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Let Q c R?2 be a strictly convex domain. Define
the length spectrum L(Q) := UpL(P) UNL(09),

L(P) — perimeter of a periodic orbit, U — over all per orbits.
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Paternain-Salo-Uhimann’14,
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A long standing conjecture of Burns-Katok

Let (M, g) be a smooth closed Riemannian compact manifold. Let the
length spectrum of g be the set of lengths of closed geodesics. Let
the metric g admit an Anosov geodesic flow. The closed geodesics are
parametrized by the set C of free homotopy classes. Define the
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Guillarmou—Lefeuvre breakthrough

Theorem [GL'19] Let g be a negatively curved metric. Then for

N > % dim M + 8 there exists € > 0 s. t. for any smooth metric g with
same marked length spectrum as go and s. t. [|g — gol[cvm) < &,
then g and g, are isometric, i.e. there exists a diffeomorphism

o M— Ms. 1. ¢*g = go.
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Call Q dynamically spectrally rigid (DSR) if any smooth isopectral
deformation {Q;}; C 8" is an isometry, i.e. L(Q;) = L(Q).
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De Simoi-K-Wei An axis-symmetric domain near the circle is
DSR.
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J. Chen-K-H. Zhang A p.a. Bunimovich stadium is DSR.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 12/23



J. Chen-K-H. Zhang A p.a. Bunimovich stadium is DSR. In addition, a
p.a. Bunimovich squash-like stadium is DSR.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 12/23



J. Chen-K-H. Zhang A p.a. Bunimovich stadium is DSR. In addition, a
p.a. Bunimovich squash-like stadium is DSR.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 12/23



J. Chen-K-H. Zhang A p.a. Bunimovich stadium is DSR. In addition, a
p.a. Bunimovich squash-like stadium is DSR.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 12/23



De Simoi-K-Leguil Marked Length Spectrum determins an analytic
three disk system with Z, x Zo symmetries.
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Marked Length spectrum, Spectral & Global Rigidity

Let (S, g) be a negatively curved compact surface.
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Marked Length spectrum, Spectral & Global Rigidity

Let (S, g) be a negatively curved compact surface.

Call the union of minimal geodesics in each homotopy class ~

E(S7 g) = U(E’W ’7)
the marked length spectrum.
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Marked Length spectrum, Spectral & Global Rigidity

Let (S, g) be a negatively curved compact surface.

Call the union of minimal geodesics in each homotopy class ~

L(S,9) = U(ty,7)

the marked length spectrum.

Guillemin-Kazhdan’80 any (S, g) is spectrally rigid.
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Marked Length spectrum, Spectral & Global Rigidity

Let (S, g) be a negatively curved compact surface.

Call the union of minimal geodesics in each homotopy class ~

L(S,9) = U(ty,7)

the marked length spectrum.
Guillemin-Kazhdan’80 any (S, g) is spectrally rigid.

Croke, Otal’90 the marked length spectrum determines (S, g)
upto isometry.

Croke-Sharafutdinov’98 any negatively curved manifold (M, g)
spectrally rigid.

is
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics.

Period 2
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics. Birkhoff proved

Lemma

For any convex domain Q and any q > 1 there is a periodic orbit of
period q, given by inscribed q-gons and denoted Sq = Sq(Q2).

U
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@ ‘Skeleton’ of the dynamics. Birkhoff proved

For any convex domain Q and any q > 1 there is a periodic orbit of
period q, given by inscribed q-gons and denoted Sq = Sq(Q2). If Q2 is
axis-symmetric, then Sy can be chosen axis-symmetric.
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@ ‘Skeleton’ of the dynamics. Birkhoff proved

For any convex domain Q and any q > 1 there is a periodic orbit of
period q, given by inscribed q-gons and denoted Sq = Sq(Q2). If Q2 is
axis-symmetric, then Sy can be chosen axis-symmetric.

Period 3
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics. Birkhoff proved

For any convex domain Q and any q > 1 there is a periodic orbit of
period q, given by inscribed q-gons and denoted Sq = Sq(Q2). If Q2 is
axis-symmetric, then Sy can be chosen axis-symmetric.

eriod

Period 3
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics: symmetric g-gons
S = (qu)vSDq ), g >1.

eriod

Period 3

Period 2
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics: symmetric g-gons

Sq = (qu),cpq ), g > 1.S"(T) — space of C"-symmetric functions.

@ Consider an isospectral deformation {Q;}; C S”,
00 =00 + t-n(s) + O(t?),  ne S'(T).
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics: symmetric g-gons

Sq = (qu),cpq ), g > 1.S"(T) — space of C"-symmetric functions.

@ Consider an isospectral deformation {Q;}; C S”,
00 =00 + t-n(s) + O(t?),  ne S'(T).
Then £q(n) = S7_, n(x{)sinp{) = 0.

eriod

Period 3

Period 2

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019



Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics: symmetric g-gons
Sq = (qu)wq ), g > 1. S'(T) — space of C"-symmetric functions.

@ Consider an isospectral deformation {Q;}; C S”,
00 =00 +t-n(s)+ O(t?),  ne S'(T).
Then £4(n) = 39_, n(x{)sin o = 0.
@ Define a linearized isospectral operator
Lq: C'(T) — £, La(n) = (lg(n), g=10,1,...).

Period 2

eriod
Period 3
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics: symmetric g-gons
Sq = (qu)wq ), g > 1. S'(T) — space of C"-symmetric functions.

@ Consider an isospectral deformation {Q;}; C S”,
00 =00 +t-n(s)+ O(t?),  ne S'(T).
Then £4(n) = 39_, n(x{)sin o = 0.
@ Define a linearized isospectral operator
Lq: C'(T) — £, La(n) = (lg(n), g=10,1,...).

If Lq is injective, then Q is DSR. \
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The Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Q;}; C S", of the circle.
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The Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Q;:}; C S", of the circle. In polar
coordinates (r,s) e Ry x T

I ={r=1+t-n(s)+O(t?)}, ne S().
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The Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Q;:}; C S", of the circle. In polar
coordinates (r,s) e Ry x T

O ={r=1+t-n(s)+O(t?)}, neS(T).
Then
q
Zn

k=1

Q\R‘

Let n(s) = > xcz. Nk cos ks be the Fourier expansion. Then {q(n) = 0
implies ngg = 0 for k > 1.
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Consider an isospectral deformation {Q;:}; C S", of the circle. In polar
coordinates (r,s) e Ry x T

O ={r=1+t-n(s)+O(t?)}, neS(T).
Then
q
Zn

k=1

Lemma

Let n(s) = > xcz. Nk cos ks be the Fourier expansion. Then {q(n) = 0
implies ngg = 0 for k > 1.

Lemma

The Linearized Isospectral Operator Lq, is injective

Q\R‘
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The Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Q;:}; C S", of the circle. In polar
coordinates (r,s) e Ry x T

O ={r=1+t-n(s)+O(t?)}, neS(T).
Then
q
Zn

k=1

Lemma

Let n(s) = > xcz. Nk cos ks be the Fourier expansion. Then {q(n) = 0
implies ngg = 0 for k > 1.

Lemma

The Linearized Isospectral Operator Lq, is injective and is an upper
triangular with units on the diagonal.

Q\R‘
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The X-ray transform

Let go be a negatively curved metric. Let g be close to gyg. Denote
h = go — g and . the closed geodesic in the homotopy class c.
Consider the first variation:

1 Lgy(c)
(@2(@0) M(0) = 5y [ Mot de(tyet.
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The X-ray transform and solenoidal injectivity

Let go be a negatively curved metric. Let g be close to gyg. Denote
C>(M, S?T*M) the space of symmetric 2-tensors, h = gy — g be the
symmetric 2-tensor and ~. the closed geodesic in the homotopy class
c. Call

1 Lay (€)
oy M@ = 51y [, PrtolGelD). et

the X-transform. The divergence operator is its formal adjoint given by
D*f := —Tr(Vf) with the trace Tr naturally defined.
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The X-ray transform and solenoidal injectivity

Let go be a negatively curved metric. Let g be close to gyg. Denote
C>(M, S?T*M) the space of symmetric 2-tensors, h = gy — g be the
symmetric 2-tensor and ~. the closed geodesic in the homotopy class
c. Call

1 Lay (€)
oy M@ = 51y [, PrtolGelD). et

the X-transform. The divergence operator is its formal adjoint given by
D*f := —Tr(Vf) with the trace Tr naturally defined.

Paternain-Salo-Uhlmann Let (M, go) be a smooth Riemannian
manifold and assume that the geodesic flow of gy is Anosov. Then Iy,
is solenoidal injective, i.e.

ker Ig, N C>°(M, S?T*M) N ker D* = 0.
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