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Can you hear the shape of a drum?

M. Kac’66: Can you hear the shape of a drum?
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Can you hear the shape of a drum?

Consider the Dirichlet problem in a domain Ω ⊂ R2.{
∆u + λ2u = 0
u|∂Ω = 0.

∆(Ω) := {0 < λ1 ≤ λ2 ≤ · · · }— Laplace spectrum.

Example 1 Let ΩC = [0, π]× [0, π] 3 (x , y). For any pair k ,m ∈ Z+ \ 0
let

u(x , y) = sin kx · sin my and λ =
√

k2 + m2.

The Laplace spectrum ∆(ΩC) = ∪k ,m∈Z+\0
√

k2 + m2.

Question (M. Kac’66) Does ∆(Ω) determine Ω up to isometry?

Weyl law (H. Weyl’11) N(λ) := # eigenvalues (w multiplicity) in (0, λ2],
then

lim
λ→∞

λ−1N(λ) = (4π)−1Area (Ω).
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Can’t hear the shape of a drum!

Gordon–Webb-Wolpert’92
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Can’t hear the shape of a drum!

Gordon–Webb-Wolpert’92

Consider domains with a smooth or an analytic boundary!

Osgood-Phillips-Sarnak A C∞ isospectral set is compact.

Conjecture (Sarnak’90) A C∞ isospectr. set consists of isolated points.

Hezari-Zeldich, Popov-Topalov Analytic deformations of ellipses.
Colin de Verdière, Zeldich Generic analytic axis-symmetric domains.
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Can you hear the shape of a Riemannian manifold?

Let (M,g) be a Riemannian compact manifold. Consider the spectrum
of the Laplace-Beltrami operator ∆(M,g).

Question Does ∆(M,g) determine (M,g) up to an isometry?

Sunada, Vingeras* ∃ isospectral sets of arbitrary finite cardinality.

Conjecture (Sarnak’90) A C∞ isospectr. set consists of isolated points.

Call Ω spectrally rigid (SR) if any smooth isopectral deformation {Ωt}t
is an isometry, i.e. ∆(Ωt ) ≡ ∆(Ω0).

Conjecture (Sarnak’90) Any planar domain is SR.
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Length spectrum and Laplace spectrum

Let Ω ⊂ R2 be a strictly convex domain. Define

the length spectrum L(Ω) := ∪PL(P) ∪ NL(∂Ω),

L(P) – perimeter of a periodic orbit, ∪ – over all per orbits.

Theorem (Chazarian, Anderson-Melrose, Guillemin, Duister-
maat, ...) The Laplace ∆(Ω) determines the length L(Ω),
generically. More exactly, the wave trace

w(t) = Re
∑

λj∈∆(Ω)

exp(iλj t)

is C∞ outside of ±L(Ω) ∪ 0. Generically,

sing. supp. of w(t) = ±L(Ω) ∪ 0.
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A long standing conjecture of Burns-Katok

Let (M,g) be a smooth closed Riemannian compact manifold. Let the
length spectrum of g be the set of lengths of closed geodesics. Let
the metric g admit an Anosov geodesic flow. The closed geodesics are
parametrized by the set C of free homotopy classes. Define the
marked length spectrum by

Lg : C → R+, Lg(c) := `g(γc).

Conjecture [Burns-Katok’85] If g and g0 are two negatively curved
metrics on a closed manifold M, and if they have the same marked
length spectrum, i.e Lg = Lg0 , then they are isometric, i.e. there
exists a smooth diffeomorphism φ : M → M such that g = g0.

Guillemin-Kazhdan’80, Katok’88 metrics in a fixed conformal class,
Croke-Sharafutdinov’98, Dairbekov-Sharafutdinov’03,
Paternain-Salo-Uhlmann’14,Guillarmou’17.
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Guillarmou–Lefeuvre breakthrough

Theorem [GL’19] Let g be a negatively curved metric. Then for
N > 3

2 dim M + 8 there exists ε > 0 s. t. for any smooth metric g with
same marked length spectrum as g0 and s. t. ‖g − g0‖CN (M) < ε,
then g and g0 are isometric, i.e. there exists a diffeomorphism
φ : M → M s. t. φ∗g = g0.

Question (Sarnak) Is the same true for the length spectrum?
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Can hear an axis-symmetric drum!

Call Ω dynamically spectrally rigid (DSR) if any smooth isopectral
deformation {Ωt}t ⊂ S r is an isometry, i.e. L(Ωt) ≡ L(Ω0).

Theorem
De Simoi-K-Wei An axis-symmetric domain near the circle is
DSR.
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Can’t deform isospectrally a peicewise analytic
Bunimovich drum!

Theorem
J. Chen-K-H. Zhang A p.a. Bunimovich stadium is DSR. In addition, a
p.a. Bunimovich squash-like stadium is DSR.

Similar to Hezari-Zeldich.V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 12 / 23
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Dispercing (hyperbolic) billiard

Theorem
De Simoi-K-Leguil Marked Length Spectrum determins an analytic
three disk system with Z2 × Z2 symmetries.
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Marked Length spectrum, Spectral & Global Rigidity

Let (S,g) be a negatively curved compact surface.

Call the union of minimal geodesics in each homotopy class γ

L(S,g) = ∪(`γ, γ)

the marked length spectrum.

Guillemin-Kazhdan’80 any (S,g) is spectrally rigid.

Croke, Otal’90 the marked length spectrum determines (S,g)
upto isometry.

Croke-Sharafutdinov’98 any negatively curved manifold (M,g) is
spectrally rigid.
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Ideas of proof of Dynamical Spectral Rigidity

‘Skeleton’ of the dynamics. Birkhoff proved

Lemma
For any convex domain Ω and any q > 1 there is a periodic orbit of
period q, given by inscribed q-gons and denoted Sq = Sq(Ω). If Ω is
axis-symmetric, then Sq can be chosen axis-symmetric.
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Ideas of proof of Dynamical Spectral Rigidity

‘Skeleton’ of the dynamics: symmetric q-gons
Sq = (x (k)

q , ϕ
(k)
q ), q > 1.Sr (T) – space of Cr -symmetric functions.

Consider an isospectral deformation {Ωt}t ⊂ S r ,

∂Ωt = ∂Ω0 + t · n(s) + O(t2), n ∈ Sr (T).

Then `q(n) =
∑q

k=1 n(x (k)
q ) sinϕ

(k)
q = 0.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 18 / 23



Ideas of proof of Dynamical Spectral Rigidity

‘Skeleton’ of the dynamics: symmetric q-gons
Sq = (x (k)

q , ϕ
(k)
q ), q > 1.Sr (T) – space of Cr -symmetric functions.

Consider an isospectral deformation {Ωt}t ⊂ S r ,

∂Ωt = ∂Ω0 + t · n(s) + O(t2), n ∈ Sr (T).

Then `q(n) =
∑q

k=1 n(x (k)
q ) sinϕ

(k)
q = 0.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 18 / 23



Ideas of proof of Dynamical Spectral Rigidity

‘Skeleton’ of the dynamics: symmetric q-gons
Sq = (x (k)

q , ϕ
(k)
q ), q > 1.Sr (T) – space of Cr -symmetric functions.

Consider an isospectral deformation {Ωt}t ⊂ S r ,

∂Ωt = ∂Ω0 + t · n(s) + O(t2), n ∈ Sr (T).

Then `q(n) =
∑q

k=1 n(x (k)
q ) sinϕ

(k)
q = 0.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 18 / 23



Ideas of proof of Dynamical Spectral Rigidity

‘Skeleton’ of the dynamics: symmetric q-gons
Sq = (x (k)

q , ϕ
(k)
q ), q > 1.Sr (T) – space of Cr -symmetric functions.

Consider an isospectral deformation {Ωt}t ⊂ S r ,

∂Ωt = ∂Ω0 + t · n(s) + O(t2), n ∈ Sr (T).

Then `q(n) =
∑q

k=1 n(x (k)
q ) sinϕ

(k)
q = 0.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 18 / 23



Ideas of proof of Dynamical Spectral Rigidity

‘Skeleton’ of the dynamics: symmetric q-gons
Sq = (x (k)

q , ϕ
(k)
q ), q > 1. Sr (T) – space of Cr -symmetric functions.

Consider an isospectral deformation {Ωt}t ⊂ S r ,

∂Ωt = ∂Ω0 + t · n(s) + O(t2), n ∈ Sr (T).
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(k)
q = 0.

Define a linearized isospectral operator

LΩ : Cr (T)→ `∞, LΩ(n) = (`q(n), q = 0,1, . . . ).
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Ideas of proof of Dynamical Spectral Rigidity

‘Skeleton’ of the dynamics: symmetric q-gons
Sq = (x (k)

q , ϕ
(k)
q ), q > 1. Sr (T) – space of Cr -symmetric functions.

Consider an isospectral deformation {Ωt}t ⊂ S r ,

∂Ωt = ∂Ω0 + t · n(s) + O(t2), n ∈ Sr (T).

Then `q(n) =
∑q

k=1 n(x (k)
q ) sinϕ

(k)
q = 0.

Define a linearized isospectral operator

LΩ : Cr (T)→ `∞, LΩ(n) = (`q(n), q = 0,1, . . . ).

Lemma
If LΩ is injective, then Ω is DSR.
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The Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Ωt}t ⊂ S r , of the circle. In polar
coordinates (r , s) ∈ R+ × T

∂Ωt = {r = 1 + t · n(s) + O(t2)}, n ∈ Sr (T).

Then

`q(n) =

q∑
k=1

n(
k
q

) = 0.

Lemma
Let n(s) =

∑
k∈Z+

nk cos ks be the Fourier expansion. Then `q(n) = 0
implies nkq = 0 for k ≥ 1.

Lemma
The Linearized Isospectral Operator LΩ0 is injective and is an upper
triangular with units on the diagonal.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 21 / 23



The Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Ωt}t ⊂ S r , of the circle. In polar
coordinates (r , s) ∈ R+ × T

∂Ωt = {r = 1 + t · n(s) + O(t2)}, n ∈ Sr (T).

Then

`q(n) =

q∑
k=1

n(
k
q

) = 0.

Lemma
Let n(s) =

∑
k∈Z+

nk cos ks be the Fourier expansion. Then `q(n) = 0
implies nkq = 0 for k ≥ 1.

Lemma
The Linearized Isospectral Operator LΩ0 is injective and is an upper
triangular with units on the diagonal.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 21 / 23



The Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Ωt}t ⊂ S r , of the circle. In polar
coordinates (r , s) ∈ R+ × T

∂Ωt = {r = 1 + t · n(s) + O(t2)}, n ∈ Sr (T).

Then

`q(n) =

q∑
k=1

n(
k
q

) = 0.

Lemma
Let n(s) =

∑
k∈Z+

nk cos ks be the Fourier expansion. Then `q(n) = 0
implies nkq = 0 for k ≥ 1.

Lemma
The Linearized Isospectral Operator LΩ0 is injective and is an upper
triangular with units on the diagonal.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 21 / 23



The Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Ωt}t ⊂ S r , of the circle. In polar
coordinates (r , s) ∈ R+ × T

∂Ωt = {r = 1 + t · n(s) + O(t2)}, n ∈ Sr (T).

Then

`q(n) =

q∑
k=1

n(
k
q

) = 0.

Lemma
Let n(s) =

∑
k∈Z+

nk cos ks be the Fourier expansion. Then `q(n) = 0
implies nkq = 0 for k ≥ 1.

Lemma
The Linearized Isospectral Operator LΩ0 is injective and is an upper
triangular with units on the diagonal.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 21 / 23



The Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Ωt}t ⊂ S r , of the circle. In polar
coordinates (r , s) ∈ R+ × T

∂Ωt = {r = 1 + t · n(s) + O(t2)}, n ∈ Sr (T).

Then

`q(n) =

q∑
k=1

n(
k
q

) = 0.

Lemma
Let n(s) =

∑
k∈Z+

nk cos ks be the Fourier expansion. Then `q(n) = 0
implies nkq = 0 for k ≥ 1.

Lemma
The Linearized Isospectral Operator LΩ0 is injective and is an upper
triangular with units on the diagonal.

V. Kaloshin (the ETH-ITS & U of Maryland) Spectral Rigidity August 15, 2019 21 / 23



The X-ray transform

Let g0 be a negatively curved metric. Let g be close to g0. Denote
h = g0 − g and γc the closed geodesic in the homotopy class c.
Consider the first variation:

(dL(g0) · h)(c) =
1

2Lg0(c)

∫ Lg0 (c)

0
hγc(t)(γ̇c(t), γ̇c(t))dt .
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The X-ray transform and solenoidal injectivity

Let g0 be a negatively curved metric. Let g be close to g0. Denote
C∞(M,S2T ∗M) the space of symmetric 2-tensors, h = g0 − g be the
symmetric 2-tensor and γc the closed geodesic in the homotopy class
c. Call

(Ig0 · h)(c) =
1

2Lg0(c)

∫ Lg0 (c)

0
hγc(t)(γ̇c(t), γ̇c(t))dt .

the X-transform. The divergence operator is its formal adjoint given by
D∗f := −Tr(∇f ) with the trace Tr naturally defined.

Theorem
Paternain-Salo-Uhlmann Let (M,g0) be a smooth Riemannian
manifold and assume that the geodesic flow of g0 is Anosov. Then Ig0

is solenoidal injective, i.e.

ker Ig0 ∩ C∞(M,S2T ∗M) ∩ ker D∗ = 0.
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