On some spectral problems in ergodic theory

Mariusz Lemańczyk

Nicolaus Copernicus University, Toruń

Anatole Katok's memorial conference, Bedlewo, 12.08.2019

Spectral theory. Koopman operator

$\square(X, \mathcal{B}, \mu)$ probability, standard Borel space (non-atomic!),

- $L^{2}(X, \mathcal{B}, \mu)$ is separable,
- $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ invertible, measure-preserving; also notation $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$,
- Koopman operator: U_{T}

$\overline{U_{T} f}:=f \circ T$ for $f \in L^{2}(X, \mathcal{B}, \mu)$,
- Spectral theory: properties of U_{T}, that is, properties of T that are stable under spectral isomorphism in $\operatorname{Aut}(X, \mathcal{B}, \mu)$.
- Ergodicity, weak mixing, mixing are spectral properties. ${ }^{1}$
$\square(X, \mathcal{B}, \mu)$ probability, standard Borel space (non-atomic!),
- $L^{2}(X, \mathcal{B}, \mu)$ is separable,
- $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ invertible, measure-preserving; also notation $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$,
- Koopman operator: $U_{T}: L^{2}(X, \mathcal{B}, \mu) \rightarrow L^{2}(X, \mathcal{B}, \mu)$, $U_{T} f:=f \circ T$ for $f \in L^{2}(X, \mathcal{B}, \mu)$,
- Spectral theory: properties of U_{T}, that is, properties of T that are stable under spectral isomorphism in $\operatorname{Aut}(X, \mathcal{B}, \mu)$.
- Ergodicity, weak mixing, mixing are spectral properties. ${ }^{1}$
$\square(X, \mathcal{B}, \mu)$ probability, standard Borel space (non-atomic!),
- $L^{2}(X, \mathcal{B}, \mu)$ is separable,

■ $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ invertible, measure-preserving; also notation $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$,

- Koopman operator: $U_{T}: L^{2}(X, \mathcal{B}, \mu) \rightarrow L^{2}(X, \mathcal{B}, \mu)$, $U_{T} f:=f \circ T$ for $f \in L^{2}(X, \mathcal{B}, \mu)$,
- Spectral theory: properties of U_{T}, that is, properties of T that are stable under spectral isomorphism in $\operatorname{Aut}(X, \mathcal{B}, \mu)$.
- Ergodicity, weak mixing, mixing are spectral properties. ${ }^{1}$
${ }^{1}$ Entropy is not; mixing of all orders unknown...

Why not Koopman on $L^{p}(X, \mathcal{B}, \mu)$? :-(

- $p \neq 2$
- $T \in \operatorname{Aut}(X, \mathcal{B}, \mu), S \in \operatorname{Aut}(Y, \mathcal{C}, \nu)$ are ergodic, $V: L^{p}(X, \mathcal{B}, \mu) \rightarrow L^{p}(Y, \mathcal{C}, \nu)$ an isometry such that $V \circ U_{T}=U_{S} \circ V$.

Proposition
Under the above assumptions T and S are
isomorphic.

- Use Lamperti's theorem to obtain that $(V f)(y)=j(y) \cdot f(J y)$, where $J: Y \rightarrow X$ is
- Equivariance yields: $j(y) f(T J y)=j(S y) f(J S y)$; take $f=1$, to obtain that $j=$ const by the ergodicity of S.
- Notice that the image $J_{*}(\nu)$ is a T-invariant, ergodic measure satisfying $J_{*}(\nu) \ll \mu$, and use ergodicity of T to conclude.

Why not Koopman on $L^{p}(X, \mathcal{B}, \mu)$?

- $p \neq 2$
- $T \in \operatorname{Aut}(X, \mathcal{B}, \mu), S \in \operatorname{Aut}(Y, \mathcal{C}, \nu)$ are ergodic, $V: L^{p}(X, \mathcal{B}, \mu) \rightarrow L^{p}(Y, \mathcal{C}, \nu)$ an isometry such that $V \circ U_{T}=U_{S} \circ V$.

Proposition
Under the above assumptions T and S are measure-theoretically isomorphic.

- Use Lamperti's theorem to obtain that $(V f)(y)=j(y) \cdot f(J y)$, where $J: Y \rightarrow X$ is
- Equivariance yields: $j(y) f(T J y)=j(S y) f(J S y)$; take $f=1$, to obtain that $j=$ const by the ergodicity of S.
- Notice that the image $J_{*}(\nu)$ is a T-invariant, ergodic measure satisfying $J_{*}(\nu) \ll \mu$, and use ergodicity of T to conclude.

Why not Koopman on $L^{p}(X, \mathcal{B}, \mu)$?

- $p \neq 2$
- $T \in \operatorname{Aut}(X, \mathcal{B}, \mu), S \in \operatorname{Aut}(Y, \mathcal{C}, \nu)$ are ergodic, $V: L^{p}(X, \mathcal{B}, \mu) \rightarrow L^{p}(Y, \mathcal{C}, \nu)$ an isometry such that $V \circ U_{T}=U_{S} \circ V$.

Proposition

Under the above assumptions T and S are measure-theoretically isomorphic.

■ Use Lamperti's theorem to obtain that $(V f)(y)=j(y) \cdot f(J y)$, where $J: Y \rightarrow X$ is non-singular.

- Equivariance yields: $j(y) f(T J y)=j(S y) f(J S y)$; take $f=1$, to obtain that $j=$ const by the ergodicity of S.
- Notice that the image $J_{*}(\nu)$ is a T-invariant, ergodic measure satisfying $J_{*}(\nu) \ll \mu$, and use ergodicity of T to conclude.

Why not Koopman on $L^{p}(X, \mathcal{B}, \mu)$? :-)

■ (Thouvenot's problem, 1986) Is is true that for each ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ there exists $f \in L^{1}(X, \mathcal{B}, \mu)$ such that $L^{1}(X, \mathcal{B}, \mu)=\overline{\operatorname{span}}\left\{f \circ T^{k}: k \in \mathbb{Z}\right\}$ for some $f \in L^{1}(X, \mathcal{B}, \mu)$?
each $n \geqslant 1$ and all $f_{1}, \ldots, f_{n} \in L^{p}(X, \mathcal{B}, \mu)$, we have

$$
\operatorname{span}\left\{f_{j} \circ T^{k}: k \in \mathbb{Z}, j=1, \ldots, n\right\} \neq L^{P}(X, B, \mu)
$$

(Bernoulli automorphisms have infinite "multiplicity" in all L^{p} spaces whenever $p>1$).

Why not Koopman on $L^{p}(X, \mathcal{B}, \mu)$? :-)

- (Thouvenot's problem, 1986) Is is true that for each ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ there exists $f \in L^{1}(X, \mathcal{B}, \mu)$ such that $L^{1}(X, \mathcal{B}, \mu)=\overline{\operatorname{span}}\left\{f \circ T^{k}: k \in \mathbb{Z}\right\}$ for some $f \in L^{1}(X, \mathcal{B}, \mu)$?
■ (Iwanik, 1991) For each Bernoulli automorphism T and $p>1$, each $n \geqslant 1$ and all $f_{1}, \ldots, f_{n} \in L^{p}(X, \mathcal{B}, \mu)$, we have

$$
\overline{\operatorname{span}}\left\{f_{j} \circ T^{k}: k \in \mathbb{Z}, j=1, \ldots, n\right\} \neq L^{p}(X, \mathcal{B}, \mu)
$$

(Bernoulli automorphisms have infinite "multiplicity" in all L^{p} spaces whenever $p>1$).

Classification of unitary operators on separable Hilbert spaces. I

Theorem (Herglotz)

If $U: H \rightarrow H$ is a unitary operator on a Hilbert space H and $f \in H$, then the sequence $\mathbb{Z} \ni k \mapsto\left\langle U^{k} f, f\right\rangle$ is positive definite and theorefore there exists a unique (positive, Borel) measure σ_{f} on \mathbb{S}^{1} such that

$$
\widehat{\sigma}_{f}(k):=\int_{\mathbb{S}^{1}} z^{k} d \sigma_{f}(z)=\left\langle U^{k} f, f\right\rangle \text { for each } k \in \mathbb{Z}
$$

- σ_{f} is called the spectral measure of f.

Classification of unitary operators on separable Hilbert spaces. I

Theorem (Herglotz)

If $U: H \rightarrow H$ is a unitary operator on a Hilbert space H and $f \in H$, then the sequence $\mathbb{Z} \ni k \mapsto\left\langle U^{k} f, f\right\rangle$ is positive definite and theorefore there exists a unique (positive, Borel) measure σ_{f} on \mathbb{S}^{1} such that

$$
\widehat{\sigma}_{f}(k):=\int_{\mathbb{S}^{1}} z^{k} d \sigma_{f}(z)=\left\langle U^{k} f, f\right\rangle \text { for each } k \in \mathbb{Z}
$$

- σ_{f} is called the spectral measure of f.

Classification of unitary operators on separable Hilbert spaces. II

- $H_{\sigma}:=L^{2}\left(\mathbb{S}^{1}, \sigma\right)$, where σ is a (positive, Borel) finite measure on the circle,
$\square V_{\sigma}: H_{\sigma} \rightarrow H_{\sigma} ;\left(V_{\sigma} f\right)(z)=z f(z)$ is unitary,
- $H_{\sigma}=\mathbb{Z}(\mathbb{1}):=\overline{\operatorname{span}}\left\{V_{\sigma}^{k} \mathbb{1}: k \in \mathbb{Z}\right\}$ - one says that H_{σ} is equal to the cyclic space $\mathbb{Z}(\mathbb{1})$, where $\mathbb{1}(z)=1$.
> - V_{σ} is an example of a unitary operator (defined on a separable Hilbert space) with simple spectrum.
> - If H is a (senarable) Hilbert snace and U is a unitary operator on it such that $H=\mathbb{Z}(f)$ for some $f \in H$, then the map

extends to a (linear) isometry intertwining U and V_{C} - If above holds, we say that U has simple spectrum.

Classification of unitary operators on separable Hilbert spaces. II

- $H_{\sigma}:=L^{2}\left(\mathbb{S}^{1}, \sigma\right)$, where σ is a (positive, Borel) finite measure on the circle,
$\square V_{\sigma}: H_{\sigma} \rightarrow H_{\sigma} ;\left(V_{\sigma} f\right)(z)=z f(z)$ is unitary,
- $H_{\sigma}=\mathbb{Z}(\mathbb{1}):=\overline{\operatorname{span}}\left\{V_{\sigma}^{k} \mathbb{1}: k \in \mathbb{Z}\right\}$ - one says that H_{σ} is equal to the cyclic space $\mathbb{Z}(\mathbb{1})$, where $\mathbb{1}(z)=1$.
- V_{σ} is an example of a unitary operator (defined on a separable Hilbert space) with simple spectrum.
- If H is a (separable) Hilbert space and U is a unitary operator
on it such that $H=\mathbb{Z}(f)$ for some $f \in H$, then the map
extends to a (linear) isometry intertwining U and V_{σ} - If above holds, we say that U has simple spectrum.

Classification of unitary operators on separable Hilbert spaces. II

- $H_{\sigma}:=L^{2}\left(\mathbb{S}^{1}, \sigma\right)$, where σ is a (positive, Borel) finite measure on the circle,
$\square V_{\sigma}: H_{\sigma} \rightarrow H_{\sigma} ;\left(V_{\sigma} f\right)(z)=z f(z)$ is unitary,
- $H_{\sigma}=\mathbb{Z}(\mathbb{1}):=\overline{\operatorname{span}}\left\{V_{\sigma}^{k} \mathbb{1}: k \in \mathbb{Z}\right\}$ - one says that H_{σ} is equal to the cyclic space $\mathbb{Z}(\mathbb{1})$, where $\mathbb{1}(z)=1$.
- V_{σ} is an example of a unitary operator (defined on a separable Hilbert space) with simple spectrum.
- If H is a (separable) Hilbert space and U is a unitary operator on it such that $H=\mathbb{Z}(f)$ for some $f \in H$, then the map

$$
U^{k} f \mapsto V_{\sigma_{f}}^{k}(\mathbb{1})=z^{k}
$$

extends to a (linear) isometry intertwining U and $V_{\sigma_{f}}$.

- If above holds, we say that U has simple spectrum.

Classification of unitary operators on separable Hilbert spaces. III

■ U:H $\rightarrow H$ unitary on a separable Hilbert space

```
Spectral theorem
There exists a decomposition, called a
H=\mp@subsup{\bigoplus}{n\geqslant1}{}\mathbb{Z}(\mp@subsup{f}{n}{})\mathrm{ such that}
For any other spectral decomposition H=\mp@subsup{\bigoplus}{n\geqslant1}{}\mathbb{Z}(\mp@subsup{f}{n}{\prime})\mathrm{ , we have}
\sigma}\mp@subsup{f}{n}{}\equiv\mp@subsup{\sigma}{\mp@subsup{f}{n}{\prime}}{}\mathrm{ for each }n\geqslant1
- (the type of) \(\sigma_{f_{1}}\) is called the maximal spectral type of \(U\) and is denoted by \(\sigma_{U}\).
- \(M U(z):=\sum_{n \geqslant 1} \mathbb{1}_{\text {supp }} \frac{d \sigma_{f_{n}}}{d \sigma_{1}}(z)\) is called the spectral multiplicity function of \(U\) (it is defined \(\sigma_{U}\)-a.e.)
- Any sequence \(\sigma_{1} \gg \sigma_{2} \ldots\) can be realized as a spectral sequence of some \(U\).
- Two unitary operators are (spectrally) isomorphic if and only if they have the same spectral sequence \((*)\) (up to equivalence od spectral measures).
```


Classification of unitary operators on separable Hilbert spaces. III

■ U:H $\rightarrow H$ unitary on a separable Hilbert space H.

Spectral theorem

There exists a decomposition, called a spectral decomposition, $H=\bigoplus_{n \geqslant 1} \mathbb{Z}\left(f_{n}\right)$ such that
(*) $\quad \sigma_{f_{1}} \gg \sigma_{f_{2}} \gg \ldots$ (spectral sequence).
For any other spectral decomposition $H=\bigoplus_{n \geqslant 1} \mathbb{Z}\left(f_{n}^{\prime}\right)$, we have (**)

$$
\sigma_{f_{n}} \equiv \sigma_{f_{n}^{\prime}} \text { for each } n \geqslant 1
$$

Classification of unitary operators on separable Hilbert spaces. |||

■ U:H $\rightarrow H$ unitary on a separable Hilbert space H.

Spectral theorem

There exists a decomposition, called a spectral decomposition, $H=\bigoplus_{n \geqslant 1} \mathbb{Z}\left(f_{n}\right)$ such that
(*) $\quad \sigma_{f_{1}} \gg \sigma_{f_{2}} \gg \ldots$ (spectral sequence).
For any other spectral decomposition $H=\bigoplus_{n \geqslant 1} \mathbb{Z}\left(f_{n}^{\prime}\right)$, we have $(* *) \quad \sigma_{f_{n}} \equiv \sigma_{f_{n}^{\prime}}$ for each $n \geqslant 1$.

- (the type of) $\sigma_{f_{1}}$ is called the maximal spectral type of U and is denoted by σ_{U}.
- $M_{U}(z):=\sum_{n \geqslant 1} \mathbb{1}_{\text {supp }} \frac{d \sigma_{f_{n}}}{d \sigma_{1}}(z)$ is called the spectral multiplicity function of U (it is defined σ_{U}-a.e.).
- Any sequence $\sigma_{1} \gg \sigma_{2} \ldots$ can be realized as a spectral sequence of some U.
- Two unitary operators are (spectrally) isomorphic if and only if they have the same spectral sequence $(*)$ (up to equivalence od spectral measures).

Basic questions of spectral theory of Koopman operators

■ Which sequences $\sigma_{1} \gg \sigma_{2} \gg \ldots$ appear as spectral sequences of Koopman operators $\left.U_{T}\right|_{L_{0}^{2}(X, \mathcal{B}, \mu)}$ for ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$?
called Koopman realizable).

Basic questions of spectral theory of Koopman operators

- Which sequences $\sigma_{1} \gg \sigma_{2} \gg \ldots$ appear as spectral sequences of Koopman operators $\left.U_{T}\right|_{L_{0}^{2}(X, \mathcal{B}, \mu)}$ for ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$?
(A) What measures appear as maximal spectral type of an ergodic automorphism?
(B) What subsets of $\mathbb{N} \cup\{\infty\}$ appear as the set essval $\left(M_{T}\right)$ of essential values of an ergodic automorphism T? (Such sets are called Koopman realizable).

- Which sequences $\sigma_{1} \gg \sigma_{2} \gg \ldots$ appear as spectral sequences of Koopman operators $\left.U_{T}\right|_{L_{0}^{2}(X, \mathcal{B}, \mu)}$ for ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$?
(A) What measures appear as maximal spectral type of an ergodic automorphism?
(B) What subsets of $\mathbb{N} \cup\{\infty\}$ appear as the set essval $\left(M_{T}\right)$ of essential values of an ergodic automorphism T? (Such sets are called Koopman realizable).

Examples: (i) T Bernoulli: $\lambda \equiv \lambda \equiv \ldots$, so $\sigma_{U_{T}}=\sigma_{T}=[\lambda]$, $\operatorname{essval}\left(M_{T}\right)=\{\infty\}$ (all Bernoulli automorphisms are spectrally isomorphic).
(ii) T irrational rotation: $\sigma \gg 0 \equiv 0 \equiv \ldots$, where $\sigma_{T}=\sigma=\sum_{\ell=1}^{\infty} \frac{1}{2^{\ell}} \delta_{e^{2 \pi i \ell \alpha}}$ and $\operatorname{essval}\left(M_{T}\right)=\{1\}$ (ergodic automorphisms with discrete spectrum have simple spectrum).

Maximal spectral type. I

Proposition (Known restrictions:)

(i) Topological support $\operatorname{supp}\left(\sigma_{T}\right)$ of σ_{T} is \mathbb{S}^{1}.
(ii) The measure $\widetilde{\sigma_{T}}(A):=\sigma_{T}(\bar{A})$ is equivalent to σ_{T}.
(iii) If $e^{2 \pi i \alpha}$ is an eigenvalue of U_{T} then the measure $\sigma_{T, i}(A):=\sigma_{T}\left(e^{2 \pi i \alpha} \cdot A\right)$ is equivalent to σ_{T}.

Maximal spectral type. I

Proposition (Known restrictions:)

(i) Topological support $\operatorname{supp}\left(\sigma_{T}\right)$ of σ_{T} is \mathbb{S}^{1}.
(ii) The measure $\widetilde{\sigma_{T}}(A):=\sigma_{T}(\bar{A})$ is equivalent to σ_{T}.
(iii) If $e^{2 \pi i \alpha}$ is an eigenvalue of U_{T} then the measure $\sigma_{T, i}(A):=\sigma_{T}\left(e^{2 \pi i \alpha} \cdot A\right)$ is equivalent to σ_{T}.
\square Use $\operatorname{supp}\left(\sigma_{T}\right)=\left\{z \in \mathbb{C}: z \cdot I d-U_{T}\right.$ is not a bijection $\}=$ $\{z \in \mathbb{C}: z$ is an approximative eigenvalue $\}$; to solve $\left\|U_{T}(f)-z f\right\|_{L^{2}}<\epsilon$ use Rokhlin lemma $f=\sum_{i=0}^{h-1} z^{i} \mathbb{1}_{T^{i} F}$.

Maximal spectral type. II

- If σ is a continuous symmetric measure on the circle and $U=e^{V_{\sigma}}:=\bigoplus_{\ell \geqslant 0} V_{\sigma}^{\odot \ell}$, then U is a Koopman operator via the classical Gaussian construction. Indeed, take a centered, real stationary Gaussian process $\left(X_{n}\right)_{n \in \mathbb{Z}}$ with spectral measure σ, i.e. $\mathbb{E}\left(X_{n} \cdot X_{0}\right)=\widehat{\sigma}(n)$ for each $n \in \mathbb{Z}$, with joint distribution μ_{σ} on $\mathbb{R}^{\mathbb{Z}}$ and consider the shift T on $\left(\mathbb{R}^{\mathbb{Z}}, \mu_{\sigma}\right)$.
(in fact, weakly mixing) automorphism
(Girsanov's theorem, 1950th) Either $M_{U}=1$ or M_{U} has to be unbounded We can have $\operatorname{essval}\left(M_{U}\right)=\{1, \infty\}$ (take $\sigma \perp \lambda$ with $\sigma * \sigma \equiv \lambda$),
otherwise this set is infinite and probably has interesting arithmetic properties. Danilenko and Ryzhikov in 2010 proved that
has a a Gaussian "realization'
Not every continuous, symmetric measure can be realized as a maximal spectral type of a Koopman operator. Indeed, we can find a so called Kronecker measure σ (continuous, with full topological support) satisfying: For each $f \in L^{2}\left(\mathbb{S}^{1}, \sigma\right)$ and $\epsilon>0$ there exists $k \in \mathbb{Z}$ such that $\left\|f-z^{k}\right\|_{L^{2}(\sigma)}<\epsilon$. Then the famous Foiaș-Stratila theorem from 1967 tells us that whenever $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ is ergodic and a real-valued $f \in L^{2}(X, \mathcal{B}, \mu)$ has $\sigma_{f} \equiv \sigma$ then the process $\left(f \circ T^{n}\right)_{N \in \mathbb{Z}}$ has to be Gaussian; then f will be in the first chaos of the corresponding L^{2}-space and also $\sigma \perp \sum_{j \geqslant 2} \frac{1}{2^{j}} \sigma^{* j}$, so σ cannot be a measure of maximal spectral

Maximal spectral type. II

- If σ is a continuous symmetric measure on the circle and $U=e^{V_{\sigma}}:=\bigoplus_{\ell \geqslant 0} V_{\sigma}^{\odot \ell}$, then U is a Koopman operator via the classical Gaussian construction. Indeed, take a centered, real stationary Gaussian process $\left(X_{n}\right)_{n \in \mathbb{Z}}$ with spectral measure σ, i.e. $\mathbb{E}\left(X_{n} \cdot X_{0}\right)=\widehat{\sigma}(n)$ for each $n \in \mathbb{Z}$, with joint distribution μ_{σ} on $\mathbb{R}^{\mathbb{Z}}$ and consider the shift T on $\left(\mathbb{R}^{\mathbb{Z}}, \mu_{\sigma}\right)$.
- $\sigma_{u}=\sum_{n \geqslant 1} \frac{1}{2^{n}} \sigma^{* n}$ is a measure of maximal spectral type for an ergodic (in fact, weakly mixing) automorphism.
(Girsanov's theorem, 1950th) Either $M u=1$ or $M u$ has to be unbounded We can have $\operatorname{essval}\left(M_{U}\right)=\{1, \infty\}$ (take $\sigma \perp \lambda$ with $\left.\sigma * \sigma \equiv \lambda\right)$,
otherwise this set is infinite and probably has interesting arithmetic
properties. Danilenko and Ryzhikov in 2010 proved that
has a a Gaussian "realization"
multiplicative sub-semigroup of \mathbb{N} has a a Gaussian "realization".
Not every continuous, symmetric measure can be realized as a maximal
spectral type of a Koopman operator. Indeed, we can find a so called
Kronecker measure σ (continuous, with full topological support)
satisfying: For each $f \in L^{2}\left(\mathbb{S}^{1}, \sigma\right)$ and $\epsilon>0$ there exists $k \in \mathbb{Z}$ such that
$\left\|f-z^{k}\right\|_{L^{2}(\sigma)}<\epsilon$. Then the famous Foiass-Stratila theorem from 1967
tells us that whenever $T \in$ Aut (X, \mathcal{B}, μ) is ergodic and a real-valued
$f \in L^{2}(X, \mathcal{B}, \mu)$ has $\sigma f \equiv \sigma$ then the process $\left(f \circ T^{n}\right)_{N \in \mathbb{Z}}$ has to be
Gaussian; then f will be in the first chaos of the corresponding L^{2}-space
and also $\sigma \perp \sum_{j \geqslant 2} \frac{1}{2^{j}} \sigma^{* j}$, so σ cannot be a measure of maximal spectral

Maximal spectral type. II

- If σ is a continuous symmetric measure on the circle and $U=e^{V_{\sigma}}:=\bigoplus_{\ell \geqslant 0} V_{\sigma}^{\odot \ell}$, then U is a Koopman operator via the classical Gaussian construction. Indeed, take a centered, real stationary Gaussian process $\left(X_{n}\right)_{n \in \mathbb{Z}}$ with spectral measure σ, i.e. $\mathbb{E}\left(X_{n} \cdot X_{0}\right)=\widehat{\sigma}(n)$ for each $n \in \mathbb{Z}$, with joint distribution μ_{σ} on $\mathbb{R}^{\mathbb{Z}}$ and consider the shift T on $\left(\mathbb{R}^{\mathbb{Z}}, \mu_{\sigma}\right)$.
- $\sigma_{U}=\sum_{n \geqslant 1} \frac{1}{2^{n}} \sigma^{* n}$ is a measure of maximal spectral type for an ergodic (in fact, weakly mixing) automorphism.
- (Girsanov's theorem, 1950th) Either $M_{U}=1$ or M_{U} has to be unbounded. We can have essval $\left(M_{U}\right)=\{1, \infty\}$ (take $\sigma \perp \lambda$ with $\sigma * \sigma \equiv \lambda$), otherwise this set is infinite and probably has interesting arithmetic properties. Danilenko and Ryzhikov in 2010 proved that every multiplicative sub-semigroup of \mathbb{N} has a a Gaussian "realization". Not every continuous, symmetric measure can be realized as a maximal
spectral type of a Koopman operator. Indeed, we can find a so called
Kronecker measure $\sigma($ continuous, with full topological support)
satisfying: For each $f \in L^{2}\left(\mathbb{S}^{1}, \sigma\right)$ and $\epsilon>0$ there exists $k \in \mathbb{Z}$ such that
$\left\|f-z^{k}\right\|_{L^{2}(\sigma)}^{\|} \in$. Then the famous Foiass-Stratila theorem from 1967
tells us that whenever $T \in$ Aut (X, \mathcal{B}, μ) is ergodic and a real-valued
$f \in L^{2}(X, \mathcal{B}, \mu)$ has $\sigma f \equiv \sigma$ then the process $\left(f \circ T^{n}\right)$ NeZ has to be
Gaussian; then f will be in the first chaos of the corresponding L^{2}-space
and also $\sigma \perp \sum_{j \geqslant 2} \frac{1}{2^{j}} \sigma^{* j}$, so σ cannot be a measure of maximal spectral

Maximal spectral type. II

- If σ is a continuous symmetric measure on the circle and $U=e^{V_{\sigma}}:=\bigoplus_{\ell \geqslant 0} V_{\sigma}^{\odot \ell}$, then U is a Koopman operator via the classical Gaussian construction. Indeed, take a centered, real stationary Gaussian process $\left(X_{n}\right)_{n \in \mathbb{Z}}$ with spectral measure σ, i.e. $\mathbb{E}\left(X_{n} \cdot X_{0}\right)=\widehat{\sigma}(n)$ for each $n \in \mathbb{Z}$, with joint distribution μ_{σ} on $\mathbb{R}^{\mathbb{Z}}$ and consider the shift T on $\left(\mathbb{R}^{\mathbb{Z}}, \mu_{\sigma}\right)$.
- $\sigma u=\sum_{n \geqslant 1} \frac{1}{2^{n}} \sigma^{* n}$ is a measure of maximal spectral type for an ergodic (in fact, weakly mixing) automorphism.
- (Girsanov's theorem, 1950th) Either $M_{U}=1$ or M_{U} has to be unbounded. We can have essval $\left(M_{U}\right)=\{1, \infty\}$ (take $\sigma \perp \lambda$ with $\sigma * \sigma \equiv \lambda$), otherwise this set is infinite and probably has interesting arithmetic properties. Danilenko and Ryzhikov in 2010 proved that every multiplicative sub-semigroup of \mathbb{N} has a a Gaussian "realization".
- Not every continuous, symmetric measure can be realized as a maximal spectral type of a Koopman operator. Indeed, we can find a so called Kronecker measure σ (continuous, with full topological support) satisfying: For each $f \in L^{2}\left(\mathbb{S}^{1}, \sigma\right)$ and $\epsilon>0$ there exists $k \in \mathbb{Z}$ such that $\left\|f-z^{k}\right\|_{L^{2}(\sigma)}<\epsilon$. Then the famous Foiaș-Stratila theorem from 1967 tells us that whenever $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ is ergodic and a real-valued $f \in L^{2}(X, \mathcal{B}, \mu)$ has $\sigma_{f} \equiv \sigma$ then the process $\left(f \circ T^{n}\right)_{N \in \mathbb{Z}}$ has to be Gaussian; then f will be in the first chaos of the corresponding L^{2}-space and also $\sigma \perp \sum_{j \geqslant 2} \frac{1}{2^{j}} \sigma^{* j}$, so σ cannot be a measure of maximal spectral type.

Maximal spectral type. III

OUR KNOWLEDGE ABOUT THE MAXIMAL SPECTRAL TYPE HAS NOT CHANGED SINCE THE 1960TH!!

Maximal spectral multiplicity

■ Oseledets (1966): There exists an ergodic T such that $1<\operatorname{esssup}\left(M_{T}\right)<\infty .^{2}$

- Robinson (1983): For each $n \geqslant 1$, there exists an ergodic T such that $\operatorname{esssup}\left(M_{T}\right)=n .{ }^{3}$
${ }^{2}$ Double group extensions of IETs.
${ }^{3}$ Double group extensions, Katok-Stepin theory of periodic approximation to apply a generic type arguments.

Essential values of the multiplicity function

■ $T \in \operatorname{Aut}(X, \mathcal{B}, \mu) ; \operatorname{essval}\left(M_{T}\right)$ stands for the essential values of the multiplicity function M_{T}.

- General multiplicity conjecture: Each subset $E \subset \mathbb{N}$ is realizable as essval $\left(M_{T}\right)$.

```
Recall: Generally, we are interested which sequences }\mp@subsup{\sigma}{1}{}>>\mp@subsup{\sigma}{2}{
are realizable as spectral sequences of Koopman operators. In this
sequence we have either }\equiv\mathrm{ or >> (without equivalence).
```

Peformulation-of spectral multiplicity-conjecture
Is it true that each sequence (finite or infinite) $\left(s_{n}\right)_{n \geqslant 1} \in\{\equiv, \gg\}$
is Koopman realizable?

Essential values of the multiplicity function

■ $T \in \operatorname{Aut}(X, \mathcal{B}, \mu) ; \operatorname{essval}\left(M_{T}\right)$ stands for the essential values of the multiplicity function M_{T}.

- General multiplicity conjecture: Each subset $E \subset \mathbb{N}$ is realizable as essval $\left(M_{T}\right)$.

> Recall: Generally, we are interested which sequences $\sigma_{1} \gg \sigma_{2}$ are realizable as spectral sequences of Koopman operators. In this sequence we have either \equiv or \gg (without equivalence).

Essential values of the multiplicity function

■ $T \in \operatorname{Aut}(X, \mathcal{B}, \mu) ; \operatorname{essval}\left(M_{T}\right)$ stands for the essential values of the multiplicity function M_{T}.

- General multiplicity conjecture: Each subset $E \subset \mathbb{N}$ is realizable as essval $\left(M_{T}\right)$.

Recall: Generally, we are interested which sequences $\sigma_{1} \gg \sigma_{2} \gg \ldots$ are realizable as spectral sequences of Koopman operators. In this sequence we have either \equiv or \gg (without equivalence).

Is it true that each sequence (finite or infinite) $\left(s_{n}\right)_{n \geqslant 1} \in\{\equiv, \gg\}$ is Koopman realizable?

Essential values of the multiplicity function

■ $T \in \operatorname{Aut}(X, \mathcal{B}, \mu) ; \operatorname{essval}\left(M_{T}\right)$ stands for the essential values of the multiplicity function M_{T}.

- General multiplicity conjecture: Each subset $E \subset \mathbb{N}$ is realizable as essval $\left(M_{T}\right)$.

Recall: Generally, we are interested which sequences $\sigma_{1} \gg \sigma_{2} \gg \ldots$ are realizable as spectral sequences of Koopman operators. In this sequence we have either \equiv or \gg (without equivalence).

Reformulation of spectral multiplicity conjecture

Is it true that each sequence (finite or infinite) $\left(s_{n}\right)_{n \geqslant 1} \in\{\equiv, \gg\}^{\mathbb{N}}$ is Koopman realizable?

Essential values of the multiplicity function. $1 \in E$

Theorem (Robinson (1986), Goodson-Kwiatkowski-L.-Liardet (1992),
 Kwiatkowski (jr.)-L. (1995) with final result)

Each subset $1 \in E \subset \mathbb{N}$ is Koopman realizable, i.e. there exists an ergodic T such that $\operatorname{essval}\left(M_{T}\right)=E$.

- How to create symmetry? $T \in \operatorname{Aut}(X, \mathcal{B}, \mu), G$ a compact, Abelian group, $\phi: X \rightarrow G$ a cocycle, one considers

- $L^{2}\left(X \times G, \mu \otimes m_{G}\right)=\sum_{x \in \widehat{G}} L^{2}(X, \mu) \otimes \chi$. Note that
- Assume that $S \in C(T)$ and for some $v \in \operatorname{Aut}(G)$ we can solve the equation $\phi(S x)-v(\phi(x))=\xi(T x)-\xi(x)$ for a measurable $\xi: X \rightarrow G$
- $S_{\xi, v}(x, g):=\left(S_{x}, \xi(x)+v(g)\right)$ is an element of the centralizer of T_{ϕ}
- $U_{S_{\xi, v}}\left(L^{2}(X, \mu) \otimes \chi\right)=L^{2}(X, \mu) \otimes(\chi \circ v)$.
- The lengths of the orbits of v on \widehat{G} yields a lower bound on the multiplicity.
- Passing to $T_{\phi H}$ for a closed subgroup $H \subset G$ yields LESS subspaces of the form $L^{2}(X, \mu) \otimes \chi$ (algebra!) under consideration.

Essential values of the multiplicity function. $1 \in E$

Theorem (Robinson (1986), Goodson-Kwiatkowski-L.-Liardet (1992), Kwiatkowski (jr.)-L. (1995) with final result)

Each subset $1 \in E \subset \mathbb{N}$ is Koopman realizable, i.e. there exists an ergodic T such that $\operatorname{essval}\left(M_{T}\right)=E$.

- How to create symmetry? $T \in \operatorname{Aut}(X, \mathcal{B}, \mu), G$ a compact, Abelian group, $\phi: X \rightarrow G$ a cocycle, one considers

$$
T_{\phi}: X \times G \rightarrow X \times G, T_{\phi}(x, g)=\left(T_{x}, \phi(x)+g\right)
$$

- $L^{2}\left(X \times G, \mu \otimes m_{G}\right)=\sum_{\chi \in \widehat{G}} L^{2}(X, \mu) \otimes \chi$. Note that $U_{T_{\phi}}\left(L^{2}(X, \mu) \otimes \chi\right)=L^{2}(X, \mu) \otimes \chi$.
- Assume that $S \in C(T)$ and for some $v \in \operatorname{Aut}(G)$ we can solve the equation $\phi(S x)-v(\phi(x))=\xi(T x)-\xi(x)$ for a measurable $\xi: X \rightarrow G$.
- $S_{\xi, v}(x, g):=(S x, \xi(x)+v(g))$ is an element of the centralizer of T_{ϕ}.
- $U_{S_{\xi, v}}\left(L^{2}(X, \mu) \otimes \chi\right)=L^{2}(X, \mu) \otimes(\chi \circ v)$.
- The lengths of the orbits of v on \widehat{G} yields a lower bound on the multiplicity.
- Passing to $T_{\phi H}$ for a closed subgroup $H \subset G$ yields LESS subspaces of the form $L^{2}(X, \mu) \otimes \chi$ (algebra!) under consideration.

Essential values of the multiplicity function. Rokhlin problem

Rokhlin's homogeneous spectrum problem

Is it true that for each $n \geqslant 2$ there is an ergodic automorphism T such that essval $\left(M_{T}\right)=\{n\}$?

```
- Katok (mid 1980): For a generic automorphism T,
    essval(}\mp@subsup{M}{T\timesT}{})\subset{2,4} (via Katok's linked approximation
    theory)
        Generically, we have
    essval(}\mp@subsup{M}{T\timesn}{})={n,n(n-1),\ldots,n!}\mathrm{ (note that for n = 2 it
    yields positive answer to Rokhlin's question).
■ Proof of Katok's conjecture: Ageev (1999) - general case,
    Ryzhikov (1999) - n=2.
- Ageev (2005): For each n\geqslant2 there is an ergodic
    T}\in\operatorname{Aut}(X,\mathcal{B},\mu)\mathrm{ with homogenous spectrum of multiplicity n
    (full answer to Rokhlin's question).
- Danilenko (2006): For each n\geqslant2, and }1\inE\subset\mathbb{N}\mathrm{ there is an
ergodic T\in Aut (X,\mathcal{B},\mu) such that essval ( }\mp@subsup{M}{T}{})=n\cdotE
```


Essential values of the multiplicity function. Rokhlin problem

Rokhlin's homogeneous spectrum problem

Is it true that for each $n \geqslant 2$ there is an ergodic automorphism T such that $\operatorname{essval}\left(M_{T}\right)=\{n\}$?

- Katok (mid 1980): For a generic automorphism T, essval $\left(M_{T \times T}\right) \subset\{2,4\}$ (via Katok's linked approximation theory).

Essential values of the multiplicity function. Rokhlin problem

Rokhlin's homogeneous spectrum problem

Is it true that for each $n \geqslant 2$ there is an ergodic automorphism T such that essval $\left(M_{T}\right)=\{n\}$?

- Katok (mid 1980): For a generic automorphism T, essval $\left(M_{T \times T}\right) \subset\{2,4\}$ (via Katok's linked approximation theory).
- Katok's conjecture: Generically, we have $\operatorname{essval}\left(M_{T \times n}\right)=\{n, n(n-1), \ldots, n!\}$ (note that for $n=2$ it yields positive answer to Rokhlin's question).

Essential values of the multiplicity function. Rokhlin problem

Rokhlin's homogeneous spectrum problem

Is it true that for each $n \geqslant 2$ there is an ergodic automorphism T such that $\operatorname{essval}\left(M_{T}\right)=\{n\}$?

- Katok (mid 1980): For a generic automorphism T, essval $\left(M_{T \times T}\right) \subset\{2,4\}$ (via Katok's linked approximation theory).
- Katok's conjecture: Generically, we have $\operatorname{essval}\left(M_{T \times n}\right)=\{n, n(n-1), \ldots, n!\}$ (note that for $n=2$ it yields positive answer to Rokhlin's question).
- Proof of Katok's conjecture: Ageev (1999) - general case, Ryzhikov (1999) - $n=2$.

Essential values of the multiplicity function. Rokhlin problem

Rokhlin's homogeneous spectrum problem

Is it true that for each $n \geqslant 2$ there is an ergodic automorphism T such that $\operatorname{essval}\left(M_{T}\right)=\{n\}$?

- Katok (mid 1980): For a generic automorphism T, essval $\left(M_{T \times T}\right) \subset\{2,4\}$ (via Katok's linked approximation theory).
- Katok's conjecture: Generically, we have $\operatorname{essval}\left(M_{T \times n}\right)=\{n, n(n-1), \ldots, n!\}$ (note that for $n=2$ it yields positive answer to Rokhlin's question).
- Proof of Katok's conjecture: Ageev (1999) - general case, Ryzhikov (1999) - $n=2$.
- Ageev (2005): For each $n \geqslant 2$ there is an ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ with homogenous spectrum of multiplicity n (full answer to Rokhlin's question).

Essential values of the multiplicity function. Rokhlin problem

Rokhlin's homogeneous spectrum problem

Is it true that for each $n \geqslant 2$ there is an ergodic automorphism T such that $\operatorname{essval}\left(M_{T}\right)=\{n\}$?

- Katok (mid 1980): For a generic automorphism T, essval $\left(M_{T \times T}\right) \subset\{2,4\}$ (via Katok's linked approximation theory).
- Katok's conjecture: Generically, we have $\operatorname{essval}\left(M_{T \times n}\right)=\{n, n(n-1), \ldots, n!\}$ (note that for $n=2$ it yields positive answer to Rokhlin's question).
- Proof of Katok's conjecture: Ageev (1999) - general case, Ryzhikov (1999) - $n=2$.
- Ageev (2005): For each $n \geqslant 2$ there is an ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ with homogenous spectrum of multiplicity n (full answer to Rokhlin's question).
- Danilenko (2006): For each $n \geqslant 2$, and $1 \in E \subset \mathbb{N}$ there is an ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ such that essval $\left(M_{T}\right)=n \cdot E$.

Essential values of the multiplicity function. $2 \in E$

Theorem (Katok-L., 2009)

Each finite set $2 \in E \subset \mathbb{N}$ is Koopman realizable.

- Obtained through studying isometric extensions of Cartesian squares.
- Exploiting the technique of weak limits to obtain simplicity of the spectrum of tensor products operators of the form $e^{V} \otimes W$ with a simultaneous control of homogenous multiplicity for the $W \otimes W$.

Remark (i) The above theorem was extended by Danilenko to $2 \in E \subset \mathbb{N}$ in 2010.
(ii) Other sets: $\{k, \ell, k \ell\},\{k, \ell, m, k \ell, k m, \ell m, k l m\}$, etc.: Ryzhikov (2009), Solomko (2012); $\{2,3, \ldots, n\}:{ }^{4}$ Ageev (2008).

Essential values of the multiplicity function. $2 \in E$

Theorem (Katok-L., 2009)

Each finite set $2 \in E \subset \mathbb{N}$ is Koopman realizable.

■ Obtained through studying isometric extensions of Cartesian squares.

- Exploiting the technique of weak limits to obtain simplicity of the spectrum of tensor products operators of the form $e^{V} \otimes W$ with a simultaneous control of homogenous multiplicity for the $W \otimes W$.

(2009), Solomko (2012); \{2, 3

Theorem (Katok-L., 2009)

Each finite set $2 \in E \subset \mathbb{N}$ is Koopman realizable.

■ Obtained through studying isometric extensions of Cartesian squares.

- Exploiting the technique of weak limits to obtain simplicity of the spectrum of tensor products operators of the form $e^{V} \otimes W$ with a simultaneous control of homogenous multiplicity for the $W \otimes W$.

Remark (i) The above theorem was extended by Danilenko to all $2 \in E \subset \mathbb{N}$ in 2010.
(ii) Other sets: $\{k, \ell, k \ell\},\{k, \ell, m, k \ell, k m, \ell m, k \ell m\}$, etc.: Ryzhikov
(2009), Solomko (2012); $\{2,3, \ldots, n\}:{ }^{4}$ Ageev (2008).

[^0]
Comments and questions from Katok-L. (2009). Multiplicity

In all known constructions, appearance of nonsimple finite multiplicity spectrum is due to some symmetries:

- symmetry of double skew products with a group structure in the second extension, first noticed by Oseledets, originally systematically explored by Robinson and further developed Goodson-Kwiatkowski-L.-Liardet,
- the obvious symmetry of the Cartesian powers, first used in the unpublished version of Katok's notes which has circulated since mid-eighties, and brought to the final form by Ageev and Ryzhikov and
- symmetry involving a certain non-Abelian finite extension of a cyclic group discovered by Ageev.
Problem: The simplest unsolved cases are $\{3,4\},\{3,5\},\{3,7\}$

Comments and questions from Katok-L. (2009). Multiplicity

In all known constructions, appearance of nonsimple finite multiplicity spectrum is due to some symmetries:

■ symmetry of double skew products with a group structure in the second extension, first noticed by Oseledets, originally systematically explored by Robinson and further developed Goodson-Kwiatkowski-L.-Liardet,

- the obvious symmetry of the Cartesian powers, first used in the unpublished version of Katok's notes which has circulated since mid-eighties, and brought to the final form by Ageev and Ryzhikov and
- symmetry involving a certain non-Abelian finite extension of a cyclic group discovered by Ageev.
Problem: The simplest unsolved cases are $\{3,4\},\{3,5\},\{3,7\}$.

Comments and questions from Katok-L. (2009). Maximal spectral type

Problem 1: Can the maximal spectral type be absolutely continuous but not Lebesgue?
Problem 2: Can the maximal spectral type σ for U_{T} be absolutely continuous with respect to its convolution $\sigma * \sigma$ but not equivalent to it? ${ }^{5}$

Notice that there are three known possibilities:

- σ is equivalent to $\sigma * \sigma$, as for Lebesgue spectrum or for Gaussian systems;
- σ and $\sigma * \sigma$ are mutually singular, as for a generic measure preserving transformation T;
- σ and $\sigma * \sigma$ have a common part but neither is absolutely continuous with respect to the other, as for $T \times T$ for a generic T.

[^1]
Comments and questions from Katok-L. (2009). Maximal spectral type

Problem 1: Can the maximal spectral type be absolutely continuous but not Lebesgue?
Problem 2: Can the maximal spectral type σ for U_{T} be absolutely continuous with respect to its convolution $\sigma * \sigma$ but not equivalent to it? ${ }^{5}$

Notice that there are three known possibilities:

- σ is equivalent to $\sigma * \sigma$, as for Lebesgue spectrum or for Gaussian systems;
■ σ and $\sigma * \sigma$ are mutually singular, as for a generic measure preserving transformation T;
- σ and $\sigma * \sigma$ have a common part but neither is absolutely continuous with respect to the other, as for $T \times T$ for a generic T.

[^2]
Comments and questions from Katok-L. (2009). On other problems

"Chances for theorems:"
Problem 3: Is it true that all spectral types of a measure preserving transformation with continuous spectrum are dense?

- Fraczek proved it for some group extensions of rotations.

Problem 4: Does there exist an ergodic measure preserving
transformation whose maximal spectral type is absolutely
continuous but the spectrum is not Lebesgue with countable multiplicity? ${ }^{6}$

[^3]
Comments and questions from Katok-L. (2009). On other problems

"Chances for theorems:"
Problem 3: Is it true that all spectral types of a measure preserving transformation with continuous spectrum are dense?

- Frạczek proved it for some group extensions of rotations.

Problem 4: Does there exist an ergodic measure preserving
transformation whose maximal spectral type is absolutely
continuous but the spectrum is not Lebesgue with countable multiplicity? ${ }^{6}$

[^4]
Comments and questions from Katok-L. (2009). On other problems

"Chances for theorems:"
Problem 3: Is it true that all spectral types of a measure preserving transformation with continuous spectrum are dense?

- Fraczek proved it for some group extensions of rotations.

Problem 4: Does there exist an ergodic measure preserving transformation whose maximal spectral type is absolutely continuous but the spectrum is not Lebesgue with countable multiplicity? ${ }^{6}$

[^5]
Other spectral problems raised by Anatole Katok. Time

 changes of flows. I- Horocycle flows have Lebesgue spectrum of infinite multiplicity (Parasyuk, 1953).
- Smooth time changes of them are mixing (Kushnirenko, 1974, Marcus, 1977).
Conjecture (Katok, Thouvenot; 2006): All flows obtained by a
sufficiently smooth time change of horocycle flows have countable
Lebesgue spectrum.
- Maximal spectral type Lebesgue was proved by Forni and Ulcigrai in 2012, and (the absolute continuity of the maximal spectral type) independently by Tiedra de Aldecoa (2012).
- Countable Lebesgue spectrum has been proved by Fayad, Forni and Kanigowski (in 2019).

Other spectral problems raised by Anatole Katok. Time changes of flows. I

- Horocycle flows have Lebesgue spectrum of infinite multiplicity (Parasyuk, 1953).
- Smooth time changes of them are mixing (Kushnirenko, 1974, Marcus, 1977).

Conjecture (Katok, Thouvenot; 2006): All flows obtained by a sufficiently smooth time change of horocycle flows have countable Lebesgue spectrum.

Maximal spectral type Lebesgue was proved by Forni and Ulcigrai in 2012, and (the absolute continuity of the maximal spectral type) independently by Tiedra de Aldecoa (2012)

- Countable Lebesgue spectrum has been proved by Fayad, Forni and Kanigowski (in 2019).

Other spectral problems raised by Anatole Katok. Time changes of flows. I

- Horocycle flows have Lebesgue spectrum of infinite multiplicity (Parasyuk, 1953).
- Smooth time changes of them are mixing (Kushnirenko, 1974, Marcus, 1977).
Conjecture (Katok, Thouvenot; 2006): All flows obtained by a sufficiently smooth time change of horocycle flows have countable Lebesgue spectrum.
- Maximal spectral type Lebesgue was proved by Forni and Ulcigrai in 2012, and (the absolute continuity of the maximal spectral type) independently by Tiedra de Aldecoa (2012).
- Countable Lebesgue spectrum has been proved by Fayad, Forni and Kanigowski (in 2019).

Other spectral problems raised by Anatole Katok. Time

 changes of flows. II- $T x=x+\alpha$,
$\square f: \mathbb{T} \rightarrow \mathbb{R}^{+}$, piecewise smooth, with the sum of jumps different from zero,
- special flow T^{f} weak mixing proved by von Neumann in 1932(!),
- If α has bounded partial quotients - they have a Ratner's property ("similarity" with horocycle flows), Frạczek-L. 2006.

Conjecture (Katok, 2004) Von Neumann's special flows have finite multiplicity. ${ }^{?}$

- Still open...
- Kanigowski and Solomko in 2016 proved that these flows have no finite rank.

[^6]
Other spectral problems raised by Anatole Katok. Time changes of flows. II

- $T x=x+\alpha$,
- $f: \mathbb{T} \rightarrow \mathbb{R}^{+}$, piecewise smooth, with the sum of jumps different from zero,
- special flow T^{f} weak mixing proved by von Neumann in 1932(!),
- If α has bounded partial quotients - they have a Ratner's property ("similarity" with horocycle flows), Frạczek-L. 2006.

- Still open...
- Kanigowski and Solomko in 2016 proved that these flows have no finite rank.

[^7]
Other spectral problems raised by Anatole Katok. Time changes of flows. II

- $T_{x}=x+\alpha$,
$\square f: \mathbb{T} \rightarrow \mathbb{R}^{+}$, piecewise smooth, with the sum of jumps different from zero,
- special flow T^{f} weak mixing proved by von Neumann in 1932(!),
- If α has bounded partial quotients - they have a Ratner's property ("similarity" with horocycle flows), Fraçezek-L. 2006.

Conjecture (Katok, 2004) Von Neumann's special flows have finite multiplicity. ${ }^{7}$

- Still open...
- Kanigowski and Solomko in 2016 proved that these flows have no finite rank.

[^8]
Other spectral problems raised by Anatole Katok. Time changes of flows. II

- $T_{x}=x+\alpha$,

■ $f: \mathbb{T} \rightarrow \mathbb{R}^{+}$, piecewise smooth, with the sum of jumps different from zero,

- special flow T^{f} weak mixing proved by von Neumann in 1932(!),
- If α has bounded partial quotients - they have a Ratner's property ("similarity" with horocycle flows), Fraçezek-L. 2006.

Conjecture (Katok, 2004) Von Neumann's special flows have finite multiplicity. ${ }^{7}$

- Still open...
- Kanigowski and Solomko in 2016 proved that these flows have no finite rank.

[^9]

[^0]: ${ }^{4}$ Special case of the theorem above.

[^1]: ${ }^{5}$ Recall: the first counterexample to Kolmogorov's group property of the spectrum was given by Katok and Stepin in 1967.

[^2]: ${ }^{5}$ Recall: the first counterexample to Kolmogorov's group property of the spectrum was given by Katok and Stepin in 1967.

[^3]: ${ }^{6}$ The difference from Problem 1 is that it is conceivable that the maximal spectral type is Lebesgue while not all others are.

[^4]: ${ }^{6}$ The difference from Problem 1 is that it is conceivable that the maximal spectral type is Lebesgue while not all others are.

[^5]: ${ }^{6}$ The difference from Problem 1 is that it is conceivable that the maximal spectral type is Lebesgue while not all others are.

[^6]: ${ }^{7}$ When the roof function f is smooth, and α "Liouville", then T^{f} has simple spectrum - Katok-Stepin 1967.

[^7]: ${ }^{7}$ When the roof function f is smooth, and α "Liouville", then T^{f} has simple spectrum - Katok-Stepin 1967.

[^8]: ${ }^{7}$ When the roof function f is smooth, and α "Liouville", then T^{f} has simple spectrum - Katok-Stepin 1967.

[^9]: ${ }^{7}$ When the roof function f is smooth, and α "Liouville", then T^{f} has simple spectrum - Katok-Stepin 1967.

