Bernoulli and K properties in smooth dynamics

Adam Kanigowski

08.14.2019 2020 Vision for Dynamics

Adam Kanigowski Bernoulli and K [properties in smooth dynamics](#page-78-0)

\n- $$
\Sigma = \{1, \ldots, d\}^{\mathbb{Z}};
$$
\n- $\mathbf{p} = (p_1, \ldots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
\n- $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$
\n

$$
\sigma((x_i)_{i\in\mathbb{Z}})=(x_{i+1})_{i\in\mathbb{Z}}.
$$

 $T \in Aut(X, \mathcal{B}, \mu)$ is a Bernoulli system (or Bernoulli), if T is isomorphic to a Bernoulli shift.

\n- $$
\Sigma = \{1, \ldots, d\}^{\mathbb{Z}};
$$
\n- $\mathbf{p} = (p_1, \ldots, p_d), \sum_{i=1}^d p_i = 1$ - probability vector;
\n- $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}})$ - Bernoulli shift,
\n

 $\sigma((x_i)_{i\in\mathbb{Z}})=(x_{i+1})_{i\in\mathbb{Z}}.$

 $T \in Aut(X, \mathcal{B}, \mu)$ is a Bernoulli system (or Bernoulli), if T is isomorphic to a Bernoulli shift.

\n- \n
$$
\Sigma = \{1, \ldots, d\}^{\mathbb{Z}};
$$
\n
\n- \n $\mathbf{p} = (p_1, \ldots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$ \n
\n- \n $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$ \n
\n- \n $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$ \n
\n

 $T \in Aut(X, \mathcal{B}, \mu)$ is a Bernoulli system (or Bernoulli), if T is isomorphic to a Bernoulli shift.

\n- \n
$$
\Sigma = \{1, \ldots, d\}^{\mathbb{Z}};
$$
\n
\n- \n $\mathbf{p} = (p_1, \ldots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$ \n
\n- \n $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$ \n
\n- \n $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$ \n
\n

Bernoulli systems

 $T \in Aut(X, \mathcal{B}, \mu)$ is a Bernoulli system (or Bernoulli), if T is isomorphic to a Bernoulli shift.

\n- \n
$$
\Sigma = \{1, \ldots, d\}^{\mathbb{Z}};
$$
\n
\n- \n $\mathbf{p} = (p_1, \ldots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$ \n
\n- \n $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$ \n
\n- \n $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$ \n
\n

Bernoulli systems

 $T \in Aut(X, \mathcal{B}, \mu)$ is a Bernoulli system (or Bernoulli), if T is isomorphic to a Bernoulli shift.

K-systems

■ T is Bernoulli \rightarrow T is K (Ornstein, 1970);

K does NOT imply Bernoulli (Ornstein, 1975);

 $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is K and NOT Bernoulli (Kalikow, 1980).

Bernoulli and K properties in smooth dynamics.

 M – compact, connected, smooth manifold;

 \blacksquare μ – smooth density on M;

 \blacksquare $\top \in \text{Diff}^{\infty}(M,\mu).$

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);

 $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is K and NOT Bernoulli (Kalikow, 1980).

Bernoulli and K properties in smooth dynamics.

- M compact, connected, smooth manifold;
- \blacksquare μ smooth density on M;
- \blacksquare $\top \in \text{Diff}^{\infty}(M,\mu).$

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is K and NOT Bernoulli (Kalikow, 1980).

Bernoulli and K properties in smooth dynamics.

- M compact, connected, smooth manifold;
- \blacksquare μ smooth density on M;
- \blacksquare $\top \in \text{Diff}^{\infty}(M,\mu).$

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is K and NOT Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

- M compact, connected, smooth manifold;
- \blacksquare μ smooth density on M;
- \blacksquare $\top \in \text{Diff}^{\infty}(M,\mu).$

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is K and NOT Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

Smooth setting

- M compact, connected, smooth manifold;
- \blacksquare μ smooth density on M;
- \blacksquare $\top \in \text{Diff}^{\infty}(M,\mu).$

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is K and NOT Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

Smooth setting

- M compact, connected, smooth manifold;
- μ smooth density on M;
- \blacksquare $\top \in \text{Diff}^{\infty}(M, \mu)$.

- T is Bernoulli \rightarrow T is K (Ornstein, 1970);
- K does NOT imply Bernoulli (Ornstein, 1975);
- $(\sigma, \sigma^{-1})(x, y) = (\sigma(x), \sigma^{(-1)^{x_0}}(y))$ is K and NOT Bernoulli (Kalikow, 1980).

General problem

Bernoulli and K properties in smooth dynamics.

Smooth setting

- M compact, connected, smooth manifold;
- μ smooth density on M;
- **n** $\tau \in Diff^{\infty}(M, \mu)$.

Smooth systems

Existence of Bernoulli systems (topological obstructions);

Equivalence of K and Bernoulli in smooth setting;

Smooth systems

Directions

Existence of Bernoulli systems (topological obstructions);

Equivalence of K and Bernoulli in smooth setting;

Directions

Existence of Bernoulli systems (topological obstructions);

Equivalence of K and Bernoulli in smooth setting;

Directions

Existence of Bernoulli systems (topological obstructions);

Equivalence of K and Bernoulli in smooth setting;

NOT possible – Denjoy theory.

There exists a smooth Bernoulli system T on every surface (dim $M = 2$). In fact, T has non-zero exponents and hence in Bernoulli by Pesin theory.

$dim M = 1$

NOT possible – Denjoy theory.

There exists a smooth Bernoulli system T on every surface (dim $M = 2$). In fact, T has non-zero exponents and hence in Bernoulli by Pesin theory.

$dim M = 1$

NOT possible – Denjoy theory.

Katok, 1979

There exists a smooth Bernoulli system T on every surface (dim $M = 2$). In fact, T has non-zero exponents and hence in Bernoulli by Pesin theory.

$dim M = 1$

NOT possible – Denjoy theory.

Katok, 1979

There exists a smooth Bernoulli system T on every surface (dim $M = 2$). In fact, T has non-zero exponents and hence in Bernoulli by Pesin theory.

$dim M = 1$

NOT possible – Denjoy theory.

Katok, 1979

There exists a smooth Bernoulli system T on every surface (dim $M = 2$). In fact, T has non-zero exponents and hence in Bernoulli by Pesin theory.

Brin, Feldman, Katok, 1981

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$
T(x,y)=(Ax,K_{\varphi(x)}y).
$$

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$
T(x,y)=(Ax,K_{\varphi(x)}y).
$$

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$
T(x,y)=(Ax,K_{\varphi(x)}y).
$$

Smooth K non Bernoulli systems

smooth skew-products in dimension $8 - ($ Katok, 1980)

 $\mathcal{A}=\begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}$, $\varphi:\mathbb{T}^2\to\mathbb{R}$ smooth non-coboundary,

 $K_t = h_t \times h_t$, where (h_t) is the horocycle flow.

smooth version of (σ, σ^{-1}) in dimension 5 – (Rudolph, 1988) $\mathcal{A}=\begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}$, $\varphi:\mathbb{T}^2\to\mathbb{R}$ smooth non-coboundary with zero mean, $K_t = g_t$, (g_t) the geodesic flow;

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$
T(x,y)=(Ax,K_{\varphi(x)}y).
$$

Smooth K non Bernoulli systems

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$
T(x,y)=(Ax,K_{\varphi(x)}y).
$$

Smooth K non Bernoulli systems

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$
T(x,y)=(Ax,K_{\varphi(x)}y).
$$

Smooth K non Bernoulli systems

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$
T(x,y)=(Ax,K_{\varphi(x)}y).
$$

Smooth K non Bernoulli systems

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$
T(x,y)=(Ax,K_{\varphi(x)}y).
$$

Smooth K non Bernoulli systems

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$
T(x,y)=(Ax,K_{\varphi(x)}y).
$$

Smooth K non Bernoulli systems

Skew products

 $A \in Diff^{\infty}(M)$ hyperbolic, (K_t) smooth flow on $N, \varphi : M \to \mathbb{R}$ smooth

$$
T(x,y)=(Ax,K_{\varphi(x)}y).
$$

Smooth K non Bernoulli systems

smooth examples on \mathbb{T}^4 – (K., Rodriguez-Hertz, Vinhage, 2016) $A=\begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}$, $\varphi:\mathbb{T}^2\to\mathbb{R}$ smooth non-coboundary and $\varphi > 0$, (K_t) – Kochergin flow on \mathbb{T}^2 .

smooth examples on \mathbb{T}^4 – $(\mathsf{K.},\, \mathsf{Rodriguez\text{-}Hertz},\, \mathsf{Vinhage},\,$ $\mathcal{O}(2016)$ $A=\begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}, \varphi:\mathbb{T}^2\to\mathbb{R}$ smooth non-coboundary and $\varphi > 0$, (K_t) – Kochergin flow on \mathbb{T}^2 .

smooth examples on \mathbb{T}^4 – $(\mathsf{K.},\, \mathsf{Rodriguez\text{-}Hertz},\, \mathsf{Vinhage},\,$ 2016) $A = \begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}$, $\varphi: \mathbb{T}^2 \to \mathbb{R}$ smooth non-coboundary and $\varphi > 0$, (K_t) – Kochergin flow on \mathbb{T}^2 .

smooth examples on \mathbb{T}^4 – $(\mathsf{K.},\, \mathsf{Rodriguez\text{-}Hertz},\, \mathsf{Vinhage},\,$ 2016) $A = \begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}$, $\varphi: \mathbb{T}^2 \to \mathbb{R}$ smooth non-coboundary and $\varphi > 0$, (K_t) – Kochergin flow on \mathbb{T}^2 .
K non Bernoulli systems

smooth examples on \mathbb{T}^4 – $(\mathsf{K.},\, \mathsf{Rodriguez\text{-}Hertz},\, \mathsf{Vinhage},\,$ 2016) $A = \begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}$, $\varphi: \mathbb{T}^2 \to \mathbb{R}$ smooth non-coboundary and $\varphi > 0$, (K_t) – Kochergin flow on \mathbb{T}^2 .

Question

Does K imply Bernoulli in dimension 3?

Bernoulli property for natural systems

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- geodesic flows on $SL(2,\mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- **hyperbolic billiards (Chernov, Huskell, 1996).**

Bernoulli property for natural systems

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- geodesic flows on $SL(2,\mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- **hyperbolic billiards (Chernov, Huskell, 1996).**

Bernoulli property for natural systems

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- **Example 2** ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- geodesic flows on $SL(2,\mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- **hyperbolic billiards (Chernov, Huskell, 1996).**

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- geodesic flows on $SL(2,\mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- **hyperbolic billiards (Chernov, Huskell, 1996).**

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- geodesic flows on $SL(2,\mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- **hyperbolic billiards (Chernov, Huskell, 1996).**

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- geodesic flows on $SL(2,\mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);

Anosov flows (Ratner, 1980);

hyperbolic billiards (Chernov, Huskell, 1996).

- Anosov diffeomorphisms (Sinai, 1968, R. Bowen 1970);
- ergodic automorphisms of \mathbb{T}^n (Katznelson, 1977);
- ergodic automorphisms on nilmanifolds (Rudolph, 1980; Gorodnik-Spatzier, 2015);
- geodesic flows on $SL(2,\mathbb{R})/\Gamma$ (Ornstein-Weiss, 1977);
- Anosov flows (Ratner, 1980);
- **hyperbolic billiards (Chernov, Huskell, 1996).**

G – semisimple Lie group; Γ – irreducible lattice in G, $g \in G$. $L_{g}(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

If L_{g} has positive entropy then L_{g} is K.

$$
\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}
$$
 is NOT diagonalizable over C.

G – semisimple Lie group; Γ – irreducible lattice in G, $\alpha \in G$. $L_{g}(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

If L_{g} has positive entropy then L_{g} is K.

$$
\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}
$$
 is NOT diagonalizable over C.

G – semisimple Lie group; Γ – irreducible lattice in G, $g \in G$. $L_{g}(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

If L_{g} has positive entropy then L_{g} is K.

$$
\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}
$$
 is NOT diagonalizable over C.

G – semisimple Lie group; Γ – irreducible lattice in G, $g \in G$, $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

If L_{g} has positive entropy then L_{g} is K.

$$
\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}
$$
 is NOT diagonalizable over C.

G – semisimple Lie group; Γ – irreducible lattice in G, $g \in G$. $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

K-property, Conze, 1972; Dani 1974.

If L_g has positive entropy then L_g is K.

If L_g has positive entropy and Ad_g is diagonalizable over $\mathbb C$ on the center space then L_{σ} is Bernoulli.

$$
\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}
$$
 is NOT diagonalizable over C.

G – semisimple Lie group; Γ – irreducible lattice in G, $g \in G$. $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

K-property, Conze, 1972; Dani 1974.

If L_g has positive entropy then L_g is K.

Bernoulli property, Dani 1977

G – semisimple Lie group; Γ – irreducible lattice in G, $g \in G$. $L_g(x\Gamma) = (gx)\Gamma$ on $(G/\Gamma, \mu_{Haar})$.

K-property, Conze, 1972; Dani 1974.

If L_g has positive entropy then L_g is K.

Bernoulli property, Dani 1977

If L_g has positive entropy and Ad_g is diagonalizable over $\mathbb C$ on the center space then L_g is Bernoulli.

Example

$$
\begin{pmatrix}\n1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda^{-1}\n\end{pmatrix}
$$

is NOT diagonalizable over
$$
\mathbb{C}
$$
.

Dani's proof of Bernoulli property uses the fact that the action of L_g on the center space is isometric. This is crucial to apply the

If L_{σ} has positive entropy then L_{σ} is Bernoulli.

Dani's proof of Bernoulli property uses the fact that the action of L_{σ} on the center space is isometric. This is crucial to apply the Ornstein-Weiss machinery.

If L_{σ} has positive entropy then L_{σ} is Bernoulli.

Dani's proof of Bernoulli property uses the fact that the action of L_{σ} on the center space is isometric. This is crucial to apply the Ornstein-Weiss machinery.

Conjecture, Dani 1978, R. Bowen 1979

If L_g has positive entropy then L_g is Bernoulli.

Dani's proof of Bernoulli property uses the fact that the action of L_{σ} on the center space is isometric. This is crucial to apply the Ornstein-Weiss machinery.

Conjecture, Dani 1978, R. Bowen 1979

If L_{g} has positive entropy then L_{g} is Bernoulli.

Theorem, K.

 L_{σ} is an example of a system with the following properties:

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ, ψ sufficiently smooth

$$
\Big|\int_{G/\Gamma}\phi\cdot(\psi\circ L_{g}^{n})d\mu_{Haar}\Big|\leq\|\phi\|_{k}\|\psi\|_{k}e^{-\eta n}.
$$

 L_{g} is an example of a system with the following properties:

Properties of L_g :

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ , ψ sufficiently smooth

$$
\Big|\int_{G/\Gamma}\phi\cdot(\psi\circ L_{g}^{n})d\mu_{Haar}\Big|\leq \|\phi\|_{k}\|\psi\|_{k}e^{-\eta n}
$$

 L_{g} is an example of a system with the following properties:

Properties of L_g :

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ, ψ sufficiently smooth

$$
\left| \int_{G/\Gamma} \phi \cdot (\psi \circ L_{g}^{n}) d\mu_{\text{Haar}} \right| \leq ||\phi||_{k} ||\psi||_{k} e^{-\eta n}
$$

 L_{g} is an example of a system with the following properties:

Properties of L_{σ} :

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ, ψ sufficiently smooth

$$
\left| \int_{G/\Gamma} \phi \cdot (\psi \circ L_g^n) d\mu_{\text{Haar}} \right| \leq ||\phi||_k ||\psi||_k e^{-\eta n}
$$

 L_{g} is an example of a system with the following properties:

Properties of L_{σ} :

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ, ψ sufficiently smooth

$$
\Big|\int_{G/\Gamma}\phi\cdot(\psi\circ L_g^n)d\mu_{Haar}\Big|\leq \|\phi\|_k\|\psi\|_ke^{-\eta n}.
$$

 L_{g} is an example of a system with the following properties:

Properties of L_{σ} :

- a. partial hyperbolicity and dynamical coherence;
- b. zero exponents in the center space;
- c. exponential mixing, i.e. for ϕ, ψ sufficiently smooth

$$
\Big|\int_{G/\Gamma}\phi\cdot(\psi\circ L_g^n)d\mu_{Haar}\Big|\leq \|\phi\|_k\|\psi\|_ke^{-\eta n}.
$$

Dolgopyat, K., Rodriguez-Hertz, work in progress

Let $W^u(x,\delta)$ and $W^u(y,\delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{\mathsf{x},\mathsf{y},\delta,\mathsf{N}}: (W^u(\mathsf{x},\delta),\mathsf{m}^u_\mathsf{x}) \to (W^u(\mathsf{y},\delta),\mathsf{m}^u_\mathsf{y})$ such that

 $T^n z$ and $T^n \theta z$ are close for most $0 \le n \le N$.

then T is Bernoulli

- **if** T is hyperbolic, then θ is the stable holonomy.
- it T is isometric on the center space, then θ is the center-stable holonomy.
- \blacksquare if T in NOT isometric on the center space, then there is no obvious choice for θ .

Let $W^u(x,\delta)$ and $W^u(y,\delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{\mathsf{x},\mathsf{y},\delta,\mathsf{N}}: (W^u(\mathsf{x},\delta),\mathsf{m}^u_\mathsf{x}) \to (W^u(\mathsf{y},\delta),\mathsf{m}^u_\mathsf{y})$ such that

 $T^n z$ and $T^n \theta z$ are close for most $0 \le n \le N$.

then T is Bernoulli.

Examples

- if T is hyperbolic, then θ is the stable holonomy.
- it T is isometric on the center space, then θ is the center-stable holonomy.
- \blacksquare if T in NOT isometric on the center space, then there is no obvious choice for θ .

Let $W^u(x,\delta)$ and $W^u(y,\delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{\mathsf{x},\mathsf{y},\delta,\mathsf{N}}: (W^u(\mathsf{x},\delta),\mathsf{m}^u_\mathsf{x}) \to (W^u(\mathsf{y},\delta),\mathsf{m}^u_\mathsf{y})$ such that

 $T^n z$ and $T^n \theta z$ are close for most $0 \le n \le N$.

then T is Bernoulli.

Examples

- if T is hyperbolic, then θ is the stable holonomy.
- it T is isometric on the center space, then θ is the center-stable holonomy.
- \blacksquare if T in NOT isometric on the center space, then there is no obvious choice for θ .

Let $W^u(x,\delta)$ and $W^u(y,\delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{\mathsf{x},\mathsf{y},\delta,\mathsf{N}}: (W^u(\mathsf{x},\delta),\mathsf{m}^u_\mathsf{x}) \to (W^u(\mathsf{y},\delta),\mathsf{m}^u_\mathsf{y})$ such that

 $T^n z$ and $T^n \theta z$ are close for most $0 \le n \le N$.

then T is Bernoulli.

Examples

- if T is hyperbolic, then θ is the stable holonomy.
- it T is isometric on the center space, then θ is the center-stable holonomy.
- **i** if \overline{T} in NOT isometric on the center space, then there is no obvious choice for θ .

PROBLEM: how do we know this is measure preserving?

Adam Kanigowski Bernoulli and K [properties in smooth dynamics](#page-0-0)

PROBLEM: how do we know this is measure preserving?

Exponential Mixing implies exponential equidistribution of the unstable foliation !!

Adam Kanigowski Bernoulli and K [properties in smooth dynamics](#page-0-0)

Exponential Mixing implies exponential equidistribution of the unstable foliation !!

Consequences

- **Exponential mixing implies positive entropy;**
- \blacksquare If an algebraic action is exponentially mixing then it is Bernoulli;
- K and NOT Bernoulli systems don't have exponentially mixing (nice) smooth realizations;
- **Skew product non-Bernoulli transformations, i.e.**

$$
T(x,y)=(\sigma x,S_{\varphi(x)}y)
$$

are slowly mixing.

Consequences

- Exponential mixing implies positive entropy;
- \blacksquare If an algebraic action is exponentially mixing then it is Bernoulli;
- K and NOT Bernoulli systems don't have exponentially mixing (nice) smooth realizations;
- **Skew product non-Bernoulli transformations, i.e.**

$$
T(x,y)=(\sigma x,S_{\varphi(x)}y)
$$

are slowly mixing.

Consequences

Consequences

- Exponential mixing implies positive entropy;
- If an algebraic action is exponentially mixing then it is Bernoulli;
- K and NOT Bernoulli systems don't have exponentially mixing (nice) smooth realizations;
- **Skew product non-Bernoulli transformations, i.e.**

$$
T(x,y)=(\sigma x,S_{\varphi(x)}y)
$$

are slowly mixing.
Consequences

- Exponential mixing implies positive entropy;
- If an algebraic action is exponentially mixing then it is Bernoulli;
- K and NOT Bernoulli systems don't have exponentially mixing (nice) smooth realizations;
- **Skew product non-Bernoulli transformations, i.e.**

$$
T(x,y)=(\sigma x,S_{\varphi(x)}y)
$$

are slowly mixing.

Consequences

- Exponential mixing implies positive entropy;
- If an algebraic action is exponentially mixing then it is Bernoulli;
- K and NOT Bernoulli systems don't have exponentially mixing (nice) smooth realizations;
- Skew product non-Bernoulli transformations, i.e.

$$
T(x,y)=(\sigma x,S_{\varphi(x)}y)
$$

are slowly mixing.

Does K imply Bernoulli in dimension 3?

Let (h_t) be a horocycle flow and let $\mathcal{T}: \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma \rightarrow \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma,$

$$
T(x,y) = (\sigma(x), h_{(-1)^{x_0}}(y)).
$$

Then T is a K system (Katok, 1980). Is T Bernoulli?

Question 1

Does K imply Bernoulli in dimension 3?

Let (h_t) be a horocycle flow and let $\mathcal{T}: \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma \rightarrow \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma,$

$$
T(x, y) = (\sigma(x), h_{(-1)^{x_0}}(y)).
$$

Then T is a K system (Katok, 1980). Is T Bernoulli?

Question 1

Does K imply Bernoulli in dimension 3?

Question 2

Let (h_t) be a horocycle flow and let $\mathcal{T}: \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma \rightarrow \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma$

$$
T(x,y)=(\sigma(x), h_{(-1)^{x_0}}(y)).
$$

Then T is a K system (Katok, 1980). Is T Bernoulli?

Question 1

Does K imply Bernoulli in dimension 3?

Question 2

Let (h_t) be a horocycle flow and let $\mathcal{T}: \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma \rightarrow \{0,1\}^{\mathbb{Z}} \times SL(2,\mathbb{R})/\Gamma$

$$
T(x,y)=(\sigma(x), h_{(-1)^{x_0}}(y)).
$$

Then T is a K system (Katok, 1980). Is T Bernoulli?

Question 3

THANK YOU!