On some spectral problems in ergodic theory

Mariusz Lemańczyk

Nicolaus Copernicus University, Toruń

Anatole Katok's memorial conference, Bedlewo, 12.08.2019

Spectral theory. Koopman operator

- (X, \mathcal{B}, μ) probability, standard Borel space (non-atomic!),
- $L^2(X, \mathcal{B}, \mu)$ is separable,
- $T : (X, B, \mu) \rightarrow (X, B, \mu)$ invertible, measure-preserving; also notation $T \in Aut(X, B, \mu)$,
- Koopman operator: $U_T : L^2(X, \mathcal{B}, \mu) \to L^2(X, \mathcal{B}, \mu),$ $\overline{U_T f} := f \circ T$ for $f \in L^2(X, \mathcal{B}, \mu),$
- Spectral theory: properties of U_T , that is, properties of T that are stable under spectral isomorphism in $Aut(X, \mathcal{B}, \mu)$.
- Ergodicity, weak mixing, mixing are spectral properties.¹

¹Entropy is not; mixing of all orders unknown...

Spectral theory. Koopman operator

- (X, \mathcal{B}, μ) probability, standard Borel space (non-atomic!),
- $L^2(X, \mathcal{B}, \mu)$ is separable,
- $T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ invertible, measure-preserving; also notation $T \in Aut(X, \mathcal{B}, \mu)$,
- Koopman operator: $U_T : L^2(X, \mathcal{B}, \mu) \to L^2(X, \mathcal{B}, \mu),$ $\overline{U_T f} := f \circ T$ for $f \in L^2(X, \mathcal{B}, \mu),$
- Spectral theory: properties of U_T , that is, properties of T that are stable under spectral isomorphism in $Aut(X, \mathcal{B}, \mu)$.
- Ergodicity, weak mixing, mixing are spectral properties.¹

¹Entropy is not; mixing of all orders unknown...

Spectral theory. Koopman operator

- (X, \mathcal{B}, μ) probability, standard Borel space (non-atomic!),
- $L^2(X, \mathcal{B}, \mu)$ is separable,
- $T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ invertible, measure-preserving; also notation $T \in Aut(X, \mathcal{B}, \mu)$,
- Koopman operator: $U_T : L^2(X, \mathcal{B}, \mu) \to L^2(X, \mathcal{B}, \mu),$ $\overline{U_T f := f \circ T}$ for $f \in L^2(X, \mathcal{B}, \mu),$
- Spectral theory: properties of U_T , that is, properties of T that are stable under spectral isomorphism in $Aut(X, \mathcal{B}, \mu)$.
- Ergodicity, weak mixing, mixing are spectral properties.¹

¹Entropy is not; mixing of all orders unknown...

Why not Koopman on $L^p(X, \mathcal{B}, \mu)$? :-(

■ *p* ≠ 2

• $T \in \operatorname{Aut}(X, \mathcal{B}, \mu), S \in \operatorname{Aut}(Y, \mathcal{C}, \nu)$ are ergodic, $V : L^p(X, \mathcal{B}, \mu) \to L^p(Y, \mathcal{C}, \nu)$ an isometry such that $V \circ U_T = U_S \circ V.$

Proposition

Under the above assumptions T and S are measure-theoretically isomorphic.

- Use Lamperti's theorem to obtain that $(Vf)(y) = j(y) \cdot f(Jy)$, where $J: Y \to X$ is non-singular.
- Equivariance yields: j(y)f(TJy) = j(Sy)f(JSy); take f = 1, to obtain that j = const by the ergodicity of S.
- Notice that the image J_{*}(ν) is a T-invariant, ergodic measure satisfying J_{*}(ν) ≪ μ, and use ergodicity of T to conclude.

Why not Koopman on $L^p(X, \mathcal{B}, \mu)$? :-(

■ *p* ≠ 2

• $T \in \operatorname{Aut}(X, \mathcal{B}, \mu), S \in \operatorname{Aut}(Y, \mathcal{C}, \nu)$ are ergodic, $V : L^p(X, \mathcal{B}, \mu) \to L^p(Y, \mathcal{C}, \nu)$ an isometry such that $V \circ U_T = U_S \circ V$.

Proposition

Under the above assumptions T and S are measure-theoretically isomorphic.

- Use Lamperti's theorem to obtain that $(Vf)(y) = j(y) \cdot f(Jy)$, where $J: Y \to X$ is non-singular.
- Equivariance yields: j(y)f(TJy) = j(Sy)f(JSy); take f = 1, to obtain that j = const by the ergodicity of S.
- Notice that the image J_{*}(ν) is a T-invariant, ergodic measure satisfying J_{*}(ν) ≪ μ, and use ergodicity of T to conclude.

Why not Koopman on $L^p(X, \mathcal{B}, \mu)$? :-(

■ *p* ≠ 2

• $T \in \operatorname{Aut}(X, \mathcal{B}, \mu), S \in \operatorname{Aut}(Y, \mathcal{C}, \nu)$ are ergodic, $V : L^p(X, \mathcal{B}, \mu) \to L^p(Y, \mathcal{C}, \nu)$ an isometry such that $V \circ U_T = U_S \circ V$.

Proposition

Under the above assumptions T and S are measure-theoretically isomorphic.

- Use Lamperti's theorem to obtain that $(Vf)(y) = j(y) \cdot f(Jy)$, where $J: Y \to X$ is non-singular.
- Equivariance yields: j(y)f(TJy) = j(Sy)f(JSy); take f = 1, to obtain that j = const by the ergodicity of S.
- Notice that the image J_{*}(ν) is a *T*-invariant, ergodic measure satisfying J_{*}(ν) ≪ μ, and use ergodicity of *T* to conclude.

Why not Koopman on $L^p(X, \mathcal{B}, \mu)$? :-)

- (Thouvenot's problem, 1986) Is is true that for each ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ there exists $f \in L^1(X, \mathcal{B}, \mu)$ such that $L^1(X, \mathcal{B}, \mu) = \overline{\operatorname{span}} \{ f \circ T^k : k \in \mathbb{Z} \}$ for some $f \in L^1(X, \mathcal{B}, \mu)$?
- (Iwanik, 1991) For each Bernoulli automorphism T and p > 1, each $n \ge 1$ and all $f_1, \ldots, f_n \in L^p(X, \mathcal{B}, \mu)$, we have

$$\overline{\operatorname{span}}\{f_j \circ T^k: \ k \in \mathbb{Z}, j = 1, \dots, n\} \neq L^p(X, \mathcal{B}, \mu)$$

(Bernoulli automorphisms have infinite "multiplicity" in all L^p spaces whenever p > 1).

Why not Koopman on $L^p(X, \mathcal{B}, \mu)$? :-)

- (Thouvenot's problem, 1986) Is is true that for each ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ there exists $f \in L^1(X, \mathcal{B}, \mu)$ such that $L^1(X, \mathcal{B}, \mu) = \overline{\operatorname{span}} \{ f \circ T^k : k \in \mathbb{Z} \}$ for some $f \in L^1(X, \mathcal{B}, \mu)$?
- (Iwanik, 1991) For each Bernoulli automorphism T and p > 1, each $n \ge 1$ and all $f_1, \ldots, f_n \in L^p(X, \mathcal{B}, \mu)$, we have

$$\overline{\operatorname{span}}\{f_j \circ T^k : k \in \mathbb{Z}, j = 1, \dots, n\} \neq L^p(X, \mathcal{B}, \mu)$$

(Bernoulli automorphisms have infinite "multiplicity" in all L^{p} spaces whenever p > 1).

Classification of unitary operators on separable Hilbert spaces. I

Theorem (Herglotz)

If $U: H \to H$ is a unitary operator on a Hilbert space H and $f \in H$, then the sequence $\mathbb{Z} \ni k \mapsto \langle U^k f, f \rangle$ is positive definite and theorefore there exists a unique (positive, Borel) measure σ_f on \mathbb{S}^1 such that

$$\widehat{\sigma}_f(k) := \int_{\mathbb{S}^1} z^k \, d\sigma_f(z) = \langle U^k f, f
angle$$
 for each $k \in \mathbb{Z}$.

 \bullet σ_f is called the *spectral measure* of f.

Classification of unitary operators on separable Hilbert spaces. I

Theorem (Herglotz)

If $U: H \to H$ is a unitary operator on a Hilbert space H and $f \in H$, then the sequence $\mathbb{Z} \ni k \mapsto \langle U^k f, f \rangle$ is positive definite and theorefore there exists a unique (positive, Borel) measure σ_f on \mathbb{S}^1 such that

$$\widehat{\sigma}_f(k) := \int_{\mathbb{S}^1} z^k \, d\sigma_f(z) = \langle U^k f, f
angle$$
 for each $k \in \mathbb{Z}$.

• σ_f is called the *spectral measure* of f.

Classification of unitary operators on separable Hilbert spaces. II

- H_σ := L²(S¹, σ), where σ is a (positive, Borel) finite measure on the circle,
- $V_{\sigma}: H_{\sigma}
 ightarrow H_{\sigma}$; $(V_{\sigma}f)(z) = zf(z)$ is unitary,
- $H_{\sigma} = \mathbb{Z}(1) := \overline{\operatorname{span}}\{V_{\sigma}^{k}1 : k \in \mathbb{Z}\}$ one says that H_{σ} is equal to the cyclic space $\mathbb{Z}(1)$, where $\mathbb{1}(z) = 1$.
- V_σ is an example of a unitary operator (defined on a separable Hilbert space) with *simple spectrum*.
- If *H* is a (separable) Hilbert space and *U* is a unitary operator on it such that $H = \mathbb{Z}(f)$ for some $f \in H$, then the map

$$U^k f \mapsto V^k_{\sigma_f}(1) = z^k$$

extends to a (linear) isometry intertwining U and V_{σf}.
If above holds, we say that U has simple spectrum.

Classification of unitary operators on separable Hilbert spaces. II

- H_σ := L²(S¹, σ), where σ is a (positive, Borel) finite measure on the circle,
- $V_{\sigma}: H_{\sigma}
 ightarrow H_{\sigma}$; $(V_{\sigma}f)(z) = zf(z)$ is unitary,
- $H_{\sigma} = \mathbb{Z}(1) := \overline{\operatorname{span}}\{V_{\sigma}^{k}1 : k \in \mathbb{Z}\}$ one says that H_{σ} is equal to the cyclic space $\mathbb{Z}(1)$, where $\mathbb{1}(z) = 1$.
- V_σ is an example of a unitary operator (defined on a separable Hilbert space) with *simple spectrum*.
- If H is a (separable) Hilbert space and U is a unitary operator on it such that H = Z(f) for some f ∈ H, then the map

$$U^k f \mapsto V^k_{\sigma_f}(1) = z^k$$

extends to a (linear) isometry intertwining U and V_{σf}.
If above holds, we say that U has simple spectrum.

Classification of unitary operators on separable Hilbert spaces. II

- H_σ := L²(S¹, σ), where σ is a (positive, Borel) finite measure on the circle,
- $V_{\sigma}: H_{\sigma}
 ightarrow H_{\sigma}; \ (V_{\sigma}f)(z) = zf(z)$ is unitary,
- $H_{\sigma} = \mathbb{Z}(\mathbb{1}) := \overline{\operatorname{span}}\{V_{\sigma}^{k}\mathbb{1} : k \in \mathbb{Z}\}$ one says that H_{σ} is equal to the cyclic space $\mathbb{Z}(\mathbb{1})$, where $\mathbb{1}(z) = 1$.
- V_σ is an example of a unitary operator (defined on a separable Hilbert space) with *simple spectrum*.
- If *H* is a (separable) Hilbert space and *U* is a unitary operator on it such that $H = \mathbb{Z}(f)$ for some $f \in H$, then the map

$$U^k f \mapsto V^k_{\sigma_f}(1) = z^k$$

extends to a (linear) isometry intertwining U and V_{σf}.
If above holds, we say that U has simple spectrum.

Classification of unitary operators on separable Hilbert spaces. III

 \blacksquare $U: H \rightarrow H$ unitary on a separable Hilbert space H.

- the same spectral sequence (*) (up to equivalence od spectral measures). 9/25

Classification of unitary operators on separable Hilbert spaces. III

 $U: H \rightarrow H$ unitary on a separable Hilbert space H.

Spectral theorem

There exists a decomposition, called a spectral decomposition, $H = \bigoplus_{n \ge 1} \mathbb{Z}(f_n)$ such that $\sigma_{f_1} \gg \sigma_{f_2} \gg \dots$ (spectral sequence). (*)For any other spectral decomposition $H = \bigoplus_{n \ge 1} \mathbb{Z}(f'_n)$, we have (**) $\sigma_{f_n} \equiv \sigma_{f'_n}$ for each $n \ge 1$.

- the same spectral sequence (*) (up to equivalence od spectral measures). 9/25

Classification of unitary operators on separable Hilbert spaces. III

 $U: H \rightarrow H$ unitary on a separable Hilbert space H.

Spectral theorem

There exists a decomposition, called a spectral decomposition, $H = \bigoplus_{n \ge 1} \mathbb{Z}(f_n)$ such that $\sigma_{f_1} \gg \sigma_{f_2} \gg \dots$ (spectral sequence). (*)For any other spectral decomposition $H = \bigoplus_{n \ge 1} \mathbb{Z}(f'_n)$, we have (**) $\sigma_{f_n} \equiv \sigma_{f'_n}$ for each $n \ge 1$.

- (the type of) σ_{f_1} is called the maximal spectral type of U and is denoted by σ_U .
- $M_U(z) := \sum_{n \ge 1} \mathbb{1}_{\sup p \frac{d\sigma_{f_n}}{d\sigma_{f_n}}}(z)$ is called the *spectral multiplicity* function of U (it is defined σ_U -a.e.).
- Any sequence $\sigma_1 \gg \sigma_2 \dots$ can be realized as a spectral sequence of some U.
- Two unitary operators are (spectrally) isomorphic if and only if they have the same spectral sequence (*) (up to equivalence od spectral measures). $_{9/25}$

Basic questions of spectral theory of Koopman operators

- Which sequences σ₁ ≫ σ₂ ≫ ... appear as spectral sequences of Koopman operators U_T|_{L²₀(X,B,μ)} for ergodic T ∈ Aut(X, B, μ)?
- (A) What measures appear as maximal spectral type of an ergodic automorphism?
- (B) What subsets of $\mathbb{N} \cup \{\infty\}$ appear as the set $\operatorname{essval}(M_{\mathcal{T}})$ of essential values of an ergodic automorphism T? (Such sets are called *Koopman realizable*).

Examples: (i) T Bernoulli: $\lambda \equiv \lambda \equiv ...$, so $\sigma_{U_T} = \sigma_T = [\lambda]$, essval $(M_T) = \{\infty\}$ (all Bernoulli automorphisms are spectrally isomorphic).

(ii) T irrational rotation: $\sigma \gg 0 \equiv 0 \equiv ...$, where $\sigma_T = \sigma = \sum_{\ell=1}^{\infty} \frac{1}{2^\ell} \delta_{e^{2\pi i \ell \alpha}}$ and $\operatorname{essval}(M_T) = \{1\}$ (ergodic automorphisms with discrete spectrum have simple spectrum).

Basic questions of spectral theory of Koopman operators

- Which sequences σ₁ ≫ σ₂ ≫ ... appear as spectral sequences of Koopman operators U_T|_{L²₀(X,B,μ)} for ergodic T ∈ Aut(X, B, μ)?
- (A) What measures appear as maximal spectral type of an ergodic automorphism?
- (B) What subsets of $\mathbb{N} \cup \{\infty\}$ appear as the set $\operatorname{essval}(M_{\mathcal{T}})$ of essential values of an ergodic automorphism \mathcal{T} ? (Such sets are called Koopman realizable).

Examples: (i) T Bernoulli: $\lambda \equiv \lambda \equiv \dots$, so $\sigma_{U_T} = \sigma_T = [\lambda]$, essval $(M_T) = \{\infty\}$ (all Bernoulli automorphisms are spectrally isomorphic). (ii) T irrational rotation: $\sigma \gg 0 = 0 = \dots$ where

 $\sigma_T = \sigma = \sum_{\ell=1}^{\infty} \frac{1}{2^\ell} \delta_{e^{2\pi i \ell \alpha}}$ and $\operatorname{essval}(M_T) = \{1\}$ (ergodic automorphisms with discrete spectrum have simple spectrum).

Basic questions of spectral theory of Koopman operators

- Which sequences σ₁ ≫ σ₂ ≫ ... appear as spectral sequences of Koopman operators U_T|_{L²₀(X,B,μ)} for ergodic T ∈ Aut(X, B, μ)?
- (A) What measures appear as maximal spectral type of an ergodic automorphism?
- (B) What subsets of $\mathbb{N} \cup \{\infty\}$ appear as the set $\operatorname{essval}(M_{\mathcal{T}})$ of essential values of an ergodic automorphism \mathcal{T} ? (Such sets are called Koopman realizable).

Examples: (i) T Bernoulli: $\lambda \equiv \lambda \equiv ...$, so $\sigma_{U_T} = \sigma_T = [\lambda]$, $\overline{\text{essval}(M_T)} = \{\infty\}$ (all Bernoulli automorphisms are spectrally isomorphic).

(ii) T irrational rotation: $\sigma \gg 0 \equiv 0 \equiv ...$, where $\sigma_T = \sigma = \sum_{\ell=1}^{\infty} \frac{1}{2^\ell} \delta_{e^{2\pi i \ell \alpha}}$ and $\operatorname{essval}(M_T) = \{1\}$ (ergodic automorphisms with discrete spectrum have simple spectrum).

Proposition (Known restrictions:)

(i) Topological support $\operatorname{supp}(\sigma_T)$ of σ_T is \mathbb{S}^1 . (ii) The measure $\widetilde{\sigma_T}(A) := \sigma_T(\overline{A})$ is equivalent to σ_T . (iii) If $e^{2\pi i \alpha}$ is an eigenvalue of U_T then the measure $\sigma_{T,i}(A) := \sigma_T(e^{2\pi i \alpha} \cdot A)$ is equivalent to σ_T .

• Use supp $(\sigma_T) = \{z \in \mathbb{C} : z \cdot Id - U_T \text{ is not a bijection}\} = \{z \in \mathbb{C} : z \text{ is an approximative eigenvalue}\}; to solve <math>\|U_T(f) - zf\|_{L^2} < \epsilon$ use Rokhlin lemma $f = \sum_{i=0}^{h-1} z^i \mathbb{1}_{T^i F}$.

Proposition (Known restrictions:)

(i) Topological support $\operatorname{supp}(\sigma_T)$ of σ_T is \mathbb{S}^1 . (ii) The measure $\widetilde{\sigma_T}(A) := \sigma_T(\overline{A})$ is equivalent to σ_T . (iii) If $e^{2\pi i \alpha}$ is an eigenvalue of U_T then the measure $\sigma_{T,i}(A) := \sigma_T(e^{2\pi i \alpha} \cdot A)$ is equivalent to σ_T .

• Use $\operatorname{supp}(\sigma_T) = \{z \in \mathbb{C} : z \cdot Id - U_T \text{ is not a bijection}\} = \{z \in \mathbb{C} : z \text{ is an approximative eigenvalue}\}; to solve <math>\|U_T(f) - zf\|_{L^2} < \epsilon$ use Rokhlin lemma $f = \sum_{i=0}^{h-1} z^i \mathbb{1}_{T^i F}$.

- If σ is a continuous symmetric measure on the circle and $U = e^{V_{\sigma}} := \bigoplus_{\ell \ge 0} V_{\sigma}^{\odot \ell}$, then U is a Koopman operator via the classical Gaussian construction. Indeed, take a centered, real stationary Gaussian process $(X_n)_{n \in \mathbb{Z}}$ with spectral measure σ , i.e. $\mathbb{E}(X_n \cdot X_0) = \hat{\sigma}(n)$ for each $n \in \mathbb{Z}$, with joint distribution μ_{σ} on $\mathbb{R}^{\mathbb{Z}}$ and consider the shift T on $(\mathbb{R}^{\mathbb{Z}}, \mu_{\sigma})$.
- $\sigma_U = \sum_{n \ge 1} \frac{1}{2^n} \sigma^{*n}$ is a measure of maximal spectral type for an ergodic (in fact, weakly mixing) automorphism.
- (Girsanov's theorem, 1950th) Either $M_U = 1$ or M_U has to be unbounded. We can have $essval(M_U) = \{1, \infty\}$ (take $\sigma \perp \lambda$ with $\sigma * \sigma \equiv \lambda$), otherwise this set is infinite and probably has interesting arithmetic properties. Danilenko and Ryzhikov in 2010 proved that every multiplicative sub-semigroup of N has a Gaussian "realization".
- Not every continuous, symmetric measure can be realized as a maximal spectral type of a Koopman operator. Indeed, we can find a so called Kronecker measure σ (continuous, with full topological support) satisfying: For each $f \in L^2(\mathbb{S}^1, \sigma)$ and $\epsilon > 0$ there exists $k \in \mathbb{Z}$ such that $||f z^k||_{L^2(\sigma)} < \epsilon$. Then the famous Foiaș-Stratila theorem from 1967 tells us that whenever $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ is ergodic and a real-valued $f \in L^2(X, \mathcal{B}, \mu)$ has $\sigma_f \equiv \sigma$ then the process $(f \circ T^n)_{N \in \mathbb{Z}}$ has to be Gaussian; then f will be in the first chaos of the corresponding L^2 -space and also $\sigma \perp \sum_{j \ge 2} \frac{1}{2^j} \sigma^{*j}$, so σ cannot be a measure of maximal spectral type.

- If σ is a continuous symmetric measure on the circle and $U = e^{V_{\sigma}} := \bigoplus_{\ell \ge 0} V_{\sigma}^{\odot \ell}$, then U is a Koopman operator via the classical Gaussian construction. Indeed, take a centered, real stationary Gaussian process $(X_n)_{n \in \mathbb{Z}}$ with spectral measure σ , i.e. $\mathbb{E}(X_n \cdot X_0) = \hat{\sigma}(n)$ for each $n \in \mathbb{Z}$, with joint distribution μ_{σ} on $\mathbb{R}^{\mathbb{Z}}$ and consider the shift T on $(\mathbb{R}^{\mathbb{Z}}, \mu_{\underline{\sigma}})$.
- $\begin{array}{l} (\mathbb{R}^{\mathbb{Z}}, \mu_{\sigma}). \\ \sigma_{U} = \sum_{n \geqslant 1} \frac{1}{2^{n}} \sigma^{*n} \text{ is a measure of maximal spectral type for an ergodic} \\ (\text{in fact, weakly mixing) automorphism.} \end{array}$
- (Girsanov's theorem, 1950th) Either $M_U = 1$ or M_U has to be unbounded. We can have $essval(M_U) = \{1, \infty\}$ (take $\sigma \perp \lambda$ with $\sigma * \sigma \equiv \lambda$), otherwise this set is infinite and probably has interesting arithmetic properties. Danilenko and Ryzhikov in 2010 proved that every multiplicative sub-semigroup of N has a Gaussian "realization".
- Not every continuous, symmetric measure can be realized as a maximal spectral type of a Koopman operator. Indeed, we can find a so called Kronecker measure σ (continuous, with full topological support) satisfying: For each $f \in L^2(\mathbb{S}^1, \sigma)$ and $\epsilon > 0$ there exists $k \in \mathbb{Z}$ such that $||f z^k||_{L^2(\sigma)} < \epsilon$. Then the famous Foiaş-Stratila theorem from 1967 tells us that whenever $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ is ergodic and a real-valued $f \in L^2(X, \mathcal{B}, \mu)$ has $\sigma_f \equiv \sigma$ then the process $(f \circ T^n)_{N \in \mathbb{Z}}$ has to be Gaussian; then f will be in the first chaos of the corresponding L^2 -space and also $\sigma \perp \sum_{j \ge 2} \frac{1}{2^j} \sigma^{*j}$, so σ cannot be a measure of maximal spectral type.

- If σ is a continuous symmetric measure on the circle and $U = e^{V_{\sigma}} := \bigoplus_{\ell \ge 0} V_{\sigma}^{\odot \ell}$, then U is a Koopman operator via the classical Gaussian construction. Indeed, take a centered, real stationary Gaussian process $(X_n)_{n \in \mathbb{Z}}$ with spectral measure σ , i.e. $\mathbb{E}(X_n \cdot X_0) = \hat{\sigma}(n)$ for each $n \in \mathbb{Z}$, with joint distribution μ_{σ} on $\mathbb{R}^{\mathbb{Z}}$ and consider the shift T on $(\mathbb{R}^{\mathbb{Z}}, \mu_{\underline{\sigma}})$.
- $\begin{array}{l} (\mathbb{R}^{\mathbb{Z}}, \mu_{\sigma}). \\ \sigma_{U} = \sum_{n \geq 1} \frac{1}{2^{n}} \sigma^{*n} \text{ is a measure of maximal spectral type for an ergodic} \\ (\text{in fact, weakly mixing) automorphism.} \end{array}$
- (Girsanov's theorem, 1950th) Either $M_U = 1$ or M_U has to be unbounded. We can have $essval(M_U) = \{1, \infty\}$ (take $\sigma \perp \lambda$ with $\sigma * \sigma \equiv \lambda$), otherwise this set is infinite and probably has interesting arithmetic properties. Danilenko and Ryzhikov in 2010 proved that every multiplicative sub-semigroup of \mathbb{N} has a Gaussian "realization".
- Not every continuous, symmetric measure can be realized as a maximal spectral type of a Koopman operator. Indeed, we can find a so called Kronecker measure σ (continuous, with full topological support) satisfying: For each $f \in L^2(\mathbb{S}^1, \sigma)$ and $\epsilon > 0$ there exists $k \in \mathbb{Z}$ such that $\|f z^k\|_{L^2(\sigma)} < \epsilon$. Then the famous Foiaş-Stratila theorem from 1967 tells us that whenever $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ is ergodic and a real-valued $f \in L^2(X, \mathcal{B}, \mu)$ has $\sigma_f \equiv \sigma$ then the process $(f \circ T^n)_{N \in \mathbb{Z}}$ has to be Gaussian; then f will be in the first chaos of the corresponding L^2 -space and also $\sigma \perp \sum_{j \ge 2} \frac{1}{2^j} \sigma^{*j}$, so σ cannot be a measure of maximal spectral type.

- If σ is a continuous symmetric measure on the circle and $U = e^{V_{\sigma}} := \bigoplus_{\ell \ge 0} V_{\sigma}^{\odot \ell}$, then U is a Koopman operator via the classical Gaussian construction. Indeed, take a centered, real stationary Gaussian process $(X_n)_{n \in \mathbb{Z}}$ with spectral measure σ , i.e. $\mathbb{E}(X_n \cdot X_0) = \hat{\sigma}(n)$ for each $n \in \mathbb{Z}$, with joint distribution μ_{σ} on $\mathbb{R}^{\mathbb{Z}}$ and consider the shift T on $(\mathbb{R}^{\mathbb{Z}}, \mu_{\sigma})$.
- $\begin{array}{l} (\mathbb{R}^{\mathbb{Z}}, \mu_{\sigma}). \\ \sigma_{U} = \sum_{n \geq 1} \frac{1}{2^{n}} \sigma^{*n} \text{ is a measure of maximal spectral type for an ergodic} \\ (\text{in fact, weakly mixing) automorphism.} \end{array}$
- (Girsanov's theorem, 1950th) Either $M_U = 1$ or M_U has to be unbounded. We can have $essval(M_U) = \{1, \infty\}$ (take $\sigma \perp \lambda$ with $\sigma * \sigma \equiv \lambda$), otherwise this set is infinite and probably has interesting arithmetic properties. Danilenko and Ryzhikov in 2010 proved that every multiplicative sub-semigroup of \mathbb{N} has a Gaussian "realization".
- Not every continuous, symmetric measure can be realized as a maximal spectral type of a Koopman operator. Indeed, we can find a so called Kronecker measure σ (continuous, with full topological support) satisfying: For each $f \in L^2(\mathbb{S}^1, \sigma)$ and $\epsilon > 0$ there exists $k \in \mathbb{Z}$ such that $\|f z^k\|_{L^2(\sigma)} < \epsilon$. Then the famous Foiaș-Stratila theorem from 1967 tells us that whenever $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ is ergodic and a real-valued $f \in L^2(X, \mathcal{B}, \mu)$ has $\sigma_f \equiv \sigma$ then the process $(f \circ T^n)_{N \in \mathbb{Z}}$ has to be Gaussian; then f will be in the first chaos of the corresponding L^2 -space and also $\sigma \perp \sum_{j \ge 2} \frac{1}{2^j} \sigma^{*j}$, so σ cannot be a measure of maximal spectral type.

OUR KNOWLEDGE ABOUT THE MAXIMAL SPECTRAL TYPE HAS NOT CHANGED SINCE THE 1960TH!!

- Oseledets (1966): There exists an ergodic T such that $1 < \mathrm{esssup}(M_T) < \infty$.²
- Robinson (1983): For each $n \ge 1$, there exists an ergodic T such that $\operatorname{esssup}(M_T) = n$.³

²Double group extensions of IETs.

³Double group extensions, Katok-Stepin theory of periodic approximation to apply a generic type arguments.

• $T \in Aut(X, \mathcal{B}, \mu)$; essval (M_T) stands for the essential values of the multiplicity function M_T .

General multiplicity conjecture: Each subset $E \subset \mathbb{N}$ is realizable as $essval(M_T)$.

<u>Recall</u>: Generally, we are interested which sequences $\sigma_1 \gg \sigma_2 \gg \ldots$ are realizable as spectral sequences of Koopman operators. In this sequence we have either \equiv or \gg (without equivalence).

Reformulation of spectral multiplicity conjecture

Is it true that each sequence (finite or infinite) $(s_n)_{n \geqslant 1} \in \{\equiv,\gg\}^{\mathbb{N}}$ is Koopman realizable?

- $T \in Aut(X, \mathcal{B}, \mu)$; essval (M_T) stands for the essential values of the multiplicity function M_T .
- General multiplicity conjecture: Each subset $E \subset \mathbb{N}$ is realizable as $essval(M_T)$.

<u>Recall</u>: Generally, we are interested which sequences $\sigma_1 \gg \sigma_2 \gg \ldots$ are realizable as spectral sequences of Koopman operators. In this sequence we have either \equiv or \gg (without equivalence).

Reformulation of spectral multiplicity conjecture

Is it true that each sequence (finite or infinite) $(s_n)_{n \geqslant 1} \in \{\equiv,\gg\}^{\mathbb{N}}$ is Koopman realizable?

- $T \in Aut(X, \mathcal{B}, \mu)$; essval (M_T) stands for the essential values of the multiplicity function M_T .
- General multiplicity conjecture: Each subset $E \subset \mathbb{N}$ is realizable as $essval(M_T)$.

<u>Recall</u>: Generally, we are interested which sequences $\sigma_1 \gg \sigma_2 \gg \ldots$ are realizable as spectral sequences of Koopman operators. In this sequence we have either \equiv or \gg (without equivalence).

Reformulation of spectral multiplicity conjecture

Is it true that each sequence (finite or infinite) $(s_n)_{n \geqslant 1} \in \{\equiv,\gg\}^{\mathbb{N}}$ is Koopman realizable?

- $T \in Aut(X, \mathcal{B}, \mu)$; essval (M_T) stands for the essential values of the multiplicity function M_T .
- General multiplicity conjecture: Each subset $E \subset \mathbb{N}$ is realizable as $essval(M_T)$.

<u>Recall</u>: Generally, we are interested which sequences $\sigma_1 \gg \sigma_2 \gg \ldots$ are realizable as spectral sequences of Koopman operators. In this sequence we have either \equiv or \gg (without equivalence).

Reformulation of spectral multiplicity conjecture

Is it true that each sequence (finite or infinite) $(s_n)_{n \ge 1} \in \{\equiv, \gg\}^{\mathbb{N}}$ is Koopman realizable?

Theorem (Robinson (1986), Goodson-Kwiatkowski-L.-Liardet (1992), Kwiatkowski (jr.)-L. (1995) with final result)

Each subset $1 \in E \subset \mathbb{N}$ is Koopman realizable, i.e. there exists an ergodic T such that $\operatorname{essval}(M_T) = E$.

How to create symmetry? $T \in Aut(X, \mathcal{B}, \mu)$, G a compact, Abelian group, $\phi : X \to G$ a cocycle, one considers

 $T_{\phi}: X \times G \rightarrow X \times G, \ T_{\phi}(x,g) = (Tx,\phi(x)+g).$

- $L^2(X \times G, \mu \otimes m_G) = \sum_{\chi \in \widehat{G}} L^2(X, \mu) \otimes \chi.$ Note that $U_{\mathcal{T}_{\phi}}(L^2(X, \mu) \otimes \chi) = L^2(X, \mu) \otimes \chi.$
- Assume that $S \in C(T)$ and for some $v \in Aut(G)$ we can solve the equation $\phi(Sx) v(\phi(x)) = \xi(Tx) \xi(x)$ for a measurable $\xi : X \to G$.
- $S_{\xi,v}(x,g) := (Sx,\xi(x) + v(g))$ is an element of the centralizer of T_{ϕ} .
- $U_{S_{\xi,\nu}}(L^2(X,\mu)\otimes\chi)=L^2(X,\mu)\otimes(\chi\circ\nu).$
- The lengths of the orbits of v on \widehat{G} yields a lower bound on the multiplicity.
- Passing to $T_{\phi H}$ for a closed subgroup $H \subset G$ yields LESS subspaces of the form $L^2(X, \mu) \otimes \chi$ (algebra!) under consideration.

Theorem (Robinson (1986), Goodson-Kwiatkowski-L.-Liardet (1992), Kwiatkowski (jr.)-L. (1995) with final result)

Each subset $1 \in E \subset \mathbb{N}$ is Koopman realizable, i.e. there exists an ergodic T such that $\operatorname{essval}(M_T) = E$.

• How to create symmetry? $T \in Aut(X, \mathcal{B}, \mu)$, G a compact, Abelian group, $\phi : X \to G$ a cocycle, one considers

 $T_{\phi}: X \times G \rightarrow X \times G, \ T_{\phi}(x,g) = (Tx,\phi(x)+g).$

- $L^2(X \times G, \mu \otimes m_G) = \sum_{\chi \in \widehat{G}} L^2(X, \mu) \otimes \chi$. Note that $U_{\mathcal{T}_{\phi}}(L^2(X, \mu) \otimes \chi) = L^2(X, \mu) \otimes \chi$.
- Assume that $S \in C(T)$ and for some $v \in Aut(G)$ we can solve the equation $\phi(Sx) v(\phi(x)) = \xi(Tx) \xi(x)$ for a measurable $\xi : X \to G$.
- $S_{\xi,v}(x,g) := (Sx,\xi(x) + v(g))$ is an element of the centralizer of T_{ϕ} .

$$U_{\mathcal{S}_{\xi,\nu}}(L^2(X,\mu)\otimes\chi)=L^2(X,\mu)\otimes(\chi\circ\nu).$$

- The lengths of the orbits of v on G yields a lower bound on the multiplicity.
- Passing to $T_{\phi H}$ for a closed subgroup $H \subset G$ yields LESS subspaces of the form $L^2(X, \mu) \otimes \chi$ (algebra!) under consideration.

Rokhlin's homogeneous spectrum problem

- Katok (mid 1980): For a generic automorphism T, essval(M_{T×T}) ⊂ {2,4} (via Katok's linked approximation theory).
- Katok's conjecture: Generically, we have $essval(M_{T \times n}) = \{n, n(n-1), \dots, n!\}$ (note that for n = 2 it yields positive answer to Rokhlin's question).
- Proof of Katok's conjecture: Ageev (1999) general case, Ryzhikov (1999) - n = 2.
- Ageev (2005): For each n≥ 2 there is an ergodic
 T ∈ Aut(X, B, µ) with homogenous spectrum of multiplicity n (full answer to Rokhlin's question).
- Danilenko (2006): For each $n \ge 2$, and $1 \in E \subset \mathbb{N}$ there is an ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ such that $\operatorname{essval}(M_T) = n \cdot E$.

Rokhlin's homogeneous spectrum problem

- Katok (mid 1980): For a generic automorphism T, essval(M_{T×T}) ⊂ {2,4} (via Katok's linked approximation theory).
- Katok's conjecture: Generically, we have $essval(M_{T \times n}) = \{n, n(n-1), \dots, n!\}$ (note that for n = 2 it yields positive answer to Rokhlin's question).
- Proof of Katok's conjecture: Ageev (1999) general case, Ryzhikov (1999) - n = 2.
- Ageev (2005): For each n≥ 2 there is an ergodic
 T ∈ Aut(X, B, µ) with homogenous spectrum of multiplicity n (full answer to Rokhlin's question).
- Danilenko (2006): For each $n \ge 2$, and $1 \in E \subset \mathbb{N}$ there is an ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ such that $\operatorname{essval}(M_T) = n \cdot E$.

Rokhlin's homogeneous spectrum problem

- Katok (mid 1980): For a generic automorphism T, essval(M_{T×T}) ⊂ {2,4} (via Katok's linked approximation theory).
- Katok's conjecture: Generically, we have essval(M_{T×n}) = {n, n(n − 1), ..., n!} (note that for n = 2 it yields positive answer to Rokhlin's question).
- Proof of Katok's conjecture: Ageev (1999) general case, Ryzhikov (1999) - n = 2.
- Ageev (2005): For each n≥ 2 there is an ergodic
 T ∈ Aut(X, B, µ) with homogenous spectrum of multiplicity n (full answer to Rokhlin's question).
- Danilenko (2006): For each $n \ge 2$, and $1 \in E \subset \mathbb{N}$ there is an ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ such that $\operatorname{essval}(M_T) = n \cdot E$.

Rokhlin's homogeneous spectrum problem

- Katok (mid 1980): For a generic automorphism T, essval(M_{T×T}) ⊂ {2,4} (via Katok's linked approximation theory).
- Katok's conjecture: Generically, we have essval(M_{T×n}) = {n, n(n − 1), ..., n!} (note that for n = 2 it yields positive answer to Rokhlin's question).
- Proof of Katok's conjecture: Ageev (1999) general case, Ryzhikov (1999) - n = 2.
- Ageev (2005): For each n≥ 2 there is an ergodic

 T ∈ Aut(X, B, μ) with homogenous spectrum of multiplicity n
 (full answer to Rokhlin's question).
- Danilenko (2006): For each $n \ge 2$, and $1 \in E \subset \mathbb{N}$ there is an ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ such that $\operatorname{essval}(M_T) = n \cdot E$.

Rokhlin's homogeneous spectrum problem

- Katok (mid 1980): For a generic automorphism T, essval(M_{T×T}) ⊂ {2,4} (via Katok's linked approximation theory).
- Katok's conjecture: Generically, we have essval(M_{T×n}) = {n, n(n − 1), ..., n!} (note that for n = 2 it yields positive answer to Rokhlin's question).
- Proof of Katok's conjecture: Ageev (1999) general case, Ryzhikov (1999) - n = 2.
- Ageev (2005): For each n≥ 2 there is an ergodic
 T ∈ Aut(X, B, µ) with homogenous spectrum of multiplicity n (full answer to Rokhlin's question).
- Danilenko (2006): For each n≥ 2, and 1 ∈ E ⊂ N there is an ergodic T ∈ Aut(X, B, µ) such that essval(M_T) = n · E.

Rokhlin's homogeneous spectrum problem

- Katok (mid 1980): For a generic automorphism T, essval(M_{T×T}) ⊂ {2,4} (via Katok's linked approximation theory).
- Katok's conjecture: Generically, we have $essval(M_{T \times n}) = \{n, n(n-1), \dots, n!\}$ (note that for n = 2 it yields positive answer to Rokhlin's question).
- Proof of Katok's conjecture: Ageev (1999) general case, Ryzhikov (1999) - n = 2.
- Ageev (2005): For each n≥ 2 there is an ergodic
 T ∈ Aut(X, B, µ) with homogenous spectrum of multiplicity n (full answer to Rokhlin's question).
- Danilenko (2006): For each $n \ge 2$, and $1 \in E \subset \mathbb{N}$ there is an ergodic $T \in \operatorname{Aut}(X, \mathcal{B}, \mu)$ such that $\operatorname{essval}(M_T) = n \cdot E$.

Theorem (Katok-L., 2009)

Each finite set $2 \in E \subset \mathbb{N}$ is Koopman realizable.

- Obtained through studying isometric extensions of Cartesian squares.
- Exploiting the technique of weak limits to obtain simplicity of the spectrum of tensor products operators of the form $e^V \otimes W$ with a simultaneous control of homogenous multiplicity for the $W \otimes W$.

<u>Remark</u> (i) The above theorem was extended by Danilenko to all $2 \in E \subset \mathbb{N}$ in 2010. (ii) Other sets: $\{k, \ell, k\ell\}$, $\{k, \ell, m, k\ell, km, \ell m, k\ell m\}$, etc.: Ryzhikov (2009), Solomko (2012); $\{2, 3, \ldots, n\}$: ⁴ Ageev (2008).

⁴Special case of the theorem above.

Theorem (Katok-L., 2009)

Each finite set $2 \in E \subset \mathbb{N}$ is Koopman realizable.

- Obtained through studying isometric extensions of Cartesian squares.
- Exploiting the technique of weak limits to obtain simplicity of the spectrum of tensor products operators of the form $e^V \otimes W$ with a simultaneous control of homogenous multiplicity for the $W \otimes W$.

<u>Remark</u> (i) The above theorem was extended by Danilenko to all $2 \in E \subset \mathbb{N}$ in 2010. (ii) Other sets: $\{k, \ell, k\ell\}$, $\{k, \ell, m, k\ell, km, \ell m, k\ell m\}$, etc.: Ryzhikov (2009), Solomko (2012); $\{2, 3, \ldots, n\}$: ⁴ Ageev (2008).

⁴Special case of the theorem above.

Theorem (Katok-L., 2009)

Each finite set $2 \in E \subset \mathbb{N}$ is Koopman realizable.

- Obtained through studying isometric extensions of Cartesian squares.
- Exploiting the technique of weak limits to obtain simplicity of the spectrum of tensor products operators of the form $e^V \otimes W$ with a simultaneous control of homogenous multiplicity for the $W \otimes W$.

<u>Remark</u> (i) The above theorem was extended by Danilenko to all $2 \in E \subset \mathbb{N}$ in 2010. (ii) Other sets: $\{k, \ell, k\ell\}$, $\{k, \ell, m, k\ell, km, \ell m, k\ell m\}$, etc.: Ryzhikov (2009), Solomko (2012); $\{2, 3, \ldots, n\}$: ⁴ Ageev (2008).

⁴Special case of the theorem above.

In all known constructions, appearance of nonsimple finite multiplicity spectrum is due to some symmetries:

- symmetry of double skew products with a group structure in the second extension, first noticed by Oseledets, originally systematically explored by Robinson and further developed Goodson-Kwiatkowski-L.-Liardet,
- the obvious symmetry of the Cartesian powers, first used in the unpublished version of Katok's notes which has circulated since mid-eighties, and brought to the final form by Ageev and Ryzhikov and
- symmetry involving a certain non-Abelian finite extension of a cyclic group discovered by Ageev.

Problem: The simplest unsolved cases are {3,4}, {3,5}, {3,7}.

In all known constructions, appearance of nonsimple finite multiplicity spectrum is due to some symmetries:

- symmetry of double skew products with a group structure in the second extension, first noticed by Oseledets, originally systematically explored by Robinson and further developed Goodson-Kwiatkowski-L.-Liardet,
- the obvious symmetry of the Cartesian powers, first used in the unpublished version of Katok's notes which has circulated since mid-eighties, and brought to the final form by Ageev and Ryzhikov and
- symmetry involving a certain non-Abelian finite extension of a cyclic group discovered by Ageev.

<u>Problem</u>: The simplest unsolved cases are $\{3,4\}$, $\{3,5\}$, $\{3,7\}$.

Comments and questions from Katok-L. (2009). Maximal spectral type

<u>Problem 1:</u> Can the maximal spectral type be absolutely continuous but not Lebesgue?

<u>Problem 2:</u> Can the maximal spectral type σ for U_T be absolutely continuous with respect to its convolution $\sigma * \sigma$ but not equivalent to it? ⁵

Notice that there are three known possibilities:

- σ is equivalent to σ * σ, as for Lebesgue spectrum or for Gaussian systems;
- σ and σ * σ are mutually singular, as for a generic measure preserving transformation T;
- σ and $\sigma * \sigma$ have a common part but neither is absolutely continuous with respect to the other, as for $T \times T$ for a generic T.

⁵Recall: the first counterexample to Kolmogorov's group property of the spectrum was given by Katok and Stepin in 1967.

Comments and questions from Katok-L. (2009). Maximal spectral type

<u>Problem 1:</u> Can the maximal spectral type be absolutely continuous but not Lebesgue?

<u>Problem 2:</u> Can the maximal spectral type σ for U_T be absolutely continuous with respect to its convolution $\sigma * \sigma$ but not equivalent to it? ⁵

Notice that there are three known possibilities:

- σ is equivalent to $\sigma * \sigma$, as for Lebesgue spectrum or for Gaussian systems;
- σ and $\sigma * \sigma$ are mutually singular, as for a generic measure preserving transformation T;
- σ and σ * σ have a common part but neither is absolutely continuous with respect to the other, as for T × T for a generic T.

⁵Recall: the first counterexample to Kolmogorov's group property of the spectrum was given by Katok and Stepin in 1967.

Comments and questions from Katok-L. (2009). On other problems

"Chances for theorems:"

<u>Problem 3:</u> Is it true that all spectral types of a measure preserving transformation with continuous spectrum are dense?

Fraczek proved it for some group extensions of rotations.

<u>Problem 4:</u> Does there exist an ergodic measure preserving transformation whose maximal spectral type is absolutely continuous but the spectrum is not Lebesgue with countable multiplicity? ⁶

⁶The difference from Problem 1 is that it is conceivable that the maximal spectral type is Lebesgue while not all others are.

Comments and questions from Katok-L. (2009). On other problems

"Chances for theorems:"

<u>Problem 3:</u> Is it true that all spectral types of a measure preserving transformation with continuous spectrum are dense?

Fraczek proved it for some group extensions of rotations.

<u>Problem 4:</u> Does there exist an ergodic measure preserving transformation whose maximal spectral type is absolutely continuous but the spectrum is not Lebesgue with countable multiplicity? ⁶

⁶The difference from Problem 1 is that it is conceivable that the maximal spectral type is Lebesgue while not all others are.

Comments and questions from Katok-L. (2009). On other problems

"Chances for theorems:"

<u>Problem 3:</u> Is it true that all spectral types of a measure preserving transformation with continuous spectrum are dense?

Fraczek proved it for some group extensions of rotations.

<u>Problem 4:</u> Does there exist an ergodic measure preserving transformation whose maximal spectral type is absolutely continuous but the spectrum is not Lebesgue with countable multiplicity? ⁶

⁶The difference from Problem 1 is that it is conceivable that the maximal spectral type is Lebesgue while not all others are.

- Horocycle flows have Lebesgue spectrum of infinite multiplicity (Parasyuk, 1953).
- Smooth time changes of them are mixing (Kushnirenko, 1974, Marcus, 1977).

<u>Conjecture</u> (Katok, Thouvenot; 2006): All flows obtained by a sufficiently smooth time change of horocycle flows have countable Lebesgue spectrum.

- Maximal spectral type Lebesgue was proved by Forni and Ulcigrai in 2012, and (the absolute continuity of the maximal spectral type) independently by Tiedra de Aldecoa (2012).
- Countable Lebesgue spectrum has been proved by Fayad, Forni and Kanigowski (in 2019).

- Horocycle flows have Lebesgue spectrum of infinite multiplicity (Parasyuk, 1953).
- Smooth time changes of them are mixing (Kushnirenko, 1974, Marcus, 1977).

<u>Conjecture</u> (Katok, Thouvenot; 2006): All flows obtained by a sufficiently smooth time change of horocycle flows have countable Lebesgue spectrum.

- Maximal spectral type Lebesgue was proved by Forni and Ulcigrai in 2012, and (the absolute continuity of the maximal spectral type) independently by Tiedra de Aldecoa (2012).
- Countable Lebesgue spectrum has been proved by Fayad, Forni and Kanigowski (in 2019).

- Horocycle flows have Lebesgue spectrum of infinite multiplicity (Parasyuk, 1953).
- Smooth time changes of them are mixing (Kushnirenko, 1974, Marcus, 1977).

<u>Conjecture</u> (Katok, Thouvenot; 2006): All flows obtained by a sufficiently smooth time change of horocycle flows have countable Lebesgue spectrum.

- Maximal spectral type Lebesgue was proved by Forni and Ulcigrai in 2012, and (the absolute continuity of the maximal spectral type) independently by Tiedra de Aldecoa (2012).
- Countable Lebesgue spectrum has been proved by Fayad, Forni and Kanigowski (in 2019).

- $Tx = x + \alpha$,
- $f : \mathbb{T} \to \mathbb{R}^+$, piecewise smooth, with the sum of jumps different from zero,
- special flow T^f weak mixing proved by von Neumann in 1932(!),
- If α has bounded partial quotients they have a Ratner's property ("similarity" with horocycle flows), Fraczek-L. 2006.

<u>Conjecture</u> (Katok, 2004) Von Neumann's special flows have finite multiplicity.⁷

- Still open...
- Kanigowski and Solomko in 2016 proved that these flows have no finite rank.

⁷When the roof function f is smooth, and α "Liouville", then T^f has simple spectrum - Katok-Stepin 1967.

- $Tx = x + \alpha$,
- $f : \mathbb{T} \to \mathbb{R}^+$, piecewise smooth, with the sum of jumps different from zero,
- special flow T^f weak mixing proved by von Neumann in 1932(!),
- If α has bounded partial quotients they have a Ratner's property ("similarity" with horocycle flows), Fraczek-L. 2006.

<u>Conjecture</u> (Katok, 2004) Von Neumann's special flows have finite multiplicity.⁷

- Still open...
- Kanigowski and Solomko in 2016 proved that these flows have no finite rank.

⁷When the roof function f is smooth, and α "Liouville", then \mathcal{T}^f has simple spectrum - Katok-Stepin 1967.

- $Tx = x + \alpha$,
- $f : \mathbb{T} \to \mathbb{R}^+$, piecewise smooth, with the sum of jumps different from zero,
- special flow T^f weak mixing proved by von Neumann in 1932(!),
- If α has bounded partial quotients they have a Ratner's property ("similarity" with horocycle flows), Fraczek-L. 2006.

Conjecture (Katok, 2004) Von Neumann's special flows have finite multiplicity.⁷

- Still open...
- Kanigowski and Solomko in 2016 proved that these flows have no finite rank.

⁷When the roof function f is smooth, and α "Liouville", then T^f has simple spectrum - Katok-Stepin 1967.

- $Tx = x + \alpha$,
- $f : \mathbb{T} \to \mathbb{R}^+$, piecewise smooth, with the sum of jumps different from zero,
- special flow T^f weak mixing proved by von Neumann in 1932(!),
- If α has bounded partial quotients they have a Ratner's property ("similarity" with horocycle flows), Fraczek-L. 2006.

Conjecture (Katok, 2004) Von Neumann's special flows have finite multiplicity.⁷

- Still open...
- Kanigowski and Solomko in 2016 proved that these flows have no finite rank.

⁷When the roof function f is smooth, and α "Liouville", then T^f has simple spectrum - Katok-Stepin 1967.

