic behavior if M = R] C, where

(i) χ(x , v) = 0 ∀v ∈ TxM, x ∈ R;

(ii) χ(x , v) 6= 0 ∀v ∈ TxM, x ∈ C;

(iii) f |C is ergodic;

(iv) µ(R) > 0 and µ(C) > 0.

Definition

A dynamical system (M, f , µ) exhibits essential coexistence of
regular and chaotic behavior if it exhibits coexistence of regular
and chaotic behavior, and in addition

(v) C is a dense subset.
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Remarks

If restriced to C, f is ergodic and does not have zero Lyapunov
exponent, then f is Bernoulli by Pesin theory.
Hence, f is mixing with respect to the conditional measure on C.
If (v) holds, then C is open and dense. So f topologially mixing.
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Motivation 1 - Sinai’s Conjecture

The Chirikov-Taylor standard map fλ : T2 → T2, for λ ∈ R:

fλ

(
x
y

)
=

(
x + y

y

)
+ λ

(
0

sin 2π(x + y))

)
.

f0 is a sheer map - completely integrable;

htop(fλ) > 0 for λ 6= 0;

each fλ preserve the area µ.

Conjecture (Sinai)

For any λ 6= 0, the metric entropy hµ(fλ) > 0.

By Pesin’s entropy formula, Sinai’s Conjecture ⇐⇒ µ(C) > 0;

If λ is small, Sinai Conjecture ⇐⇒ the coexistence of KAM
circles R and chaotic sea C.
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Motivation 2 - KAM and Arnold’s diffusion

KAM: Consider the complete integrable Hamiltonian system{
θ̇ = I ,

İ = 0,
for (θ, I ) ∈ Tn × Rn.

Under small perturbation H0 = 1
2 I 2 −→ H0 + εH1, a Cantor

set R of non-resonant KAM invariant tori survives.
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Motivation 2 - KAM and Arnold’s Diffusion

Arnold’s diffusion: Assume n ≥ 3. ∀K > 0, ∀ε� 1, there
exists an orbit γ such that

I (γ(t))− I (γ(0)) > K for some t > 0.

It suggest that C ⊃ {x : χ(x , ∂I ) 6= 0} may have positive
measure.
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Volume-Preserving KAM

KAM also holds in volume-preserving category (Cheng-Sun,
Herman, Xia, Yoccoz in 1990’s). Consider

fε

(
θ
I

)
=

(
θ + ω(I )

I

)
+ εF (θ, I ), for (θ, I ) ∈ Tn × R,

where F is real-analytic, and is chosen such that fε preserves the
volume.

Theorem

Under certain twist condition, for any small ε > 0, a Cantor set R
of invariant tori survives.
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A question

The invaiant tori are often called elliptic islands.

Question

What happens outside the elliptic islands? It the motion chaotic?

Or, equivalently,

Question

Are the elliptic islands surrounded by chaotic sea?

Arnold diffusion

There exist solutions to nearly integrable Hamiltonian systems that
exhibit a significant change in the action variables.

The purpose of the project is to understand the phenomena from
smooth dynamical system point of view.
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Coexistence in T2

Przytycki (1982) considered a family of area preserving
diffeomorphisms fε : T2 → T2 given by

Hε(x , y) = (x + y , y + hε(x + y))

for certain hε : S1 → S1.
It is proved that one can choose a family hε to ensure that for
every ε < 0 small the elliptic island Oε is the domain between
separatrices, and the map Hε behaves stochastically on
Cε := T2\Oε, more exactly, the Lyapunov exponents for Hε|Cε are
nonzero almost everywhere and Hε|Cε is isomorphic to a Bernoulli
automorphism.

O
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Bunimovich mushrooms

Bunimovich (2008) constructed a biliard table consisting of a
rectangle and a semicircle. In the system the orbits staying the
semecircle form an invariant open set in the phase space.
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Other results

M. Wojtkowski, A model problem with the coexistence of
stochastic and integrable behaviour, (1981)
M. Wojtkowski, On the ergodic properties of piecewise linear
perturbations of the twist map, (1982)
H. Aref and N. Pomphrey, Integrable and chaotic motions of four
vortices I. The case of identical vortices, (1982)
R. Devaney, A piecewise linear model for the zones of instability of
an area preserving map, (1984)
R. Cushman, Examples of non-integrable analytic Hamiltonian
vector fields with no small divisor, (1978)
J.-M. Strelcyn, The ”coexistence problem” for conservative
dynamical systems: a review, (1991)
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Essential coexistence in volume-preserving category

Theorem (H-Pesin-Talitskaya, 2013)

There exist diffeomorphisms (M5, f , vol) displaying essential
coexistence, such that f |C is Bernoulli.

Theorem (Chen-H-Pesin, 2014)

There exist flows (M5, f t , vol) displaying essential coexistence,
such that f t |C is Bernoulli.

Theorem (Jianyu Chen, 2013)

There exist diffeomorphisms (M4, f , vol) displaying essential
coexistence, such that f |C has countably infinitely many ergodic
components.
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Main results

Theorem A (Chen-H-Pesin-Zhang, 2019)

There exist a four dimensional manifold M and a Hamiltonian
function H :M→ R such that restricted to any energy surface
Me := {H = e}, the Hamiltonian flow f t :Me →Me exhibit
essential coexistence. More precisely,

(1) There is an open and dense set U = Ue such that f t(U) = U
for any t ∈ R, and m(Uc) > 0, where Uc =Me \ U is the
complement of U.

(2) Restricted to U, f t |U is hyperbolic and ergodic. In fact, f t |U
is Bernoulli.

(3) Restricted to Uc , all orbits of f t |Uc are periodic with zero
Lyapunov exponents.
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Essential coexistence for a flow on T3

In order to construct the Hamiltonian flow, we first construct a
3-dimensional flow with essential coexistence.

Theorem B

There exists a volume preserving C∞ flow f t on M = T3 that
demonstrates the essential coexistence phenomenon, i.e., it has
Property (1)-(3) in Theorem A, that is

(1) there is an open and dense set U ⊂ T3 such that f t(U) = U
for any t ∈ R, and m(Uc) > 0, where Uc =M\ U is the
complement of U;

(2) restricted to U, f t |U is hyperbolic and ergodic, in fact, f t |U is
Bernoulli;

(3) restricted to Uc , all orbits of f t |Uc are periodic with zero
Lyapunov exponents.
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Essential coexistence for a diffeomorphism on T2

In order to construct the flow, we construct a diffeomorphism of
T2 with essential coexistence.

Theorem C

There exists a C∞ area preserving diffeomorphism f on T2 such
that

(1) there is an open and dense set U ⊂ T2 such that f (U) = U
and m(Uc) > 0, where Uc = T2 \ U is the complement of U;

(b) restricted to U, f |U is hyperbolic and ergodic; in fact, f |U is
Bernoulli;

(c) restricted to Uc , f |Uc = id.
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Katok’s map

Our construction is based on the Katok’s map g : D2 → D2.
Proposition 1

There is a C∞ area-preserving diffeomorphism g : D2 → D2 with
the following properties:

1 g is ergodic, and in fact, is isomorphic to a Bernoulli map;

2 g has non-zero Lyapunov exponents almost everywhere;

3 near ∂D2, g is the time-1 map of the flow generated by a
vector field Z ;

4 the map g can be constructed to be arbitrary flat near the
boundary of the disk.

Remark

The last part means that g is sufficiently close to the identity map.
Hence, g can be extend to a C∞ map g : D2 → D2 s.t. g |∂D2 = id.
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Embedding of D2 into T2 with fractal boundary

Proposition 2

There exists a C∞ diffeomorphism h from D2 into T2 with the
following properties:

1 the image U = h(D2) is a simply connected, open and dense
subset of T2. Moreover, ∂U = T2\U = E ∪ L, where E is a
Cantor set of positive Lebesgue measure and L is a union of
countably many line segments;

2 h is area-preserving, i.e., h∗mU = mD2 , where mU is the
normalized Lebesgue measure on U;

3 h can be continuously extended to ∂D2 such that
h(∂D2) ⊆ ∂U, and therefore for any ε > 0, Nε = h−1(Vε) is a
neighborhood of ∂D2, where Vε := {x ∈ U : d(x , ∂U) < ε}.
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Proof of Proposition 2, Step 1: Construction of U

Let U1 be a (α, 1) cross inscribed in T2 = [0, 1]2.
L1 consists of the left/right edges and top/bottom edges U1.
The four squares form E1, denote by E1,j , j = 1, 2, 3, 4.

Figure 1. The construction of the sets U1 and U2

1

Figure: The construction of the sets U1 and U2

Put a cross inscribed in each E1,j and let U2 be the union.
L2 consists of the boundary of U2.
The 44 squares form E2.

Fiinally, let U =
⋃

n≥0 Un, E =
⋂

n≥0 En, L =
⋃

n≥1 Ln.
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Step 2: Construction of a map ϕ : D2 → U

Choose a Cω diffeo. ϕ̂0 : D2 → U1 by Riemann mapping theorem.
For any n ≥ 1 choose C∞ map ϕ̂n : Un → Un+1 by

ϕ̂n(x) =

{
σγn , if x ∈Wn,k , k = 1, . . . , 4n;

x , elsewhere,

where

Then define

ϕn = ϕ̂n−1 ◦ · · · ◦ ϕ̂1 ◦ ϕ̂0, ϕ = lim
n→∞

ϕn.

φ is a C∞ map and can be continuously extended to ∂D2.

Huyi Hu The essential coexistence phenomenon in Hamiltonian dynamics
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Step 3: Construction of a map ψ : D2 → D2

We construct C∞ diffeomorphism ψ on D2 such that h := ϕ ◦ ψ is
area preserving and can be continuously extended to D2.
Let mU be the normalized Leb. measure on U. Define µ = ϕ∗mU .
We construct a map ψ such that ψ∗µ = mD2 .
This can be obtained by using Moser’s theorem.

Theorem (Moser)

Given two smooth volume forms µ and ν with the same total
volume on a compact connected manifold M, there exists a
diffeomorphism φ s.t. µ = φ∗ν.

Huyi Hu The essential coexistence phenomenon in Hamiltonian dynamics
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Step 3: Construction of a map ψ : D2 → D2

Since D2 is not compact, and the density of µ is unbounded, we
use the theorem to construct a sequence diffeomorphisms {ψ̂n}
such that ψ̂n|ϕ−1(Un−1) = id and d(x , ψ̂n(x))→ 0 uniformly as
n→∞.
Then define

φn = ψ̂n−1 ◦ · · · ◦ ψ̂1, ψ = lim
n→∞

ψn.

φ is a C∞ map and can be continuously extended to ∂D2.
Finally let h = ϕ ◦ ψ, which is the required map.

Huyi Hu The essential coexistence phenomenon in Hamiltonian dynamics
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Proof of Theorem C

Theorem C

There exists a C∞ area preserving diffeomorphism f : T2 → T2

that display essential coexistence.

Proof.

Take g : D2 → D2 as in Proposition 1 (Katok’s map).
Take h : D2 → U $ T2 as in Proposition 2.

Define f (x) =

{
(h ◦ g ◦ h−1)(x), x ∈ U;

id, elsewhere.

Choose g “flat” enough near ∂D2 such that f is C∞ on ∂U.

Huyi Hu The essential coexistence phenomenon in Hamiltonian dynamics
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Isotopy from identity to Katok’s map

Using Smale’s isotopy theorem on D2 we can get,

Proposition 3

Then there is a C∞ map G : D2 × [0, 1]→ D2 such that

1 for any t ∈ [0, 1] the map gt = G (·, t) : D2 → D2 is an
area-preserving diffeomorphism;

2 g0 = id and g1 = g;

3 dnG (x , 1) = dnG (g(x), 0) for any n ≥ 0;

4 in a neighborhood N of ∂D2, gt |N is the flow generated by Z ;

5 for each t ∈ [0, 1] the map gt can be constructed to be
arbitrary flat near the boundary of the disk.
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Proof of Theorem B

Theorem B

There exists a C∞ volume preserving flow f t : T3 → T3 that
display essential coexistence.

Proof.

Define F : T3 → T2 by F (x , t) =

{
h ◦ G (h−1(x), t), x ∈ U,

id , elsewhere.

and denote f̃t = F (·, t) = h ◦ gt ◦ h−1 on the suspension manifold K.

Note F̂ : K → T3 given by F̂ (x , θ) = (F (x , θ), θ) is well-defined,

then we get a flow f̂t = F̂ ◦ f̃t ◦ F̂−1, whose vector field is

X̂ (x , θ) = (X1(x1, x2, θ),X2(x1, x2, θ), 1) .

Make a time change to get an ergodic flow with vector field

X (x , θ) = (X1(x1, x2, θ),X2(x1, x2, θ), τ(x1, x2)) .
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Proof of Theorem A

Theorem A

There exists a 4-dim manifold M and a Hamiltonian function
H :M→ R s. t. the Hamiltonian flow f t :Me →Me exhibit
essential coexistence. on the energy surface Me = {H = e}.
Idea of Proof.

Define M = T3 × R =: {(x1, x2, θ, I )}.
There is a standard symplectic form ω = dx1 ∧ dx2 + dθ ∧ dI .

Let X = (X1,X2, τ) be the vector field given in Theorem B that
generates the flow f t in T3.

Let Θ = Θ(x1, x2, θ) be the backward hitting time to the zero level
for f t initiated at (x1, x2, θ) ∈ T3, that is, ∃!(x̂1, x̂2) and a unique
value Θ ∈ [0, 1) ∼= T s. t. f Θ(x̂1, x̂2, 0) = (x1, x2, θ).

Define Φ :M→M by Φ(x1, x2, θ, I ) = (x1, x2,Θ, I ). Then define
ω̂ = Φ∗ω = dx1 ∧ dx2 + dΘ ∧ dI .
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Proof of Theorem A

Idea of Proof (Construction of the Hamiltonian function).

Let H̃ = H̃(x1, x2, θ) : T3 → R be the function given by the equation
∂H̃

∂x2
= X1, −

∂H̃

∂x1
= X2, on U,

H̃ = 0 on ∂U,

Let Ĥ(x1, x2, θ, I ) = H̃(x1, x2,Θ(x1, x2, θ)) + I .

Finally, set H = Φ∗Ĥ = Ĥ ◦ Φ−1 and XH = Φ∗XĤ .

Clearly, Me = {H = e} = Φ{Ĥ = e} = ΦM̂e .

The vector field is given by XH = Φ∗XĤ , where

XĤ =
(

X1,X2, τ,
∂H̃
∂θ

)
.
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Thank you!
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