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Random dynamical systems

Definition

Random dynamical system: a set of homeomorphisms
f1, . . . , fk ∈ Homeo+(X ), where X is a metric compact, and the
probabilities p1, . . . , pk > 0, p1 + · · ·+ pk = 1 of their application.

After n iterations we have

Fn,ω = fωn ◦ · · · ◦ fω1 .
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Simplest examples

I Random dynamical systems on the circle: X = S1

I Products of random matrices: Aj ∈ SL(k ,R),

Tn,ω = Aωn . . .Aω1 .

The really simplest case:

I Aj ∈ SL(2,R) projectivize to diffeomorphisms of the circle.

Victor Kleptsyn (IRMAR) Furstenberg theorem with a parameter Aug. 12th, 2019 3 / 23



Simplest examples

I Random dynamical systems on the circle: X = S1

I Products of random matrices: Aj ∈ SL(k ,R),

Tn,ω = Aωn . . .Aω1 .

The really simplest case:

I Aj ∈ SL(2,R) projectivize to diffeomorphisms of the circle.

Victor Kleptsyn (IRMAR) Furstenberg theorem with a parameter Aug. 12th, 2019 3 / 23



Simplest examples

I Random dynamical systems on the circle: X = S1

I Products of random matrices: Aj ∈ SL(k ,R),

Tn,ω = Aωn . . .Aω1 .

The really simplest case:

I Aj ∈ SL(2,R) projectivize to diffeomorphisms of the circle.

Victor Kleptsyn (IRMAR) Furstenberg theorem with a parameter Aug. 12th, 2019 3 / 23



Simplest examples

I Random dynamical systems on the circle: X = S1

I Products of random matrices: Aj ∈ SL(k ,R),

Tn,ω = Aωn . . .Aω1 .

The really simplest case:

I Aj ∈ SL(2,R) projectivize to diffeomorphisms of the circle.

Victor Kleptsyn (IRMAR) Furstenberg theorem with a parameter Aug. 12th, 2019 3 / 23



Furstenberg theorem

Theorem (Furstenberg-Kesten)

Almost surely
1

n
log ‖Aωn . . .Aω1‖ → λFK

As
log ‖AB‖ ≤ log ‖A‖+ log ‖B‖,

this theorem can be seen as a kind of subadditive ergodic theorem. But
what can be said about λFK?

Theorem (Furstenberg)

If there is no common invariant measure, nor a finite invariant union of
subspaces, then λFK > 0.
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“Handwaving” explanation

Consider the action of a large-norm matrix A ∈ SL(2,R):
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“Handwaving” explanation

Consider the action of a large-norm matrix A ∈ SL(2,R):

Its application expands “most” vectors. In this example, blue vectors are
contracted, and red ones are expanded; ‖A‖ = 3.
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Main question

Question

What if we add a parameter?

Ai (a) ∈ SL(2,R), a ∈ J ⊂ R.

Tn,ω;a := Aωn(a) . . .Aω1(a)

For any individual a we have almost surely

1

n
log ‖Tn,ω‖ → λFK (a).

But what if we first fix ω and then vary a ∈ J?
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Numerical simulations: setting

Take

H =

(
3 0
0 1/3

)
, Ra =

(
cos a − sin a
sin a cos a

)
,

and define
Aω(a) = H · Rωa ,

where ω = 0, 1, 2 with equal probabilities.
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Numerical simulations: results
Product of length 30:

Victor Kleptsyn (IRMAR) Furstenberg theorem with a parameter Aug. 12th, 2019 8 / 23



Numerical simulations: results
Another product of length 30:
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Numerical simulations: results
Two products of length 100:
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Main result, infinite case

Theorem (A. Gorodetski, VK)

Under some assumptions (see below), almost surely:

I For any a ∈ J,

lim sup
n→∞

1

n
log ‖Tn,a,ω̄‖ = λFK (a) > 0.

I There exists a Gδ-dense subset X0 ⊂ J:

∀a ∈ X0 lim inf
n→∞

1

n
log ‖Tn,a,ω̄‖ = 0.

I The (random) set of parameters with exceptional behaviour,

Xex :=

{
a ∈ J | lim inf

n→∞

1

n
log ‖Tn,a,ω̄‖ < λFK (a)

}
,

has zero Hausdorff dimension.
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Assumptions for the result

F) For any a ∈ J the Furstenberg condition holds.

C 1) The maps Ai : J → SL2(R) are C 1 with uniformly bounded C 1-norm.

NH) No uniform hyperbolicity for any a ∈ J.

M) Everything spins in the same direction:

∃δ > 0 : ∀a ∈ J, v ∈ R2 \ {0} ∂a argAi (v) > δ.
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Main result, finite case

For any n, divide J into exp( 4
√
n) equal subintervals Ji = [bi−1, bi ].

Theorem (A. Gorodetski, VK)

For any ε > 0 there exist n0 = n0(ε) and δ0 = δ0(ε) such that for any
n > n0 the following statement hold. With probability 1− exp(−δ0

4
√
n)

there exist a number M, indices i1 < · · · < iM and moments mi ∈ [0, n]
such that (. . . ).
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Main result, finite case-2

Theorem (A. Gorodetski, VK)

I On any Ji with i /∈ {i1, . . . , iM} the products Tω,n;a grow
“ε-Furstenberg-hyperbolically”

I On any Jik the norms of the products grow hyperbolically on [1,mk ]
and [mk , n], and cancel each other in the best possible way for some
ak ∈ Jik

I The law of (mk
n , ak) is ε-close to Leb×DOS.
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and [mk , n], and cancel each other in the best possible way for some
ak ∈ Jik

I The law of (mk
n , ak) is ε-close to Leb×DOS.

Tmk,a,ω̄

T[mk;n],a,ω̄

v0
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Idea of the proof

a

m

J

b0

bN

0 n

x̃i,m

m′ m′′
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Generalizations

There are many routes (actually in progress with: A. Gorodetski,
F. Quintino, A. Gordenko)

I Higher dimension: symplectic matrices (Maslov index instead of
rotation numbers, etc.);

I Higher dimension in general: singular values conjecturally jump and
fall to the half-sums with the neighboring ones;

I Non-linear dynamics on the circle: forward and backward Lyapunov
exponents do not coincide;

I Capacity of the exceptional set;

I Non-stationary products.
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Motivation: one-dimensional Anderson localization

Stationary Schrödinger equation:

Ĥψ = Eψ, Ĥψ = − ~2

2m
∆ψ + V (x)ψ

What if the potential V (x) is random?
Discrete case: ψ ∈ l2(Z); then ∆ψ is replaced with

ψ(n + 1) + ψ(n − 1)− 2ψ(n).

An electron in one-dimensional crystal (changing sign, V and E ):

Ĥ[ψ](n) = ψ(n + 1) + ψ(n − 1) + Ṽ (n)ψ(n)
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Ĥψ = Eψ, Ĥψ = − ~2
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One-dimensional random potential

I V ≡ 0 : continuous spectrum [−2, 2], generalized eigenfunctions

ψα(n) = exp(iαn)

I V (n) are i.i.d random variables: randomly appearing defects.

Anderson localization. Almost surely pure point spectrum: a
countable set of exponentially decreasing eigenfunctions

Ĥψk = Ekψk .
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Equation for the eigenfunction

ψ(n + 1) + ψ(n − 1) + V (n)ψ(n) = Eψ(n).

ψ(n + 1) = (E − V (n))ψ(n)− ψ(n − 1).

(
ψ(n + 1)
ψ(n)

)
=

(
E − V (n) −1

1 0

)
︸ ︷︷ ︸

AV (n),E

(
ψ(n)

ψ(n − 1)

)

(
ψ(n + 1)
ψ(n)

)
= AV (n),E . . .AV (1),E

(
ψ(1)
ψ(0)

)
For random i.i.d. V (n)’s, V (n) = ωn, we have a product

Tω,n;E = Aωn,E . . .Aω1,E .
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Dynamical viewpoint on the Anderson localization

I Going to the future: hyperbolic behaviour ⇒ there is a vector v+

such that
1

n
log |Tω,n;E (v+)| → −λFK (E ).

I Going to the past: there is a vector v− such that

1

n
log |Tω,−n;E (v−)| → −λFK (E ).

I But for a general E , the vectors v− and v+ are different! (Well, it
couldn’t be otherwise: otherwise we would have too many
eigenfunctions!)

I The (countably many) parameter values at which these vectors
coincide can be found by considering finite products from −N to N
and then increasing N.
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coincide can be found by considering finite products from −N to N
and then increasing N.
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