Furstenberg theorem; now with a parameter! Joint work with A. Gorodetski

Victor Kleptsyn

CNRS, Institute of Mathematical Research of Rennes, University of Rennes 1

2020 Vision for Dynamics, Będlewo, Poland, Aug. 12th, 2019.

Random dynamical systems

Definition
Random dynamical system:

Random dynamical systems

Definition
Random dynamical system: a set of homeomorphisms $f_{1}, \ldots, f_{k} \in \operatorname{Homeo}_{+}(X)$,

Random dynamical systems

Definition

Random dynamical system: a set of homeomorphisms $f_{1}, \ldots, f_{k} \in \operatorname{Homeo}_{+}(X)$, where X is a metric compact,

Random dynamical systems

Definition

Random dynamical system: a set of homeomorphisms $f_{1}, \ldots, f_{k} \in$ Homeo $_{+}(X)$, where X is a metric compact, and the probabilities $p_{1}, \ldots, p_{k}>0$,

Random dynamical systems

Definition

Random dynamical system: a set of homeomorphisms $f_{1}, \ldots, f_{k} \in$ Homeo $_{+}(X)$, where X is a metric compact, and the probabilities $p_{1}, \ldots, p_{k}>0, p_{1}+\cdots+p_{k}=1$ of their application.

Random dynamical systems

Definition

Random dynamical system: a set of homeomorphisms $f_{1}, \ldots, f_{k} \in$ Homeo $_{+}(X)$, where X is a metric compact, and the probabilities $p_{1}, \ldots, p_{k}>0, p_{1}+\cdots+p_{k}=1$ of their application.

After n iterations we have

$$
F_{n, \omega}=f_{\omega_{n}} \circ \cdots \circ f_{\omega_{1}}
$$

Simplest examples

- Random dynamical systems on the circle: $X=\mathbb{S}^{1}$

Simplest examples

- Random dynamical systems on the circle: $X=\mathbb{S}^{1}$
- Products of random matrices: $A_{j} \in \mathbb{S L}(k, \mathbb{R})$,

$$
T_{n, \omega}=A_{\omega_{n}} \ldots A_{\omega_{1}}
$$

Simplest examples

- Random dynamical systems on the circle: $X=\mathbb{S}^{1}$
- Products of random matrices: $A_{j} \in \mathbb{S L}(k, \mathbb{R})$,

$$
T_{n, \omega}=A_{\omega_{n}} \ldots A_{\omega_{1}}
$$

The really simplest case:

Simplest examples

- Random dynamical systems on the circle: $X=\mathbb{S}^{1}$
- Products of random matrices: $A_{j} \in \mathbb{S L}(k, \mathbb{R})$,

$$
T_{n, \omega}=A_{\omega_{n}} \ldots A_{\omega_{1}}
$$

The really simplest case:

- $A_{j} \in \mathbb{S L}(2, R)$ projectivize to diffeomorphisms of the circle.

Furstenberg theorem

Theorem (Furstenberg-Kesten)
Almost surely

$$
\frac{1}{n} \log \left\|A_{\omega_{n}} \ldots A_{\omega_{1}}\right\| \rightarrow \lambda_{F K}
$$

Furstenberg theorem

Theorem (Furstenberg-Kesten)
Almost surely

$$
\frac{1}{n} \log \left\|A_{\omega_{n}} \ldots A_{\omega_{1}}\right\| \rightarrow \lambda_{F K}
$$

As

$$
\log \|A B\| \leq \log \|A\|+\log \|B\|,
$$

Furstenberg theorem

Theorem (Furstenberg-Kesten)
Almost surely

$$
\frac{1}{n} \log \left\|A_{\omega_{n}} \ldots A_{\omega_{1}}\right\| \rightarrow \lambda_{F K}
$$

As

$$
\log \|A B\| \leq \log \|A\|+\log \|B\|
$$

this theorem can be seen as a kind of subadditive ergodic theorem.

Furstenberg theorem

Theorem (Furstenberg-Kesten)
Almost surely

$$
\frac{1}{n} \log \left\|A_{\omega_{n}} \ldots A_{\omega_{1}}\right\| \rightarrow \lambda_{F K}
$$

As

$$
\log \|A B\| \leq \log \|A\|+\log \|B\|
$$

this theorem can be seen as a kind of subadditive ergodic theorem. But what can be said about $\lambda_{F K}$?

Furstenberg theorem

Theorem (Furstenberg-Kesten)
Almost surely

$$
\frac{1}{n} \log \left\|A_{\omega_{n}} \ldots A_{\omega_{1}}\right\| \rightarrow \lambda_{F K}
$$

As

$$
\log \|A B\| \leq \log \|A\|+\log \|B\|
$$

this theorem can be seen as a kind of subadditive ergodic theorem. But what can be said about $\lambda_{F K}$?

Theorem (Furstenberg)
If there is no common invariant measure, nor a finite invariant union of subspaces, then $\lambda_{F K}>0$.

"Handwaving" explanation

Consider the action of a large-norm matrix $A \in \mathbb{S L}(2, \mathbb{R})$:

"Handwaving" explanation

Consider the action of a large-norm matrix $A \in \mathbb{S L}(2, \mathbb{R})$:

"Handwaving" explanation

Consider the action of a large-norm matrix $A \in \mathbb{S L}(2, \mathbb{R})$:

"Handwaving" explanation

Consider the action of a large-norm matrix $A \in \mathbb{S L}(2, \mathbb{R})$:

"Handwaving" explanation

Consider the action of a large-norm matrix $A \in \mathbb{S L}(2, \mathbb{R})$:

"Handwaving" explanation

Consider the action of a large-norm matrix $A \in \mathbb{S L}(2, \mathbb{R})$:

Its application expands "most" vectors.

"Handwaving" explanation

Consider the action of a large-norm matrix $A \in \mathbb{S L}(2, \mathbb{R})$:

Its application expands "most" vectors.

"Handwaving" explanation

Consider the action of a large-norm matrix $A \in \mathbb{S L}(2, \mathbb{R})$:

Its application expands "most" vectors.

"Handwaving" explanation

Consider the action of a large-norm matrix $A \in \mathbb{S L}(2, \mathbb{R})$:

Its application expands "most" vectors. In this example, blue vectors are contracted, and red ones are expanded; $\|A\|=3$.

Main question

Question

What if we add a parameter?

Main question

Question

What if we add a parameter?

$$
A_{i}(a) \in \mathbb{S} \mathbb{L}(2, \mathbb{R})
$$

Main question

Question
What if we add a parameter?

$$
A_{i}(a) \in \mathbb{S L}(2, \mathbb{R}), \quad a \in J \subset \mathbb{R}
$$

Main question

Question

What if we add a parameter?

$$
\begin{gathered}
A_{i}(a) \in \mathbb{S L}(2, \mathbb{R}), \quad a \in J \subset \mathbb{R} \\
T_{n, \omega ; a}:=A_{\omega_{n}}(a) \ldots A_{\omega_{1}}(a)
\end{gathered}
$$

Main question

Question

What if we add a parameter?

$$
\begin{gathered}
A_{i}(a) \in \mathbb{S L}(2, \mathbb{R}), \quad a \in J \subset \mathbb{R} . \\
T_{n, \omega ; a}:=A_{\omega_{n}}(a) \ldots A_{\omega_{1}}(a)
\end{gathered}
$$

For any individual a we have almost surely

Main question

Question

What if we add a parameter?

$$
\begin{gathered}
A_{i}(a) \in \mathbb{S L}(2, \mathbb{R}), \quad a \in J \subset \mathbb{R} . \\
T_{n, \omega ; a}:=A_{\omega_{n}}(a) \ldots A_{\omega_{1}}(a)
\end{gathered}
$$

For any individual a we have almost surely

$$
\frac{1}{n} \log \left\|T_{n, \omega}\right\|
$$

Main question

Question

What if we add a parameter?

$$
\begin{gathered}
A_{i}(a) \in \mathbb{S L}(2, \mathbb{R}), \quad a \in J \subset \mathbb{R} . \\
T_{n, \omega ; a}:=A_{\omega_{n}}(a) \ldots A_{\omega_{1}}(a)
\end{gathered}
$$

For any individual a we have almost surely

$$
\frac{1}{n} \log \left\|T_{n, \omega}\right\| \rightarrow \lambda_{F K}(a) .
$$

Main question

Question

What if we add a parameter?

$$
\begin{gathered}
A_{i}(a) \in \mathbb{S L}(2, \mathbb{R}), \quad a \in J \subset \mathbb{R} . \\
T_{n, \omega ; a}:=A_{\omega_{n}}(a) \ldots A_{\omega_{1}}(a)
\end{gathered}
$$

For any individual a we have almost surely

$$
\frac{1}{n} \log \left\|T_{n, \omega}\right\| \rightarrow \lambda_{F K}(a) .
$$

But what if we first fix ω and then vary $a \in J$?

Numerical simulations: setting

Take

$$
H=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 3
\end{array}\right)
$$

Numerical simulations: setting

Take

$$
H=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 3
\end{array}\right), \quad R_{a}=\left(\begin{array}{cc}
\cos a & -\sin a \\
\sin a & \cos a
\end{array}\right),
$$

Numerical simulations: setting

Take

$$
H=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 3
\end{array}\right), \quad R_{a}=\left(\begin{array}{cc}
\cos a & -\sin a \\
\sin a & \cos a
\end{array}\right),
$$

and define

$$
A_{\omega}(a)=H \cdot R_{a}^{\omega},
$$

Numerical simulations: setting

Take

$$
H=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 3
\end{array}\right), \quad R_{a}=\left(\begin{array}{cc}
\cos a & -\sin a \\
\sin a & \cos a
\end{array}\right),
$$

and define

$$
A_{\omega}(a)=H \cdot R_{a}^{\omega},
$$

where $\omega=0,1,2$ with equal probabilities.

Numerical simulations: results

Product of length 30 :

Numerical simulations: results

Another product of length 30 :

Numerical simulations: results

Two products of length 100 :

Main result, infinite case

Theorem (A. Gorodetski, VK)
Under some assumptions (see below), almost surely:
For any $a \in J$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left\|T_{n, a, \bar{\omega}}\right\|=\lambda_{F K}(a)>0 .
$$

Main result, infinite case

Theorem (A. Gorodetski, VK)
Under some assumptions (see below), almost surely:
For any $a \in J$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left\|T_{n, a, \bar{\omega}}\right\|=\lambda_{F K}(a)>0
$$

There exists a G_{δ}-dense subset $X_{0} \subset J$:

Main result, infinite case

Theorem (A. Gorodetski, VK)
Under some assumptions (see below), almost surely:
For any $a \in J$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left\|T_{n, a, \bar{\omega}}\right\|=\lambda_{F K}(a)>0
$$

There exists a G_{δ}-dense subset $X_{0} \subset J$:

$$
\forall a \in X_{0} \quad \liminf _{n \rightarrow \infty} \frac{1}{n} \log \left\|T_{n, \mathrm{a}, \bar{\omega}}\right\|=0
$$

Main result, infinite case

Theorem (A. Gorodetski, VK)

Under some assumptions (see below), almost surely:
For any $a \in J$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left\|T_{n, a, \bar{\omega}}\right\|=\lambda_{F K}(a)>0
$$

There exists a G_{δ}-dense subset $X_{0} \subset J$:

$$
\forall a \in X_{0} \quad \liminf _{n \rightarrow \infty} \frac{1}{n} \log \left\|T_{n, a, \bar{\omega}}\right\|=0 .
$$

The (random) set of parameters with exceptional behaviour,

$$
X_{e x}:=\left\{a \in J \left\lvert\, \liminf _{n \rightarrow \infty} \frac{1}{n} \log \left\|T_{n, a, \bar{\omega}}\right\|<\lambda_{F K}(a)\right.\right\},
$$

has zero Hausdorff dimension.

Assumptions for the result

F) For any $a \in J$ the Furstenberg condition holds.

Assumptions for the result

F) For any $a \in J$ the Furstenberg condition holds.
C^{1}) The maps $A_{i}: J \rightarrow \mathbb{S L}_{2}(\mathbb{R})$ are C^{1} with uniformly bounded C^{1}-norm.

Assumptions for the result

F) For any $a \in J$ the Furstenberg condition holds.
C^{1}) The maps $A_{i}: J \rightarrow \mathbb{S L}_{2}(\mathbb{R})$ are C^{1} with uniformly bounded C^{1}-norm.
$N H)$ No uniform hyperbolicity for any $a \in J$.

Assumptions for the result

F) For any $a \in J$ the Furstenberg condition holds.
C^{1}) The maps $A_{i}: J \rightarrow \mathbb{S L}_{2}(\mathbb{R})$ are C^{1} with uniformly bounded C^{1}-norm.
NH) No uniform hyperbolicity for any $a \in J$.
M) Everything spins in the same direction:

Assumptions for the result

F) For any $a \in J$ the Furstenberg condition holds.
C^{1}) The maps $A_{i}: J \rightarrow \mathbb{S L}_{2}(\mathbb{R})$ are C^{1} with uniformly bounded C^{1}-norm.
NH) No uniform hyperbolicity for any $a \in J$.
M) Everything spins in the same direction:

$$
\exists \delta>0:
$$

Assumptions for the result

F) For any $a \in J$ the Furstenberg condition holds.
C^{1}) The maps $A_{i}: J \rightarrow \mathbb{S L}_{2}(\mathbb{R})$ are C^{1} with uniformly bounded C^{1}-norm.
NH) No uniform hyperbolicity for any $a \in J$.
M) Everything spins in the same direction:

$$
\exists \delta>0: \quad \forall a \in J, v \in \mathbb{R}^{2} \backslash\{0\}
$$

Assumptions for the result

F) For any $a \in J$ the Furstenberg condition holds.
C^{1}) The maps $A_{i}: J \rightarrow \mathbb{S L}_{2}(\mathbb{R})$ are C^{1} with uniformly bounded C^{1}-norm.
NH) No uniform hyperbolicity for any $a \in J$.
M) Everything spins in the same direction:

$$
\exists \delta>0: \quad \forall a \in J, v \in \mathbb{R}^{2} \backslash\{0\} \quad \partial_{a} \arg A_{i}(v)
$$

Assumptions for the result

F) For any $a \in J$ the Furstenberg condition holds.
C^{1}) The maps $A_{i}: J \rightarrow \mathbb{S L}_{2}(\mathbb{R})$ are C^{1} with uniformly bounded C^{1}-norm.
NH) No uniform hyperbolicity for any $a \in J$.
M) Everything spins in the same direction:

$$
\exists \delta>0: \quad \forall a \in J, v \in \mathbb{R}^{2} \backslash\{0\} \quad \partial_{a} \arg A_{i}(v)>\delta
$$

Main result, finite case

For any n, divide J into $\exp (\sqrt[4]{n})$ equal subintervals J_{i}

Main result, finite case

For any n, divide J into $\exp (\sqrt[4]{n})$ equal subintervals $J_{i}=\left[b_{i-1}, b_{i}\right]$.

Main result, finite case

For any n, divide J into $\exp (\sqrt[4]{n})$ equal subintervals $J_{i}=\left[b_{i-1}, b_{i}\right]$.
Theorem (A. Gorodetski, VK)
For any $\varepsilon>0$ there exist $n_{0}=n_{0}(\varepsilon)$ and $\delta_{0}=\delta_{0}(\varepsilon)$ such that for any $n>n_{0}$ the following statement hold.

Main result, finite case

For any n, divide J into $\exp (\sqrt[4]{n})$ equal subintervals $J_{i}=\left[b_{i-1}, b_{i}\right]$.
Theorem (A. Gorodetski, VK)
For any $\varepsilon>0$ there exist $n_{0}=n_{0}(\varepsilon)$ and $\delta_{0}=\delta_{0}(\varepsilon)$ such that for any $n>n_{0}$ the following statement hold. With probability $1-\exp \left(-\delta_{0} \sqrt[4]{n}\right)$

Main result, finite case

For any n, divide J into $\exp (\sqrt[4]{n})$ equal subintervals $J_{i}=\left[b_{i-1}, b_{i}\right]$.
Theorem (A. Gorodetski, VK)
For any $\varepsilon>0$ there exist $n_{0}=n_{0}(\varepsilon)$ and $\delta_{0}=\delta_{0}(\varepsilon)$ such that for any $n>n_{0}$ the following statement hold. With probability $1-\exp \left(-\delta_{0} \sqrt[4]{n}\right)$ there exist a number M, indices $i_{1}<\cdots<i_{M}$ and moments $m_{i} \in[0, n]$ such that

Main result, finite case

For any n, divide J into $\exp (\sqrt[4]{n})$ equal subintervals $J_{i}=\left[b_{i-1}, b_{i}\right]$.
Theorem (A. Gorodetski, VK)
For any $\varepsilon>0$ there exist $n_{0}=n_{0}(\varepsilon)$ and $\delta_{0}=\delta_{0}(\varepsilon)$ such that for any $n>n_{0}$ the following statement hold. With probability $1-\exp \left(-\delta_{0} \sqrt[4]{n}\right)$ there exist a number M, indices $i_{1}<\cdots<i_{M}$ and moments $m_{i} \in[0, n]$ such that (...).

Main result, finite case-2

Theorem (A. Gorodetski, VK)
On any J_{i} with $i \notin\left\{i_{1}, \ldots, i_{M}\right\}$ the products $T_{\omega, n ; a}$ grow " ε-Furstenberg-hyperbolically"

Main result, finite case-2

Theorem (A. Gorodetski, VK)

On any J_{i} with $i \notin\left\{i_{1}, \ldots, i_{M}\right\}$ the products $T_{\omega, n ; a}$ grow " ε-Furstenberg-hyperbolically"
On any $J_{i_{k}}$ the norms of the products grow hyperbolically on $\left[1, m_{k}\right]$ and $\left[m_{k}, n\right]$, and cancel each other in the best possible way for some $a_{k} \in J_{i_{k}}$

Main result, finite case-2

Theorem (A. Gorodetski, VK)

On any J_{i} with $i \notin\left\{i_{1}, \ldots, i_{M}\right\}$ the products $T_{\omega, n ; a}$ grow " ε-Furstenberg-hyperbolically"
On any $J_{i_{k}}$ the norms of the products grow hyperbolically on [1, m_{k}] and $\left[m_{k}, n\right.$], and cancel each other in the best possible way for some $a_{k} \in J_{i_{k}}$

Main result, finite case-2

Theorem (A. Gorodetski, VK)

On any J_{i} with $i \notin\left\{i_{1}, \ldots, i_{M}\right\}$ the products $T_{\omega, n ; a}$ grow " ε-Furstenberg-hyperbolically"
On any $J_{i_{k}}$ the norms of the products grow hyperbolically on [1, m_{k}] and $\left[m_{k}, n\right.$], and cancel each other in the best possible way for some $a_{k} \in J_{i_{k}}$
The law of $\left(\frac{m_{k}}{n}, a_{k}\right)$ is ε-close to Leb \times DOS.

Main result, finite case-2

Theorem (A. Gorodetski, VK)

On any J_{i} with $i \notin\left\{i_{1}, \ldots, i_{M}\right\}$ the products $T_{\omega, n ; a}$ grow " ε-Furstenberg-hyperbolically"
On any $J_{i_{k}}$ the norms of the products grow hyperbolically on [1, m_{k}] and $\left[m_{k}, n\right]$, and cancel each other in the best possible way for some $a_{k} \in J_{i_{k}}$
The law of $\left(\frac{m_{k}}{n}, a_{k}\right)$ is ε-close to Leb \times DOS.

Idea of the proof

Generalizations

There are many routes (actually in progress with: A. Gorodetski, F. Quintino, A. Gordenko)

- Higher dimension: symplectic matrices

Generalizations

There are many routes (actually in progress with: A. Gorodetski, F. Quintino, A. Gordenko)

- Higher dimension: symplectic matrices (Maslov index instead of rotation numbers, etc.);

Generalizations

There are many routes (actually in progress with: A. Gorodetski, F. Quintino, A. Gordenko)

- Higher dimension: symplectic matrices (Maslov index instead of rotation numbers, etc.);
- Higher dimension in general:

Generalizations

There are many routes (actually in progress with: A. Gorodetski, F. Quintino, A. Gordenko)

- Higher dimension: symplectic matrices (Maslov index instead of rotation numbers, etc.);
- Higher dimension in general: singular values conjecturally jump and fall to the half-sums with the neighboring ones;

Generalizations

There are many routes (actually in progress with: A. Gorodetski, F. Quintino, A. Gordenko)

- Higher dimension: symplectic matrices (Maslov index instead of rotation numbers, etc.);
- Higher dimension in general: singular values conjecturally jump and fall to the half-sums with the neighboring ones;
- Non-linear dynamics on the circle:

Generalizations

There are many routes (actually in progress with: A. Gorodetski,
F. Quintino, A. Gordenko)

- Higher dimension: symplectic matrices (Maslov index instead of rotation numbers, etc.);
- Higher dimension in general: singular values conjecturally jump and fall to the half-sums with the neighboring ones;
- Non-linear dynamics on the circle: forward and backward Lyapunov exponents do not coincide;

Generalizations

There are many routes (actually in progress with: A. Gorodetski,
F. Quintino, A. Gordenko)

- Higher dimension: symplectic matrices (Maslov index instead of rotation numbers, etc.);
- Higher dimension in general: singular values conjecturally jump and fall to the half-sums with the neighboring ones;
- Non-linear dynamics on the circle: forward and backward Lyapunov exponents do not coincide;
- Capacity of the exceptional set;

Generalizations

There are many routes (actually in progress with: A. Gorodetski,
F. Quintino, A. Gordenko)

- Higher dimension: symplectic matrices (Maslov index instead of rotation numbers, etc.);
- Higher dimension in general: singular values conjecturally jump and fall to the half-sums with the neighboring ones;
- Non-linear dynamics on the circle: forward and backward Lyapunov exponents do not coincide;
- Capacity of the exceptional set;
- Non-stationary products.

Generalizations

There are many routes (actually in progress with: A. Gorodetski,
F. Quintino, A. Gordenko)

- Higher dimension: symplectic matrices (Maslov index instead of rotation numbers, etc.);
- Higher dimension in general: singular values conjecturally jump and fall to the half-sums with the neighboring ones;
- Non-linear dynamics on the circle: forward and backward Lyapunov exponents do not coincide;
- Capacity of the exceptional set;
- Non-stationary products.

Motivation: one-dimensional Anderson localization

Stationary Schrödinger equation:

Motivation: one-dimensional Anderson localization

Stationary Schrödinger equation:

$$
\widehat{H} \psi=E \psi,
$$

Motivation: one-dimensional Anderson localization

Stationary Schrödinger equation:

$$
\widehat{H} \psi=E \psi, \quad \widehat{H} \psi=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(x) \psi
$$

Motivation: one-dimensional Anderson localization

Stationary Schrödinger equation:

$$
\widehat{H} \psi=E \psi, \quad \widehat{H} \psi=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(x) \psi
$$

What if the potential $V(x)$ is random?

Motivation: one-dimensional Anderson localization

Stationary Schrödinger equation:

$$
\widehat{H} \psi=E \psi, \quad \widehat{H} \psi=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(x) \psi
$$

What if the potential $V(x)$ is random?
Discrete case: $\psi \in I_{2}(\mathbb{Z})$

Motivation: one-dimensional Anderson localization

Stationary Schrödinger equation:

$$
\widehat{H} \psi=E \psi, \quad \widehat{H} \psi=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(x) \psi
$$

What if the potential $V(x)$ is random?
Discrete case: $\psi \in I_{2}(\mathbb{Z})$; then $\Delta \psi$ is replaced with

$$
\psi(n+1)+\psi(n-1)-2 \psi(n)
$$

Motivation: one-dimensional Anderson localization

Stationary Schrödinger equation:

$$
\widehat{H} \psi=E \psi, \quad \widehat{H} \psi=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(x) \psi
$$

What if the potential $V(x)$ is random?
Discrete case: $\psi \in I_{2}(\mathbb{Z})$; then $\Delta \psi$ is replaced with

$$
\psi(n+1)+\psi(n-1)-2 \psi(n)
$$

An electron in one-dimensional crystal (changing sign, V and E):

$$
\widehat{H}[\psi](n)=\psi(n+1)+\psi(n-1)+\widetilde{V}(n) \psi(n)
$$

One-dimensional random potential

- $V \equiv 0$: continuous spectrum $[-2,2]$,

One-dimensional random potential

- $V \equiv 0$: continuous spectrum $[-2,2]$, generalized eigenfunctions

One-dimensional random potential

- $V \equiv 0$: continuous spectrum $[-2,2]$, generalized eigenfunctions

$$
\psi_{\alpha}(n)=\exp (i \alpha n)
$$

One-dimensional random potential

- $V \equiv 0$: continuous spectrum $[-2,2]$, generalized eigenfunctions

$$
\psi_{\alpha}(n)=\exp (i \alpha n)
$$

- $V(n)$ are i.i.d random variables:

One-dimensional random potential

- $V \equiv 0$: continuous spectrum $[-2,2]$, generalized eigenfunctions

$$
\psi_{\alpha}(n)=\exp (i \alpha n)
$$

- $V(n)$ are i.i.d random variables: randomly appearing defects.

One-dimensional random potential

- $V \equiv 0$: continuous spectrum $[-2,2]$, generalized eigenfunctions

$$
\psi_{\alpha}(n)=\exp (i \alpha n)
$$

- $V(n)$ are i.i.d random variables: randomly appearing defects.

Anderson localization. Almost surely

One-dimensional random potential

- $V \equiv 0$: continuous spectrum $[-2,2]$, generalized eigenfunctions

$$
\psi_{\alpha}(n)=\exp (i \alpha n)
$$

- $V(n)$ are i.i.d random variables: randomly appearing defects.

Anderson localization. Almost surely pure point spectrum:

One-dimensional random potential

- $V \equiv 0$: continuous spectrum $[-2,2]$, generalized eigenfunctions

$$
\psi_{\alpha}(n)=\exp (i \alpha n)
$$

- $V(n)$ are i.i.d random variables: randomly appearing defects.

Anderson localization. Almost surely pure point spectrum: a countable set of exponentially decreasing eigenfunctions

One-dimensional random potential

- $V \equiv 0$: continuous spectrum $[-2,2]$, generalized eigenfunctions

$$
\psi_{\alpha}(n)=\exp (i \alpha n)
$$

- $V(n)$ are i.i.d random variables: randomly appearing defects.

Anderson localization. Almost surely pure point spectrum: a countable set of exponentially decreasing eigenfunctions

$$
\widehat{H} \psi_{k}=E_{k} \psi_{k} .
$$

Equation for the eigenfunction

$$
\psi(n+1)+\psi(n-1)+V(n) \psi(n)=E \psi(n) .
$$

Equation for the eigenfunction

$$
\begin{gathered}
\psi(n+1)+\psi(n-1)+V(n) \psi(n)=E \psi(n) \\
\psi(n+1)=(E-V(n)) \psi(n)-\psi(n-1)
\end{gathered}
$$

Equation for the eigenfunction

$$
\begin{gathered}
\psi(n+1)+\psi(n-1)+V(n) \psi(n)=E \psi(n) \\
\psi(n+1)=(E-V(n)) \psi(n)-\psi(n-1) \\
\binom{\psi(n+1)}{\psi(n)}=\underbrace{\left(\begin{array}{cc}
E-V(n) & -1 \\
1 & 0
\end{array}\right)}_{A_{V(n), E}}\binom{\psi(n)}{\psi(n-1)}
\end{gathered}
$$

Equation for the eigenfunction

$$
\begin{gathered}
\psi(n+1)+\psi(n-1)+V(n) \psi(n)=E \psi(n) \\
\psi(n+1)=(E-V(n)) \psi(n)-\psi(n-1) \\
\binom{\psi(n+1)}{\psi(n)}=\underbrace{\left(\begin{array}{cc}
E-V(n) & -1 \\
1 & 0
\end{array}\right)}_{A_{V(n), E}}\binom{\psi(n)}{\psi(n-1)}
\end{gathered}
$$

Equation for the eigenfunction

$$
\begin{gathered}
\psi(n+1)+\psi(n-1)+V(n) \psi(n)=E \psi(n) . \\
\psi(n+1)=(E-V(n)) \psi(n)-\psi(n-1) . \\
\binom{\psi(n+1)}{\psi(n)}=\underbrace{\left(\begin{array}{cc}
E-V(n) & -1 \\
1 & 0
\end{array}\right)}_{A_{V(n), E}}\binom{\psi(n)}{\psi(n-1)} \\
\binom{\psi(n+1)}{\psi(n)}=A_{V(n), E} \ldots A_{V(1), E}\binom{\psi(1)}{\psi(0)}
\end{gathered}
$$

Equation for the eigenfunction

$$
\begin{gathered}
\psi(n+1)+\psi(n-1)+V(n) \psi(n)=E \psi(n) \\
\psi(n+1)=(E-V(n)) \psi(n)-\psi(n-1) \\
\binom{\psi(n+1)}{\psi(n)}=\underbrace{\left(\begin{array}{cc}
E-V(n) & -1 \\
1 & 0
\end{array}\right)}_{A_{V(n), E}}\binom{\psi(n)}{\psi(n-1)} \\
\binom{\psi(n+1)}{\psi(n)}=A_{V(n), E} \ldots A_{V(1), E}\binom{\psi(1)}{\psi(0)}
\end{gathered}
$$

For random i.i.d. $V(n)$'s,

Equation for the eigenfunction

$$
\begin{gathered}
\psi(n+1)+\psi(n-1)+V(n) \psi(n)=E \psi(n) \\
\psi(n+1)=(E-V(n)) \psi(n)-\psi(n-1) \\
\binom{\psi(n+1)}{\psi(n)}=\underbrace{\left(\begin{array}{cc}
E-V(n) & -1 \\
1 & 0
\end{array}\right)}_{A_{V(n), E}}\binom{\psi(n)}{\psi(n-1)} \\
\binom{\psi(n+1)}{\psi(n)}=A_{V(n), E} \ldots A_{V(1), E}\binom{\psi(1)}{\psi(0)}
\end{gathered}
$$

For random i.i.d. $V(n)$'s, $V(n)=\omega_{n}$, we have a product

$$
T_{\omega, n ; E}=A_{\omega_{n}, E} \ldots A_{\omega_{1}, E}
$$

Dynamical viewpoint on the Anderson localization

- Going to the future:

Dynamical viewpoint on the Anderson localization

- Going to the future: hyperbolic behaviour

Dynamical viewpoint on the Anderson localization

- Going to the future: hyperbolic behaviour \Rightarrow there is a vector v_{+} such that

$$
\frac{1}{n} \log \left|T_{\omega, n ; E}\left(v_{+}\right)\right| \rightarrow-\lambda_{F K}
$$

Dynamical viewpoint on the Anderson localization

- Going to the future: hyperbolic behaviour \Rightarrow there is a vector v_{+} such that

$$
\frac{1}{n} \log \left|T_{\omega, n ; E}\left(v_{+}\right)\right| \rightarrow-\lambda_{F K}(E) .
$$

Dynamical viewpoint on the Anderson localization

- Going to the future: hyperbolic behaviour \Rightarrow there is a vector v_{+} such that

$$
\frac{1}{n} \log \left|T_{\omega, n ; E}\left(v_{+}\right)\right| \rightarrow-\lambda_{F K}(E) .
$$

- Going to the past:

Dynamical viewpoint on the Anderson localization

- Going to the future: hyperbolic behaviour \Rightarrow there is a vector v_{+} such that

$$
\frac{1}{n} \log \left|T_{\omega, n ; E}\left(v_{+}\right)\right| \rightarrow-\lambda_{F K}(E) .
$$

- Going to the past: there is a vector v_{-}such that

$$
\frac{1}{n} \log \left|T_{\omega,-n ; E}\left(v_{-}\right)\right| \rightarrow-\lambda_{F K}(E)
$$

Dynamical viewpoint on the Anderson localization

- Going to the future: hyperbolic behaviour \Rightarrow there is a vector v_{+} such that

$$
\frac{1}{n} \log \left|T_{\omega, n ; E}\left(v_{+}\right)\right| \rightarrow-\lambda_{F K}(E) .
$$

- Going to the past: there is a vector v_{-}such that

$$
\frac{1}{n} \log \left|T_{\omega,-n ; E}\left(v_{-}\right)\right| \rightarrow-\lambda_{F K}(E)
$$

- But for a general E, the vectors v_{-}and v_{+}are different!

Dynamical viewpoint on the Anderson localization

- Going to the future: hyperbolic behaviour \Rightarrow there is a vector v_{+} such that

$$
\frac{1}{n} \log \left|T_{\omega, n ; E}\left(v_{+}\right)\right| \rightarrow-\lambda_{F K}(E) .
$$

- Going to the past: there is a vector v_{-}such that

$$
\frac{1}{n} \log \left|T_{\omega,-n ; E}\left(v_{-}\right)\right| \rightarrow-\lambda_{F K}(E)
$$

- But for a general E, the vectors v_{-}and v_{+}are different! (Well, it couldn't be otherwise:

Dynamical viewpoint on the Anderson localization

- Going to the future: hyperbolic behaviour \Rightarrow there is a vector v_{+} such that

$$
\frac{1}{n} \log \left|T_{\omega, n ; E}\left(v_{+}\right)\right| \rightarrow-\lambda_{F K}(E) .
$$

- Going to the past: there is a vector v_{-}such that

$$
\frac{1}{n} \log \left|T_{\omega,-n ; E}\left(v_{-}\right)\right| \rightarrow-\lambda_{F K}(E)
$$

- But for a general E, the vectors v_{-}and v_{+}are different! (Well, it couldn't be otherwise: otherwise we would have too many eigenfunctions!)

Dynamical viewpoint on the Anderson localization

- Going to the future: hyperbolic behaviour \Rightarrow there is a vector v_{+} such that

$$
\frac{1}{n} \log \left|T_{\omega, n ; E}\left(v_{+}\right)\right| \rightarrow-\lambda_{F K}(E) .
$$

- Going to the past: there is a vector v_{-}such that

$$
\frac{1}{n} \log \left|T_{\omega,-n ; E}\left(v_{-}\right)\right| \rightarrow-\lambda_{F K}(E)
$$

- But for a general E, the vectors v_{-}and v_{+}are different! (Well, it couldn't be otherwise: otherwise we would have too many eigenfunctions!)
- The (countably many) parameter values at which these vectors coincide

Dynamical viewpoint on the Anderson localization

- Going to the future: hyperbolic behaviour \Rightarrow there is a vector v_{+} such that

$$
\frac{1}{n} \log \left|T_{\omega, n ; E}\left(v_{+}\right)\right| \rightarrow-\lambda_{F K}(E) .
$$

- Going to the past: there is a vector v_{-}such that

$$
\frac{1}{n} \log \left|T_{\omega,-n ; E}\left(v_{-}\right)\right| \rightarrow-\lambda_{F K}(E)
$$

- But for a general E, the vectors v_{-}and v_{+}are different! (Well, it couldn't be otherwise: otherwise we would have too many eigenfunctions!)
- The (countably many) parameter values at which these vectors coincide can be found by considering finite products from $-N$ to N and then increasing N.

