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The Isomorphism Problem

The Isomorphism Problem

Important question dating back to the foundational paper of von Neumann (1932):

The Isomorphism Problem

Classify ergodic transformations up to measure isomorphism.

classification is a method of determining isomorphism between transformations,
perhaps by computing other invariants for which equivalence is easy to determine.
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The Isomorphism Problem

The Isomorphism Problem

The Isomorphism Problem

Determine when two transformations are isomorphic.

Halmos-von Neumann (1942): The spectrum of the associated Koopman
operator (UT : L2(X )→ L2(X ), UT f = f ◦ T ) is a complete isomorphism
invariant for ergodic transformations with pure point spectrum

BUT: These are exactly the transformations that can be realized as
translations on compact groups.

Ornstein (1970): two Bernoulli shifts are isomorphic if and only if they have
the same measure entropy.

BUT: Construction of uncountable family of non-isomorphic
K-automorphisms with the same entropy (Ornstein-Shields 1973)
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Anti-classification results

von Neumann’s Classification problem is impossible

Theorem (Foreman-Rudolph-Weiss 2011)

{(S ,T ) | S and T are ergodic and isomorphic} ⊆ E(X )× E(X )

is a complete analytic set. In particular, it is not Borel.

Descriptively: determining isomorphism between ergodic transformations is
inaccessible to countable methods that use countable amount of information.

M. Foreman, D. Rudolph, B. Weiss
The conjugacy problem in ergodic theory
Annals of Mathematics 173 (2011): 1529-1586
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Anti-classification results Basics of Descriptive Set Theory

Basics of Descriptive Set Theory

Let X ,Y be Polish spaces (i.e. separable completely metrizable topol. spaces).

Definition: Reduction

Let A ⊆ X and B ⊆ Y . A function f : X → Y reduces A to B iff for all x ∈ X :

x ∈ A if and only if f (x) ∈ B.

Such f is called a Borel (resp. continuous) reduction if f is a Borel (resp.
continuous) function.

“B is at least as complicated as A”

Definition: Analytic set

B ⊂ X is analytic iff it is the continuous image of a Borel subset of a Polish space.

Definition: Complete analytic set

An analytic set A is called complete analytic iff every analytic set can be reduced
to A by a Borel function.

Since there are analytic non-Borel sets, a complete analytic set is not Borel.
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Anti-classification results Basics of Descriptive Set Theory

Canonical example of a complete analytic set

N<N: finite sequences of natural numbers
A tree is a set T ⊆ N<N such that if τ ∈ T and σ is an initial segment of τ , then
σ ∈ T .
T REES : space of trees with arbitrarily long finite sequences

An infinite branch through a tree T is a function f : N→ N such that for all
n ∈ N:

(f (0), f (1), . . . , f (n − 1)) ∈ T .

A tree is called ill-founded iff it has an infinite branch.

Classical fact

The collection of ill-founded trees is a complete analytic subset of T REES .
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Anti-classification results Idea of proof

Idea of proof

Construct a continuous function F : T REES → E(X ) such that for T ∈ T REES :

T has an infinite branch if and only if F (T ) ∼= F (T )−1.

Then {
T ∈ E(X )

∣∣ T ∼= T−1
}

is complete analytic.

Use
i : E(X )→ E(X )× E(X ), i(T ) = (T ,T−1)

to reduce
{
T
∣∣ T ∼= T−1

}
to {(S ,T ) | S ∼= T}.

Hence, {(S ,T ) | S ∼= T} is complete analytic.
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Anti-classification results Idea of proof

Symbolic systems

The constructed ergodic transformations are odometer-based systems.

Let Σ be a finite alphabet.

Definition: Construction sequence

A construction sequence is a sequence of collections of words (Wn)n∈N, satisfying
the following properties:

1 for every n ∈ N all words in Wn have the same length hn,

2 each w ∈Wn occurs at least once as a subword of each w ′ ∈Wn+1,

3 there is a summable sequence (εn)n∈N of positive numbers such that for every
n ∈ N, every word w ∈Wn+1 can be uniquely parsed into segments
u0w1u1w1 . . .wlul+1 such that each wi ∈Wn, each ui (called spacer or
boundary) is a word in Σ of finite length and for this parsing∑l+1

i=0|ui |
hn+1

< εn+1.

Let K be the collection of x ∈ ΣZ such that every finite contiguous substring of x
occurs inside some w ∈Wn.
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Anti-classification results Idea of proof

Odometer-based systems

Definition: Unique readability

Let Σ be a language and W be a collection of finite words in Σ. Then W is
uniquely readable iff whenever u, v ,w ∈W and uv = pws with p and s strings of
symbols in Σ, then either p or s is the empty word.

Definition: Uniformity

We call a construction sequence (Wn)n∈N uniform if for each n ∈ N there is a
constant c > 0 such that for all words w ′ ∈Wn+1 and w ∈Wn the number of
occurrences of w in w ′ is equal to c .

Let (kn)n∈N be a sequence of natural numbers kn ≥ 2.

Definition: Odometer-based systems

Let (Wn)n∈N be a uniquely readable construction sequence with W0 = Σ and

Wn+1 ⊆ (Wn)kn for every n ∈ N. The associated symbolic shift will be called an
odometer-based system.

Philipp Kunde (PSU) LB odometer, nLB circular systems Vision 2020 9 / 31



Anti-classification results Idea of proof

Odometer-based systems

Definition: Unique readability

Let Σ be a language and W be a collection of finite words in Σ. Then W is
uniquely readable iff whenever u, v ,w ∈W and uv = pws with p and s strings of
symbols in Σ, then either p or s is the empty word.

Definition: Uniformity

We call a construction sequence (Wn)n∈N uniform if for each n ∈ N there is a
constant c > 0 such that for all words w ′ ∈Wn+1 and w ∈Wn the number of
occurrences of w in w ′ is equal to c .

Let (kn)n∈N be a sequence of natural numbers kn ≥ 2.

Definition: Odometer-based systems

Let (Wn)n∈N be a uniquely readable construction sequence with W0 = Σ and

Wn+1 ⊆ (Wn)kn for every n ∈ N. The associated symbolic shift will be called an
odometer-based system.

Philipp Kunde (PSU) LB odometer, nLB circular systems Vision 2020 9 / 31



Anti-classification results Idea of proof

Odometer-based systems

Definition: Unique readability

Let Σ be a language and W be a collection of finite words in Σ. Then W is
uniquely readable iff whenever u, v ,w ∈W and uv = pws with p and s strings of
symbols in Σ, then either p or s is the empty word.

Definition: Uniformity

We call a construction sequence (Wn)n∈N uniform if for each n ∈ N there is a
constant c > 0 such that for all words w ′ ∈Wn+1 and w ∈Wn the number of
occurrences of w in w ′ is equal to c .

Let (kn)n∈N be a sequence of natural numbers kn ≥ 2.

Definition: Odometer-based systems

Let (Wn)n∈N be a uniquely readable construction sequence with W0 = Σ and

Wn+1 ⊆ (Wn)kn for every n ∈ N. The associated symbolic shift will be called an
odometer-based system.

Philipp Kunde (PSU) LB odometer, nLB circular systems Vision 2020 9 / 31



Smooth Ergodic Theory Smooth realization problem

Smooth Ergodic Theory

Another important question dating back to the foundational paper of von
Neumann (1932):
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Smooth Ergodic Theory Smooth realization problem

Smooth realization problem

Smooth realization problem

Are there smooth versions to the objects and concepts of abstract ergodic theory?

By a smooth version we mean a C∞-diffeomorphism of a compact manifold
preserving a C∞-measure equivalent to the volume element that is
measure-isomorphic to a given automorphism.

Existence of volume-preserving diffeomorphisms with ergodic properties?

What ergodic properties, if any, are imposed upon a dynamical system by the
fact that it should be smooth?
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Smooth Ergodic Theory Smooth realization problem

Smooth realization problem

Known restrictions:

M smooth compact manifold, T ∈ Diff∞(M, µ). Then: hµ(T ) <∞.
(Kushnirenko 1965)

In case of M = S1: Any diffeomorphism with invariant smooth measure is
conjugated to a rotation

In dimension d = 2: Weakly mixing diffeomorphisms of positive measure
entropy are Bernoulli (Pesin 1977)

No restrictions for d > 2 (or in case of entropy 0 for d ≥ 2) are known!

On the other hand: Scarcity of general results

Philipp Kunde (PSU) LB odometer, nLB circular systems Vision 2020 12 / 31



Smooth Ergodic Theory Smooth realization problem

Smooth realization problem

Known restrictions:

M smooth compact manifold, T ∈ Diff∞(M, µ). Then: hµ(T ) <∞.
(Kushnirenko 1965)

In case of M = S1: Any diffeomorphism with invariant smooth measure is
conjugated to a rotation

In dimension d = 2: Weakly mixing diffeomorphisms of positive measure
entropy are Bernoulli (Pesin 1977)

No restrictions for d > 2 (or in case of entropy 0 for d ≥ 2) are known!

On the other hand: Scarcity of general results

Philipp Kunde (PSU) LB odometer, nLB circular systems Vision 2020 12 / 31



Smooth Ergodic Theory Smooth realization problem

The odometer obstacle

Smooth realization of transformations with a non-trivial odometer factor is an
open problem

B. Fayad, A. Katok
Constructions in elliptic dynamics
ETDS 24 (2004), 1477-1520.
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Smooth Ergodic Theory Anti-classification result

Anti-classification result for C∞-diffeos

In a recent series of papers Foreman and Weiss extended their anti-classification
result to the C∞-setting:

Theorem (Foreman-Weiss)

Let M be either the torus T2, the disk D2 or the annulus S1 × [0, 1]. Then the
measure isomorphism relation among pairs (S ,T ) of area-preserving ergodic
C∞-diffeomorphisms of M is complete analytic and hence not Borel.

von Neumann’s classification problem is impossible even when restricting to
smooth diffeomorphisms
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Smooth Ergodic Theory AbC-method

Approximation by Conjugation-method: Setting

Let M be a smooth compact connected manifold of dimension d ≥ 2 admitting a
non-trivial circle action S = {St}t∈S1 preserving a smooth volume µ,
e.g. torus T2, annulus S1 × [0, 1] or disc D2 with standard circle action comprising
of the diffeomorphisms St (θ, r) = (θ + t, r).

We construct a sequence of measure-preserving diffeomorphisms

Tn = Hn ◦ Sαn ◦ H−1n ,

where
αn = pn

qn
∈ Q with pn, qn relatively prime,

Hn = h1 ◦ h2 ◦ ... ◦ hn with hi measure-preserving diffeomorphism of M.

We need a criterion for the aimed property expressed on the level of the maps
Tn and appropriate partitions of the manifold.
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Smooth Ergodic Theory AbC-method

Scheme

Construction of Tn = Hn ◦ Sαn ◦ H−1n :

Initial step: Choose α0 = p0
q0

arbitrary, T0 = Sα0 .

Step n + 1:
Put αn+1 = pn+1

qn+1
= αn + 1

ln·kn·q2
n

with parameters ln, kn ∈ Z.

The conjugation map hn+1 and the parameter ln are chosen such that
hn+1 ◦ Sαn = Sαn ◦ hn+1 and Tn+1 imitates the desired property with a certain
precision.

Then the parameter kn is chosen large enough to guarantee closeness of Tn+1

to Tn in the C∞-topology:

Tn+1 = Hn+1 ◦ Sαn+1 ◦ H−1n+1

= Hn ◦ hn+1 ◦ Sαn ◦ S 1
ln·kn·q2n

◦ h−1n+1 ◦ H
−1
n

= Hn ◦ Sαn ◦ hn+1 ◦ S 1
ln·kn·q2n

◦ h−1n+1 ◦ H
−1
n ≈Hn ◦ Sαn ◦ H−1n = Tn

=⇒ Convergence of the sequence (Tn)n∈N to a limit diffeomorphism with the
aimed properties
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Smooth Ergodic Theory AbC-method

Circular systems

Symbolic representation of untwisted AbC-diffeomorphisms: circular systems.

A circular coefficient sequence is a sequence of pairs of integers (kn, ln)n∈N such

that kn ≥ 2 and
∑

n∈N
1
ln
<∞. Let Σ be a non-empty finite alphabet and b, e be

two additional symbols (called spacers). Then we build collections of words Wn in
the alphabet Σ ∪ {b, e} by induction as follows:

Set W0 = Σ.

Having built Wn we choose a set Pn+1 ⊆ (Wn)kn of so-called prewords and
form Wn+1 by taking all words of the form

Cn (w0,w1, . . . ,wkn−1) =

qn−1∏
i=0

kn−1∏
j=0

(
bqn−jiw ln−1

j e ji
)

with w0 . . .wkn−1 ∈ Pn+1. If n = 0 we take j0 = 0, and for n > 0 we let
ji ∈ {0, . . . , qn − 1} be such that

ji ≡ (pn)−1 i mod qn.

We note that each word in Wn+1 has length qn+1 = knlnq
2
n.
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Smooth Ergodic Theory AbC-method

Circular systems

A construction sequence (Wn)n∈N will be called circular if it is built in this manner
using the C-operators, a circular coefficient sequence and each Pn+1 is uniquely
readable in the alphabet with the words from Wn as letters.

Circular system

A symbolic shift Kc built from a circular construction sequence is called a circular
system.

realizable as smooth diffeomorphisms using the untwisted AbC method
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Functor between OB and CB

Functor between OB and CB
Let Σ be an alphabet and (Wn)n∈N be a construction sequence for an
odometer-based system with coefficients (kn)n∈N. Then we define a circular
construction sequence (Wn)n∈N and bijections cn : Wn →Wn by induction:

Let W0 = Σ and c0 be the identity map.
Suppose that Wn, Wn and cn have already been defined. Then we define

Wn+1 = {Cn (cn (w0) , cn (w1) , . . . , cn (wkn−1)) : w0w1 . . . wkn−1 ∈ Wn+1}
and the map cn+1 by setting

cn+1 (w0w1 . . . wkn−1) = Cn (cn (w0) , cn (w1) , . . . , cn (wkn−1)) .

In particular, the prewords are

Pn+1 = {cn (w0) cn (w1) . . . cn (wkn−1) : w0w1 . . . wkn−1 ∈ Wn+1} .

Functor F
Suppose that K is built from a construction sequence (Wn)n∈N and Kc has the
circular construction sequence (Wn)n∈N as constructed above. Then we define a
map F by

F (K) = Kc .
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Functor between OB and CB

Properties of the functor

Theorem (Foreman-Weiss 2019)

The functor F preserves

weakly mixing extensions,

compact extensions,

factor maps,

certain types of isomorphisms,

the rank-one property,

...

M. Foreman and B. Weiss
From Odometers to Circular Systems: A Global Structure Theorem.
Preprint, arXiv:1703.07093. To appear in JMD.

Question

What other dynamical properties are preserved under F?

Thouvenot: Does F preserve the loosely Bernoulli property?
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The loosely Bernoulli property

Kakutani Equivalence

Let (X ,A,m,T ) and A ∈ A with m(A) > 0. Induced transformation TA:

TA(x) = T n(x)(x), where n(x) = inf {n ∈ N | T n(x) ∈ A} .

Kakutani equivalence

Two ergodic transformations (X ,A,m,T ) and (Y ,B, µ,S) are said to be
Kakutani equivalent if there exist a set A ∈ A with m(A) > 0 and a set B ∈ B
with µ(B) > 0 such that (TA,mA) is isomorphic to (SB , µB).

From Abramov’s entropy formula h(TA) = h(T )
m(A) : two Kakutani equivalent

automorphisms must both have entropy zero, both have finite positive entropy, or
both have infinite entropy.
It was a long-standing open problem whether these three possibilities for entropy
completely characterized Kakutani equivalence classes, but Feldman (1976): there
are at least two non-Kakutani equivalent ergodic transformations in each of the
three entropy classes. Ornstein-Rudolph-Weiss (1982): uncountable family
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The loosely Bernoulli property

The loosely Bernoulli property

Introduced by Katok (1975) in the case of zero entropy, and, independently, by
Feldman (1976) in the general case.

The loosely Bernoulli property

An ergodic automorphism T that is Kakutani equivalent to an irrational circle
rotation (in the case of entropy zero) or a Bernoulli shift (in case of non-zero
entropy) is said to be loosely Bernoulli.

Zero-entropy loosely Bernoulli automorphisms are also called standard.
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The loosely Bernoulli property

The f distance

Suppose T : (X , µ)→ (X , µ) is a measure-preserving automorphism and
P = (P1, . . . ,Pq) is a finite measurable partition of X . If b, c ∈ Z with b ≤ c ,
then the T -P name of a point x ∈ X from time b to time c is the finite sequence
(ab, ab+1, . . . , ac) where T i (x) ∈ Pai for b ≤ i ≤ c .

If b = 0 and c = n − 1 for
some n ∈ N, then (a0, . . . , an−1) is called the T -P-n name of x . If n ∈ N, and
x , y ∈ X , then the f distance between the T -P-n names of x and y is

f T ,P,n(x , y) = 1− (m/n),

where m = sup
{
j : there exist 0 ≤ k1 < · · · < kj < n and 0 ≤ `1 < · · · < `j <

n such that T ki x and T `i y are in the same element of P for i = 1, . . . , j
}
.

The f distance was used by Feldman to create a Kakutani equivalence theory for
loosely Bernoulli automorphisms that parallels Ornstein’s d metric and his
isomorphism theory for Bernoulli shifts:

dT ,P,n(x , y) =
1

n

∣∣{0 ≤ i < n
∣∣ T i (x) and T i (y) are in different elements of P

}∣∣ .
Example: 010101 and 101010 are 1

6 apart in f while they are 1 apart in d .
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The loosely Bernoulli property

Loosely Bernoulli automorphisms of zero entropy

In case of zero entropy, the f distance gives a simple characterization of loosely
Bernoulli automorphisms:

Characterization LB in case of zero entropy

A zero-entropy process (T ,P) is said to be loosely Bernoulli if for every ε > 0
there exists N ∈ N and a set A of measure greater than 1− ε such that
f T ,P,N(x , y) < ε for all x , y ∈ A.
A transformation T is LB if (T ,P) is an LB process for every finite partition P.
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Non-preservation of LB property

Results

Theorem (Gerber-K.)

There exist

1 a loosely Bernoulli odometer-based system E of positive entropy such that
F(E) is not loosely Bernoulli.

2 a loosely Bernoulli odometer-based system K of entropy zero such that F(K)
is not loosely Bernoulli.

3 a non-loosely Bernoulli odometer-based system L of entropy zero such that
F(L) is loosely Bernoulli.
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Non-preservation of LB property

Idea of proof for (2)

Alternate application of two mechanisms:

Feldman mechanism: Produce arbitrary number of (n + 1)-blocks which are
almost as far apart in f̄ as n-blocks. The construction is based on the
observation that no pair of the following strings

abababab

aabbaabb

aaaabbbb

can be matched very well.

Shifting mechanism: Given sufficiently many (n + 1)-blocks we can build
prescribed number of (n + p)-blocks that are close to each other in f̄ in the
odometer-based system, while they stay f̄ apart in the circular system
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Non-preservation of LB property

Idea of the shifting mechanism
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Anti-classification result for real-analytic diffeos Real-analytic topology

Real-analytic topology

Real-analytic diffeomorphisms of T2 homotopic to the identity have a lift of type

F (x1, x2) = (x1 + f1 (x1, x2) , x2 + f2 (x1, x2)) ,

where the functions fi : R2 → R are real-analytic and Z2-periodic for i = 1, 2.

Definition

For any ρ > 0 we consider the set of real-analytic Z2-periodic functions on R2,
that can be extended to a holomorphic function on

Aρ =
{

(z1, z2) ∈ C2 : |im (zi )| < ρ for i = 1, 2
}
.

‖f ‖ρ = sup(z1,z2)∈Aρ |f (z1, z2)|.
Cωρ
(
T2
)
: set of these functions satisfying the condition ‖f ‖ρ <∞.

Diffωρ
(
T2, µ

)
: set of volume-preserving diffeomorphisms homotopic to the

identity, whose lift satisfies fi ∈ Cωρ
(
T2
)

for i = 1, 2.
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Real-analytic topology

Real-analytic diffeomorphisms of T2 homotopic to the identity have a lift of type

F (x1, x2) = (x1 + f1 (x1, x2) , x2 + f2 (x1, x2)) ,

where the functions fi : R2 → R are real-analytic and Z2-periodic for i = 1, 2.

Definition

For any ρ > 0 we consider the set of real-analytic Z2-periodic functions on R2,
that can be extended to a holomorphic function on

Aρ =
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(z1, z2) ∈ C2 : |im (zi )| < ρ for i = 1, 2
}
.
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T2
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Anti-classification result for real-analytic diffeos

Theorem (Banerjee-K)

For every ρ > 0 the measure-isomorphism relation among pairs (S ,T ) of ergodic
Diffωρ

(
T2, µ

)
-diffeomorphisms is a complete analytic set and hence not Borel.

von Neumann’s classification problem is impossible even when restricting to
real-analytic diffeomorphisms of the torus
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Thank you very much for your attention!
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