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Bernoulli shifts

Σ = {1, . . . , d}Z;

p = (p1, . . . , pd),
∑d

i=1 pi = 1 – probability vector;

σ : (Σ,pZ)→ (Σ,pZ) – Bernoulli shift,

σ((xi )i∈Z) = (xi+1)i∈Z.

Bernoulli systems

T ∈ Aut(X ,B, µ) is a Bernoulli system (or Bernoulli), if T is
isomorphic to a Bernoulli shift.

K -systems

T ∈ Aut(X ,B, µ) is a K -system if every (non-trivial) factor of T
has positive entropy.
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Bernoulli and K properties

T is Bernoulli → T is K (Ornstein, 1970);

K does NOT imply Bernoulli (Ornstein, 1975);

(σ, σ−1)(x , y) = (σ(x), σ(−1)x0 (y)) is K and NOT Bernoulli
(Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

Smooth setting

M – compact, connected, smooth manifold;

µ – smooth density on M;

T ∈ Diff∞(M, µ).
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Smooth systems

Directions

Existence of Bernoulli systems (topological obstructions);

Equivalence of K and Bernoulli in smooth setting;

Bernoulli and K properties for natural smooth systems.
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Existence of smooth Bernoulli systems

dim M = 1

NOT possible – Denjoy theory.

Katok, 1979

There exists a smooth Bernoulli system T on every surface
(dim M = 2). In fact, T has non-zero exponents and hence in
Bernoulli by Pesin theory.

Brin, Feldman, Katok, 1981

On every manifold of dimension greater than 1 there exists a
smooth Bernoulli system.
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Smooth K non Bernoulli systems

Skew products

A ∈ Diff∞(M) hyperbolic, (Kt) smooth flow on N, ϕ : M → R
smooth

T (x , y) = (Ax ,Kϕ(x)y).

Smooth K non Bernoulli systems

smooth skew-products in dimension 8 – (Katok, 1980)

A =

(
2 1
1 1

)
, ϕ : T2 → R smooth non-coboundary,

Kt = ht × ht , where (ht) is the horocycle flow.

smooth version of (σ, σ−1) in dimension 5 – (Rudolph, 1988)

A =

(
2 1
1 1

)
,ϕ : T2 → R smooth non-coboundary with zero

mean, Kt = gt , (gt) the geodesic flow;
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K non Bernoulli systems

smooth examples on T4 – (K., Rodriguez-Hertz, Vinhage,

2016) A =

(
2 1
1 1

)
,ϕ : T2 → R smooth non-coboundary and

ϕ > 0, (Kt) – Kochergin flow on T2.

Question

Does K imply Bernoulli in dimension 3?
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Bernoulli property for natural systems

Natural Bernoulli systems

Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);

ergodic automorphisms of Tn (Katznelson, 1977);

ergodic automorphisms on nilmanifolds (Rudolph, 1980;
Gorodnik-Spatzier, 2015);

geodesic flows on SL(2,R)/Γ (Ornstein-Weiss, 1977);

Anosov flows (Ratner, 1980);

hyperbolic billiards (Chernov, Huskell, 1996).
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Translations on semisimple Lie groups

G – semisimple Lie group; Γ – irreducible lattice in G , g ∈ G ,
Lg (xΓ) = (gx)Γ on (G/Γ, µHaar ).

K -property, Conze, 1972; Dani 1974.

If Lg has positive entropy then Lg is K .

Bernoulli property, Dani 1977

If Lg has positive entropy and Adg is diagonalizable over C on the
center space then Lg is Bernoulli.

Example
1 1 0 0
0 1 0 0
0 0 λ 0
0 0 0 λ−1

 is NOT diagonalizable over C.
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Bernoulli property, Dani 1977

If Lg has positive entropy and Adg is diagonalizable over C on the
center space then Lg is Bernoulli.

Example
1 1 0 0
0 1 0 0
0 0 λ 0
0 0 0 λ−1

 is NOT diagonalizable over C.
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Bernoulli property

Isometric center

Dani’s proof of Bernoulli property uses the fact that the action of
Lg on the center space is isometric. This is crucial to apply the
Ornstein-Weiss machinery.

Conjecture, Dani 1978, R. Bowen 1979

If Lg has positive entropy then Lg is Bernoulli.

Theorem, K.

Conjecture is true.
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More general setting

Lg is an example of a system with the following properties:

Properties of Lg :

a. partial hyperbolicity and dynamical coherence;

b. zero exponents in the center space;

c. exponential mixing, i.e. for φ, ψ sufficiently smooth∣∣∣ ∫
G/Γ

φ · (ψ ◦ Ln
g )dµHaar

∣∣∣ ≤ ‖φ‖k‖ψ‖ke−ηn.

Dolgopyat, K., Rodriguez-Hertz, work in progress

If f ∈ Diff∞(M, µ) satisfies a.,b.,c., then f IS Bernoulli.
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Main Idea

Ornstein-Weiss reduction

Let W u(x , δ) and W u(y , δ) be nearby unstable leaves of size δ. If
for every N there exists an almost measure preserving map
θx ,y ,δ,N : (W u(x , δ),mu

x )→ (W u(y , δ),mu
y ) such that

T nz and T nθz are close for most 0 ≤ n ≤ N.

then T is Bernoulli.

Examples

if T is hyperbolic, then θ is the stable holonomy.

it T is isometric on the center space, then θ is the
center-stable holonomy.

if T in NOT isometric on the center space, then there is no
obvious choice for θ.
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Main Idea

PROBLEM: how do we know this is measure preserving?
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Main Idea

Exponential Mixing implies exponential equidistribution of the
unstable foliation !!

Adam Kanigowski Bernoulli and K properties in smooth dynamics



Main Idea
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unstable foliation !!
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Consequences

Consequences

Exponential mixing implies positive entropy;

If an algebraic action is exponentially mixing then it is
Bernoulli;

K and NOT Bernoulli systems don’t have exponentially
mixing (nice) smooth realizations;

Skew product non-Bernoulli transformations, i.e.

T (x , y) = (σx , Sϕ(x)y)

are slowly mixing.
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Questions

Question 1

Does K imply Bernoulli in dimension 3?

Question 2

Let (ht) be a horocycle flow and let
T : {0, 1}Z × SL(2,R)/Γ→ {0, 1}Z × SL(2,R)/Γ,

T (x , y) = (σ(x), h(−1)x0 (y)).

Then T is a K system (Katok, 1980). Is T Bernoulli?

Question 3

Is there a relation between growth on the center and mixing
properties that would imply Bernoulli?
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THANK YOU!
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