Bernoulli and K properties in smooth dynamics

Adam Kanigowski

08.14.2019 2020 Vision for Dynamics

Adam Kanigowski Bernoulli and K properties in smooth dynamics

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$

 $\sigma((x_i)_{i\in\mathbb{Z}})=(x_{i+1})_{i\in\mathbb{Z}}.$

Bernoulli systems

 $T \in Aut(X, \mathcal{B}, \mu)$ is a Bernoulli system (or Bernoulli), if T is isomorphic to a Bernoulli shift.

K-systems

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$

 $\sigma((x_i)_{i\in\mathbb{Z}})=(x_{i+1})_{i\in\mathbb{Z}}.$

Bernoulli systems

 $T \in Aut(X, \mathcal{B}, \mu)$ is a Bernoulli system (or Bernoulli), if T is isomorphic to a Bernoulli shift.

K-systems

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$
 $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$

Bernoulli systems

 $T \in Aut(X, \mathcal{B}, \mu)$ is a Bernoulli system (or Bernoulli), if T is isomorphic to a Bernoulli shift.

K-systems

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$
 $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$

Bernoulli systems

 $T \in Aut(X, \mathcal{B}, \mu)$ is a Bernoulli system (or Bernoulli), if T is isomorphic to a Bernoulli shift.

K-systems

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$
 $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$

Bernoulli systems

 $T \in Aut(X, \mathcal{B}, \mu)$ is a Bernoulli system (or Bernoulli), if T is isomorphic to a Bernoulli shift.

K-systems

• T is Bernoulli \rightarrow T is K (Ornstein, 1970);

K does NOT imply Bernoulli (Ornstein, 1975);

• $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is *K* and **NOT** Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

- M compact, connected, smooth manifold;
- μ smooth density on M;
- $T \in Diff^{\infty}(M, \mu)$.

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is K and NOT Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

- *M* − compact, connected, smooth manifold;
- μ smooth density on M;
- $T \in Diff^{\infty}(M, \mu)$.

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is *K* and NOT Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

- M compact, connected, smooth manifold;
- μ smooth density on M;
- $T \in Diff^{\infty}(M, \mu)$.

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is *K* and NOT Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

- *M* − compact, connected, smooth manifold;
- μ smooth density on M;
- $T \in Diff^{\infty}(M, \mu)$.

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is *K* and NOT Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

- *M* − compact, connected, smooth manifold;
- µ smooth density on M;
- $T \in Diff^{\infty}(M, \mu)$.

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is K and NOT Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

- *M* − compact, connected, smooth manifold;
- μ smooth density on M;
- $T \in Diff^{\infty}(M, \mu)$.

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is *K* and NOT Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

- *M* − compact, connected, smooth manifold;
- μ smooth density on M;
- $T \in Diff^{\infty}(M, \mu)$.

Smooth systems

Directions

Existence of Bernoulli systems (topological obstructions);

Equivalence of *K* and Bernoulli in smooth setting;

Smooth systems

Directions

Existence of Bernoulli systems (topological obstructions);

Equivalence of K and Bernoulli in smooth setting;

Directions

Existence of Bernoulli systems (topological obstructions);

Equivalence of *K* and Bernoulli in smooth setting;

Directions

Existence of Bernoulli systems (topological obstructions);

Equivalence of *K* and Bernoulli in smooth setting;

dim M = 1

NOT possible – Denjoy theory.

Katok, 1979

There exists a smooth Bernoulli system T on every surface (dim M = 2). In fact, T has non-zero exponents and hence in Bernoulli by Pesin theory.

Brin, Feldman, Katok, 1981

dim M = 1

NOT possible – Denjoy theory.

Katok, 1979

There exists a smooth Bernoulli system T on every surface (dim M = 2). In fact, T has non-zero exponents and hence in Bernoulli by Pesin theory.

Brin, Feldman, Katok, 1981

dim M = 1

NOT possible – Denjoy theory.

Katok, 1979

There exists a smooth Bernoulli system T on every surface (dim M = 2). In fact, T has non-zero exponents and hence in Bernoulli by Pesin theory.

Brin, Feldman, Katok, 1981

dim M = 1

NOT possible – Denjoy theory.

Katok, 1979

There exists a smooth Bernoulli system T on every surface (dim M = 2). In fact, T has non-zero exponents and hence in Bernoulli by Pesin theory.

Brin, Feldman, Katok, 1981

dim M = 1

NOT possible – Denjoy theory.

Katok, 1979

There exists a smooth Bernoulli system T on every surface (dim M = 2). In fact, T has non-zero exponents and hence in Bernoulli by Pesin theory.

Brin, Feldman, Katok, 1981

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

 $T(x,y) = (Ax, K_{\varphi(x)}y).$

Smooth K non Bernoulli systems

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$T(x,y) = (Ax, K_{\varphi(x)}y).$$

Smooth K non Bernoulli systems

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$T(x,y) = (Ax, K_{\varphi(x)}y).$$

Smooth *K* non Bernoulli systems

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$T(x,y) = (Ax, K_{\varphi(x)}y).$$

Smooth K non Bernoulli systems

 smooth skew-products in dimension 8 - (Katok, 1980)
 A = (2 1 1 1), φ : T² → ℝ smooth non-coboundary,
 K_t = h_t × h_t, where (h_t) is the horocycle flow.

 smooth version of (σ, σ⁻¹) in dimension 5 - (Rudolph, 1988)
 A = (2 1 1 1), φ : T² → ℝ smooth non-coboundary with zero
 mean, K_t = g_t, (g_t) the geodesic flow;

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$T(x,y) = (Ax, K_{\varphi(x)}y).$$

Smooth K non Bernoulli systems

 smooth skew-products in dimension 8 - (Katok, 1980)
 A = (2 1)
 1, φ: T² → ℝ smooth non-coboundary,
 K_t = h_t × h_t, where (h_t) is the horocycle flow.
 smooth version of (σ, σ⁻¹) in dimension 5 - (Rudolph, 1988)
 A = (2 1)
 1, φ: T² → ℝ smooth non-coboundary with zero
 mean, K_t = g_t, (g_t) the geodesic flow;

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$T(x,y) = (Ax, K_{\varphi(x)}y).$$

Smooth K non Bernoulli systems

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$T(x,y) = (Ax, K_{\varphi(x)}y).$$

Smooth K non Bernoulli systems

 smooth skew-products in dimension 8 - (Katok, 1980)
 A = (2 1)
 1 1), φ : T² → ℝ smooth non-coboundary,
 K_t = h_t × h_t, where (h_t) is the horocycle flow.
 smooth version of (σ, σ⁻¹) in dimension 5 - (Rudolph, 1988)
 A = (2 1)
 1 1), φ : T² → ℝ smooth non-coboundary with zero
 mean, K_t = g_t, (g_t) the geodesic flow;

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$T(x,y) = (Ax, K_{\varphi(x)}y).$$

Smooth K non Bernoulli systems

 smooth skew-products in dimension 8 - (Katok, 1980)
 A = (2 1)
 1 1), φ : T² → ℝ smooth non-coboundary,
 K_t = h_t × h_t, where (h_t) is the horocycle flow.
 smooth version of (σ, σ⁻¹) in dimension 5 - (Rudolph, 1988)
 A = (2 1)
 1 1),φ : T² → ℝ smooth non-coboundary with zero
 mean, K_t = g_t, (g_t) the geodesic flow;

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$T(x,y) = (Ax, K_{\varphi(x)}y).$$

Smooth K non Bernoulli systems

 smooth skew-products in dimension 8 - (Katok, 1980)
 A = (2 1)
 1, φ: T² → ℝ smooth non-coboundary,
 K_t = h_t × h_t, where (h_t) is the horocycle flow.
 smooth version of (σ, σ⁻¹) in dimension 5 - (Rudolph, 1988)
 A = (2 1)
 1, φ: T² → ℝ smooth non-coboundary with zero
 mean, K_t = g_t, (g_t) the geodesic flow;

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$T(x,y) = (Ax, K_{\varphi(x)}y).$$

Smooth K non Bernoulli systems

 smooth skew-products in dimension 8 - (Katok, 1980)
 A = (2 1)
 1, φ: T² → ℝ smooth non-coboundary,
 K_t = h_t × h_t, where (h_t) is the horocycle flow.
 smooth version of (σ, σ⁻¹) in dimension 5 - (Rudolph, 1988)
 A = (2 1)
 1, φ: T² → ℝ smooth non-coboundary with zero
 mean, K_t = g_t, (g_t) the geodesic flow;

smooth examples on $\mathbb{T}^4 - (K_t, \text{ Rodriguez-Hertz}, \text{ Vinhage}, 2016) A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \varphi : \mathbb{T}^2 \to \mathbb{R}$ smooth non-coboundary and $\varphi > 0, (K_t) - \text{Kochergin flow on } \mathbb{T}^2.$

Question

smooth examples on \mathbb{T}^4 – (K., Rodriguez-Hertz, Vinhage, 2016) $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \varphi : \mathbb{T}^2 \to \mathbb{R}$ smooth non-coboundary and $\varphi > 0, (K_t)$ – Kochergin flow on \mathbb{T}^2 .

Question

smooth examples on \mathbb{T}^4 – (K., Rodriguez-Hertz, Vinhage, 2016) $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \varphi : \mathbb{T}^2 \to \mathbb{R}$ smooth non-coboundary and $\varphi > 0$, (K_t) – Kochergin flow on \mathbb{T}^2 .

Question

smooth examples on $\mathbb{T}^4 - (K_t, \text{Rodriguez-Hertz}, \text{Vinhage}, 2016) A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \varphi : \mathbb{T}^2 \to \mathbb{R}$ smooth non-coboundary and $\varphi > 0, (K_t) - \text{Kochergin flow on } \mathbb{T}^2.$

Question

K non Bernoulli systems

smooth examples on $\mathbb{T}^4 - (K_t, \text{Rodriguez-Hertz}, \text{Vinhage}, 2016) A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \varphi : \mathbb{T}^2 \to \mathbb{R}$ smooth non-coboundary and $\varphi > 0, (K_t) - \text{Kochergin flow on } \mathbb{T}^2.$

Question

Does K imply Bernoulli in dimension 3?

Bernoulli property for natural systems

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- **geodesic flows** on $SL(2, \mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- hyperbolic billiards (Chernov, Huskell, 1996).

Bernoulli property for natural systems

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- **geodesic flows** on $SL(2, \mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- hyperbolic billiards (Chernov, Huskell, 1996).

Bernoulli property for natural systems

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- **geodesic flows** on $SL(2, \mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- hyperbolic billiards (Chernov, Huskell, 1996).

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- geodesic flows on $SL(2,\mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- hyperbolic billiards (Chernov, Huskell, 1996).

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- **geodesic flows** on $SL(2, \mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- hyperbolic billiards (Chernov, Huskell, 1996).

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- **geodesic flows** on $SL(2, \mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);

Anosov flows (Ratner, 1980);

hyperbolic billiards (Chernov, Huskell, 1996).

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- **geodesic flows** on $SL(2, \mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- hyperbolic billiards (Chernov, Huskell, 1996).

G - semisimple Lie group; Γ - irreducible lattice in $G, g \in G$, $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

K-property, Conze, 1972; Dani 1974.

If L_g has positive entropy then L_g is K.

Bernoulli property, Dani 1977

If L_g has positive entropy and Ad_g is diagonalizable over \mathbb{C} on the center space then L_g is Bernoulli.

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}$$
 is **NOT** diagonalized

G – semisimple Lie group; Γ – irreducible lattice in $G, g \in G$, $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

K-property, Conze, 1972; Dani 1974.

If L_g has positive entropy then L_g is K.

Bernoulli property, Dani 1977

If L_g has positive entropy and Ad_g is diagonalizable over \mathbb{C} on the center space then L_g is Bernoulli.

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}$$
 is NOT diagonal

G – semisimple Lie group; Γ – irreducible lattice in G, $g \in G$, $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

K-property, Conze, 1972; Dani 1974.

If L_g has positive entropy then L_g is K.

Bernoulli property, Dani 1977

If L_g has positive entropy and Ad_g is diagonalizable over \mathbb{C} on the center space then L_g is Bernoulli.

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}$$
 is NOT dia

G - semisimple Lie group; Γ - irreducible lattice in G, $g \in G$, $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

K-property, Conze, 1972; Dani 1974.

If L_g has positive entropy then L_g is K.

Bernoulli property, Dani 1977

If L_g has positive entropy and Ad_g is diagonalizable over \mathbb{C} on the center space then L_g is Bernoulli.

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}$$
 is **NOT** diagonalizable

G - semisimple Lie group; Γ - irreducible lattice in G, $g \in G$, $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

K-property, Conze, 1972; Dani 1974.

If L_g has positive entropy then L_g is K.

Bernoulli property, Dani 1977

If L_g has positive entropy and Ad_g is diagonalizable over \mathbb{C} on the center space then L_g is Bernoulli.

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}$$
 is NOT di

G - semisimple Lie group; Γ - irreducible lattice in G, $g \in G$, $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

K-property, Conze, 1972; Dani 1974.

If L_g has positive entropy then L_g is K.

Bernoulli property, Dani 1977

If L_g has positive entropy and Ad_g is diagonalizable over \mathbb{C} on the center space then L_g is Bernoulli.

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}$$
 is NOT diagonalizable over \mathbb{C} .

G - semisimple Lie group; Γ - irreducible lattice in G, $g \in G$, $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

K-property, Conze, 1972; Dani 1974.

If L_g has positive entropy then L_g is K.

Bernoulli property, Dani 1977

If L_g has positive entropy and Ad_g is diagonalizable over \mathbb{C} on the center space then L_g is Bernoulli.

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}$$

is NOT diagonalizable over
$$\mathbb{C}$$
.

Bernoulli property

Isometric center

Dani's proof of Bernoulli property uses the fact that the action of L_g on the center space is isometric. This is crucial to apply the Ornstein-Weiss machinery.

Conjecture, Dani 1978, R. Bowen 1979

If L_g has positive entropy then L_g is Bernoulli.

Theorem, K

Isometric center

Dani's proof of Bernoulli property uses the fact that the action of L_g on the center space is isometric. This is crucial to apply the Ornstein-Weiss machinery.

Conjecture, Dani 1978, R. Bowen 1979

If L_g has positive entropy then L_g is Bernoulli.

Theorem, K

Isometric center

Dani's proof of Bernoulli property uses the fact that the action of L_g on the center space is isometric. This is crucial to apply the Ornstein-Weiss machinery.

Conjecture, Dani 1978, R. Bowen 1979

If L_g has positive entropy then L_g is Bernoulli.

Theorem, K

Isometric center

Dani's proof of Bernoulli property uses the fact that the action of L_g on the center space is isometric. This is crucial to apply the Ornstein-Weiss machinery.

Conjecture, Dani 1978, R. Bowen 1979

If L_g has positive entropy then L_g is Bernoulli.

Theorem, K.

 L_g is an example of a system with the following properties:

Properties of *L_g*:

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ,ψ sufficiently smooth

$$\left|\int_{G/\Gamma}\phi\cdot(\psi\circ L_g^n)d\mu_{Haar}\right|\leq \|\phi\|_k\|\psi\|_ke^{-\eta n}$$

Dolgopyat, K., Rodriguez-Hertz, work in progress

 L_g is an example of a system with the following properties:

Properties of L_g :

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ,ψ sufficiently smooth

$$\left| \int_{G/\Gamma} \phi \cdot (\psi \circ L_g^n) d\mu_{Haar} \right| \le \|\phi\|_k \|\psi\|_k e^{-\eta n}$$

Dolgopyat, K., Rodriguez-Hertz, work in progress

 L_g is an example of a system with the following properties:

Properties of L_g :

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ, ψ sufficiently smooth

$$\left| \int_{G/\Gamma} \phi \cdot (\psi \circ L_g^n) d\mu_{Haar} \right| \le \|\phi\|_k \|\psi\|_k e^{-\eta n}$$

Dolgopyat, K., Rodriguez-Hertz, work in progress

 L_g is an example of a system with the following properties:

Properties of L_g :

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ,ψ sufficiently smooth

$$\left| \int_{G/\Gamma} \phi \cdot (\psi \circ L_g^n) d\mu_{Haar} \right| \le \|\phi\|_k \|\psi\|_k e^{-\eta n}$$

Dolgopyat, K., Rodriguez-Hertz, work in progress

 L_g is an example of a system with the following properties:

Properties of L_g :

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ,ψ sufficiently smooth

$$\left|\int_{G/\Gamma} \phi \cdot (\psi \circ L_g^n) d\mu_{Haar}\right| \le \|\phi\|_k \|\psi\|_k e^{-\eta n}$$

Dolgopyat, K., Rodriguez-Hertz, work in progress

 L_g is an example of a system with the following properties:

Properties of L_g :

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ,ψ sufficiently smooth

$$\left|\int_{G/\Gamma} \phi \cdot (\psi \circ L_g^n) d\mu_{Haar}\right| \le \|\phi\|_k \|\psi\|_k e^{-\eta n}$$

Dolgopyat, K., Rodriguez-Hertz, work in progress

Let $W^u(x, \delta)$ and $W^u(y, \delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{x,y,\delta,N} : (W^u(x, \delta), m_x^u) \to (W^u(y, \delta), m_y^u)$ such that

 $T^n z$ and $T^n \theta z$ are close for most $0 \le n \le N$.

then T is Bernoulli.

- if T is hyperbolic, then θ is the stable holonomy.
- it T is isometric on the center space, then θ is the center-stable holonomy.
- if T in NOT isometric on the center space, then there is no obvious choice for θ .

Let $W^u(x, \delta)$ and $W^u(y, \delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{x,y,\delta,N} : (W^u(x, \delta), m_x^u) \to (W^u(y, \delta), m_y^u)$ such that

 $T^n z$ and $T^n \theta z$ are close for most $0 \le n \le N$.

then T is Bernoulli.

- if T is hyperbolic, then θ is the stable holonomy.
- it *T* is isometric on the center space, then *θ* is the center-stable holonomy.
- if T in NOT isometric on the center space, then there is no obvious choice for θ .

Let $W^u(x, \delta)$ and $W^u(y, \delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{x,y,\delta,N} : (W^u(x, \delta), m_x^u) \to (W^u(y, \delta), m_y^u)$ such that

 $T^n z$ and $T^n \theta z$ are close for most $0 \le n \le N$.

then T is Bernoulli.

- if T is hyperbolic, then θ is the stable holonomy.
- it T is isometric on the center space, then θ is the center-stable holonomy.
- if T in NOT isometric on the center space, then there is no obvious choice for θ .

Let $W^u(x, \delta)$ and $W^u(y, \delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{x,y,\delta,N} : (W^u(x, \delta), m_x^u) \to (W^u(y, \delta), m_y^u)$ such that

 $T^n z$ and $T^n \theta z$ are close for most $0 \le n \le N$.

then T is Bernoulli.

- if T is hyperbolic, then θ is the stable holonomy.
- it T is isometric on the center space, then θ is the center-stable holonomy.
- if T in NOT isometric on the center space, then there is no obvious choice for θ .

PROBLEM: how do we know this is measure preserving?

Adam Kanigowski Bernoulli and K properties in smooth dynamics

 $W^{u}(\xi,z)$

PROBLEM: how do we know this is measure preserving?

Exponential Mixing implies exponential equidistribution of the unstable foliation !!

Adam Kanigowski Bernoulli and K properties in smooth dynamics

Exponential Mixing implies exponential equidistribution of the unstable foliation !!

Adam Kanigowski Bernoulli and K properties in smooth dynamics

- Exponential mixing implies positive entropy;
- If an algebraic action is exponentially mixing then it is Bernoulli;
- K and NOT Bernoulli systems don't have exponentially mixing (nice) smooth realizations;
- Skew product non-Bernoulli transformations, i.e.

$$T(x,y) = (\sigma x, S_{\varphi(x)}y)$$

- Exponential mixing implies positive entropy;
- If an algebraic action is exponentially mixing then it is Bernoulli;
- K and NOT Bernoulli systems don't have exponentially mixing (nice) smooth realizations;
- Skew product non-Bernoulli transformations, i.e.

$$T(x,y) = (\sigma x, S_{\varphi(x)}y)$$

Consequences

- Exponential mixing implies positive entropy;
- If an algebraic action is exponentially mixing then it is Bernoulli;
- K and NOT Bernoulli systems don't have exponentially mixing (nice) smooth realizations;
- Skew product non-Bernoulli transformations, i.e.

$$T(x,y) = (\sigma x, S_{\varphi(x)}y)$$

- Exponential mixing implies positive entropy;
- If an algebraic action is exponentially mixing then it is Bernoulli;
- K and NOT Bernoulli systems don't have exponentially mixing (nice) smooth realizations;
- Skew product non-Bernoulli transformations, i.e.

$$T(x,y) = (\sigma x, S_{\varphi(x)}y)$$

- Exponential mixing implies positive entropy;
- If an algebraic action is exponentially mixing then it is Bernoulli;
- K and NOT Bernoulli systems don't have exponentially mixing (nice) smooth realizations;
- Skew product non-Bernoulli transformations, i.e.

$$T(x,y) = (\sigma x, S_{\varphi(x)}y)$$

Does K imply Bernoulli in dimension 3?

Question 2

Let (h_t) be a horocycle flow and let $\mathcal{T}: \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma \rightarrow \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma$,

$$T(x, y) = (\sigma(x), h_{(-1)^{x_0}}(y)).$$

Then T is a K system (Katok, 1980). Is T Bernoulli?

Question 3

Does K imply Bernoulli in dimension 3?

Question 2

Let (h_t) be a horocycle flow and let $T : \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma \to \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma$,

$$T(x, y) = (\sigma(x), h_{(-1)^{x_0}}(y)).$$

Then T is a K system (Katok, 1980). Is T Bernoulli?

Question 3

Does K imply Bernoulli in dimension 3?

Question 2

Let (h_t) be a horocycle flow and let $\mathcal{T}: \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma \rightarrow \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma$,

$$T(x, y) = (\sigma(x), h_{(-1)^{x_0}}(y)).$$

Then T is a K system (Katok, 1980). Is T Bernoulli?

Question 3

Does *K* imply Bernoulli in dimension 3?

Question 2

Let (h_t) be a horocycle flow and let $\mathcal{T}: \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma \rightarrow \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma$,

$$T(x, y) = (\sigma(x), h_{(-1)^{x_0}}(y)).$$

Then T is a K system (Katok, 1980). Is T Bernoulli?

Question 3

THANK YOU!