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Spectral theory. Koopman operator

(X ,B, µ) probability, standard Borel space (non-atomic!),

L2(X ,B, µ) is separable,
T : (X ,B, µ)→ (X ,B, µ) invertible, measure-preserving; also

notation T ∈ Aut(X ,B, µ),
Koopman operator: UT : L2(X ,B, µ)→ L2(X ,B, µ),
UT f := f ◦ T for f ∈ L2(X ,B, µ),
Spectral theory: properties of UT , that is, properties of T that

are stable under spectral isomorphism in Aut(X ,B, µ).
Ergodicity, weak mixing, mixing are spectral properties.1

1Entropy is not; mixing of all orders unknown...
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Why not Koopman on Lp(X ,B, µ)? :-(

p 6= 2

T ∈ Aut(X ,B, µ), S ∈ Aut(Y , C, ν) are ergodic,

V : Lp(X ,B, µ)→ Lp(Y , C, ν) an isometry such that

V ◦ UT = US ◦ V .

Proposition

Under the above assumptions T and S are measure-theoretically

isomorphic.

Use Lamperti's theorem to obtain that (Vf )(y) = j(y) · f (Jy),
where J : Y → X is non-singular.

Equivariance yields: j(y)f (TJy) = j(Sy)f (JSy); take f = 1, to

obtain that j = const by the ergodicity of S .

Notice that the image J∗(ν) is a T -invariant, ergodic measure

satisfying J∗(ν)� µ, and use ergodicity of T to conclude.
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Why not Koopman on Lp(X ,B, µ)? :-)

(Thouvenot's problem, 1986) Is is true that for each ergodic

T ∈ Aut(X ,B, µ) there exists f ∈ L1(X ,B, µ) such that

L1(X ,B, µ) = span{f ◦ T k : k ∈ Z} for some

f ∈ L1(X ,B, µ)?
(Iwanik, 1991) For each Bernoulli automorphism T and p > 1,

each n ­ 1 and all f1, . . . , fn ∈ Lp(X ,B, µ), we have

span{fj ◦ T k : k ∈ Z, j = 1, . . . , n} 6= Lp(X ,B, µ)

(Bernoulli automorphisms have in�nite �multiplicity� in all Lp

spaces whenever p > 1).
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Classi�cation of unitary operators on separable Hilbert
spaces. I

Theorem (Herglotz)

If U : H → H is a unitary operator on a Hilbert space H and

f ∈ H, then the sequence Z 3 k 7→ 〈Uk f , f 〉 is positive de�nite and

theorefore there exists a unique (positive, Borel) measure σf on S1
such that

σ̂f (k) :=

∫
S1
zk dσf (z) = 〈Uk f , f 〉 for each k ∈ Z.

σf is called the spectral measure of f .
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Classi�cation of unitary operators on separable Hilbert
spaces. II

Hσ := L2(S1, σ), where σ is a (positive, Borel) �nite measure

on the circle,

Vσ : Hσ → Hσ; (Vσf )(z) = zf (z) is unitary,

Hσ = Z(1) := span{V k
σ 1 : k ∈ Z} � one says that Hσ is

equal to the cyclic space Z(1), where 1(z) = 1.

Vσ is an example of a unitary operator (de�ned on a separable

Hilbert space) with simple spectrum.

If H is a (separable) Hilbert space and U is a unitary operator

on it such that H = Z(f ) for some f ∈ H, then the map

Uk f 7→ V k
σf
(1) = zk

extends to a (linear) isometry intertwining U and Vσf .

If above holds, we say that U has simple spectrum.
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Classi�cation of unitary operators on separable Hilbert
spaces. III

U : H → H unitary on a separable Hilbert space H.

Spectral theorem

There exists a decomposition, called a spectral decomposition,

H =
⊕

n­1 Z(fn) such that

(∗) σf1 � σf2 � . . . (spectral sequence).
For any other spectral decomposition H =

⊕
n­1 Z(f ′n), we have

(∗∗) σfn ≡ σf ′n for each n ­ 1.

(the type of) σf1 is called the maximal spectral type of U and is denoted
by σU .

MU(z) :=
∑

n­1 1supp
dσfn
dσf1

(z) is called the spectral multiplicity function

of U (it is de�ned σU -a.e.).

Any sequence σ1 � σ2 . . . can be realized as a spectral sequence of some
U.

Two unitary operators are (spectrally) isomorphic if and only if they have
the same spectral sequence (∗) (up to equivalence od spectral measures).
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Basic questions of spectral theory of Koopman operators

Which sequences σ1 � σ2 � . . . appear as spectral sequences
of Koopman operators UT |L20(X ,B,µ) for ergodic
T ∈ Aut(X ,B, µ)?

(A) What measures appear as maximal spectral type of an ergodic

automorphism?

(B) What subsets of N ∪ {∞} appear as the set essval(MT ) of
essential values of an ergodic automorphism T? (Such sets are

called Koopman realizable).

Examples: (i) T Bernoulli: λ ≡ λ ≡ . . ., so σUT
= σT = [λ],

essval(MT ) = {∞} (all Bernoulli automorphisms are spectrally

isomorphic).

(ii) T irrational rotation: σ � 0 ≡ 0 ≡ . . ., where
σT = σ =

∑∞
`=1

1
2`
δe2πi`α and essval(MT ) = {1} (ergodic

automorphisms with discrete spectrum have simple spectrum).
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Maximal spectral type. I

Proposition (Known restrictions:)

(i) Topological support supp(σT ) of σT is S1.
(ii) The measure σ̃T (A) := σT (A) is equivalent to σT .
(iii) If e2πiα is an eigenvalue of UT then the measure

σT ,i (A) := σT (e
2πiα · A) is equivalent to σT .

Use supp(σT ) = {z ∈ C : z · Id − UT is not a bijection} =
{z ∈ C : z is an approximative eigenvalue}; to solve

‖UT (f )− zf ‖L2 < ε use Rokhlin lemma f =
∑h−1

i=0 z i1T iF .
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Maximal spectral type. II
If σ is a continuous symmetric measure on the circle and
U = eVσ :=

⊕
`­0 V

�`
σ , then U is a Koopman operator via the classical

Gaussian construction. Indeed, take a centered, real stationary Gaussian
process (Xn)n∈Z with spectral measure σ, i.e. E(Xn · X0) = σ̂(n) for each
n ∈ Z, with joint distribution µσ on RZ and consider the shift T on
(RZ, µσ).
σU =

∑
n­1

1
2n
σ∗n is a measure of maximal spectral type for an ergodic

(in fact, weakly mixing) automorphism.
(Girsanov's theorem, 1950th) Either MU = 1 or MU has to be unbounded.
We can have essval(MU) = {1,∞} (take σ ⊥ λ with σ ∗ σ ≡ λ),
otherwise this set is in�nite and probably has interesting arithmetic
properties. Danilenko and Ryzhikov in 2010 proved that every
multiplicative sub-semigroup of N has a a Gaussian �realization�.
Not every continuous, symmetric measure can be realized as a maximal
spectral type of a Koopman operator. Indeed, we can �nd a so called
Kronecker measure σ (continuous, with full topological support)
satisfying: For each f ∈ L2(S1, σ) and ε > 0 there exists k ∈ Z such that
‖f − zk‖L2(σ) < ε. Then the famous Foia³-Stratila theorem from 1967
tells us that whenever T ∈ Aut(X ,B, µ) is ergodic and a real-valued
f ∈ L2(X ,B, µ) has σf ≡ σ then the process (f ◦ T n)N∈Z has to be
Gaussian; then f will be in the �rst chaos of the corresponding L2-space
and also σ ⊥

∑
j­2

1
2j
σ∗j , so σ cannot be a measure of maximal spectral

type. 12 / 25
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Maximal spectral type. III

OUR KNOWLEDGE ABOUT THE MAXIMAL SPECTRAL TYPE

HAS NOT CHANGED SINCE THE 1960TH!!
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Maximal spectral multiplicity

Oseledets (1966): There exists an ergodic T such that

1 < esssup(MT ) <∞. 2

Robinson (1983): For each n ­ 1, there exists an ergodic T
such that esssup(MT ) = n. 3

2Double group extensions of IETs.
3Double group extensions, Katok-Stepin theory of periodic approximation to

apply a generic type arguments.
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Essential values of the multiplicity function

T ∈ Aut(X ,B, µ); essval(MT ) stands for the essential values

of the multiplicity function MT .

General multiplicity conjecture: Each subset E ⊂ N is

realizable as essval(MT ).

Recall: Generally, we are interested which sequences σ1 � σ2 � . . .
are realizable as spectral sequences of Koopman operators. In this

sequence we have either ≡ or � (without equivalence).

Reformulation of spectral multiplicity conjecture

Is it true that each sequence (�nite or in�nite) (sn)n­1 ∈ {≡,�}N
is Koopman realizable?
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Essential values of the multiplicity function. 1 ∈ E

Theorem (Robinson (1986), Goodson-Kwiatkowski-L.-Liardet (1992),
Kwiatkowski (jr.)-L. (1995) with �nal result)

Each subset 1 ∈ E ⊂ N is Koopman realizable, i.e. there exists an ergodic T
such that essval(MT ) = E .

How to create symmetry? T ∈ Aut(X ,B, µ), G a compact, Abelian
group, φ : X → G a cocycle, one considers

Tφ : X × G → X × G , Tφ(x , g) = (Tx , φ(x) + g).

L2(X × G , µ⊗mG ) =
∑

χ∈Ĝ
L2(X , µ)⊗ χ. Note that

UTφ(L
2(X , µ)⊗ χ) = L2(X , µ)⊗ χ.

Assume that S ∈ C(T ) and for some v ∈ Aut(G) we can solve the
equation φ(Sx)− v(φ(x)) = ξ(Tx)− ξ(x) for a measurable ξ : X → G .

Sξ,v (x , g) := (Sx , ξ(x) + v(g)) is an element of the centralizer of Tφ.

USξ,v (L
2(X , µ)⊗ χ) = L2(X , µ)⊗ (χ ◦ v).

The lengths of the orbits of v on Ĝ yields a lower bound on the
multiplicity.

Passing to TφH for a closed subgroup H ⊂ G yields LESS subspaces of
the form L2(X , µ)⊗ χ (algebra!) under consideration.
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Essential values of the multiplicity function. Rokhlin problem

Rokhlin's homogeneous spectrum problem

Is it true that for each n ­ 2 there is an ergodic automorphism T
such that essval(MT ) = {n}?

Katok (mid 1980): For a generic automorphism T ,

essval(MT×T ) ⊂ {2, 4} (via Katok's linked approximation

theory).

Katok's conjecture: Generically, we have

essval(MT×n) = {n, n(n − 1), . . . , n!} (note that for n = 2 it

yields positive answer to Rokhlin's question).

Proof of Katok's conjecture: Ageev (1999) - general case,

Ryzhikov (1999) - n = 2.

Ageev (2005): For each n ­ 2 there is an ergodic

T ∈ Aut(X ,B, µ) with homogenous spectrum of multiplicity n
(full answer to Rokhlin's question).

Danilenko (2006): For each n ­ 2, and 1 ∈ E ⊂ N there is an

ergodic T ∈ Aut(X ,B, µ) such that essval(MT ) = n · E .
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Essential values of the multiplicity function. 2 ∈ E

Theorem (Katok-L., 2009)

Each �nite set 2 ∈ E ⊂ N is Koopman realizable.

Obtained through studying isometric extensions of Cartesian

squares.

Exploiting the technique of weak limits to obtain simplicity of

the spectrum of tensor products operators of the form eV ⊗W
with a simultaneous control of homogenous multiplicity for the

W ⊗W .

Remark (i) The above theorem was extended by Danilenko to all

2 ∈ E ⊂ N in 2010.

(ii) Other sets: {k, `, k`}, {k , `,m, k`, km, `m, k`m}, etc.: Ryzhikov
(2009), Solomko (2012); {2, 3, . . . , n}: 4 Ageev (2008).

4Special case of the theorem above.
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Comments and questions from Katok-L. (2009). Multiplicity

In all known constructions, appearance of nonsimple �nite

multiplicity spectrum is due to some symmetries:

symmetry of double skew products with a group structure in

the second extension, �rst noticed by Oseledets, originally

systematically explored by Robinson and further developed

Goodson-Kwiatkowski-L.-Liardet,

the obvious symmetry of the Cartesian powers, �rst used in the

unpublished version of Katok's notes which has circulated

since mid-eighties, and brought to the �nal form by Ageev and

Ryzhikov and

symmetry involving a certain non-Abelian �nite extension of a

cyclic group discovered by Ageev.

Problem: The simplest unsolved cases are {3, 4}, {3, 5}, {3, 7}.
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Comments and questions from Katok-L. (2009). Maximal
spectral type

Problem 1: Can the maximal spectral type be absolutely continuous

but not Lebesgue?

Problem 2: Can the maximal spectral type σ for UT be absolutely

continuous with respect to its convolution σ ∗ σ but not equivalent

to it? 5

Notice that there are three known possibilities:

σ is equivalent to σ ∗ σ, as for Lebesgue spectrum or for

Gaussian systems;

σ and σ ∗ σ are mutually singular, as for a generic measure

preserving transformation T ;

σ and σ ∗ σ have a common part but neither is absolutely

continuous with respect to the other, as for T × T for a

generic T .
5Recall: the �rst counterexample to Kolmogorov's group property of the

spectrum was given by Katok and Stepin in 1967.
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Comments and questions from Katok-L. (2009). On other
problems

�Chances for theorems:�

Problem 3: Is it true that all spectral types of a measure preserving

transformation with continuous spectrum are dense?

Fra�czek proved it for some group extensions of rotations.

Problem 4: Does there exist an ergodic measure preserving

transformation whose maximal spectral type is absolutely

continuous but the spectrum is not Lebesgue with countable

multiplicity? 6

6The di�erence from Problem 1 is that it is conceivable that the maximal
spectral type is Lebesgue while not all others are.

21 / 25



Comments and questions from Katok-L. (2009). On other
problems

�Chances for theorems:�

Problem 3: Is it true that all spectral types of a measure preserving

transformation with continuous spectrum are dense?

Fra�czek proved it for some group extensions of rotations.

Problem 4: Does there exist an ergodic measure preserving

transformation whose maximal spectral type is absolutely

continuous but the spectrum is not Lebesgue with countable

multiplicity? 6

6The di�erence from Problem 1 is that it is conceivable that the maximal
spectral type is Lebesgue while not all others are.

21 / 25



Comments and questions from Katok-L. (2009). On other
problems

�Chances for theorems:�

Problem 3: Is it true that all spectral types of a measure preserving

transformation with continuous spectrum are dense?

Fra�czek proved it for some group extensions of rotations.

Problem 4: Does there exist an ergodic measure preserving

transformation whose maximal spectral type is absolutely

continuous but the spectrum is not Lebesgue with countable

multiplicity? 6

6The di�erence from Problem 1 is that it is conceivable that the maximal
spectral type is Lebesgue while not all others are.

21 / 25



Other spectral problems raised by Anatole Katok. Time
changes of �ows. I

Horocycle �ows have Lebesgue spectrum of in�nite multiplicity

(Parasyuk, 1953).

Smooth time changes of them are mixing (Kushnirenko, 1974,

Marcus, 1977).

Conjecture (Katok, Thouvenot; 2006): All �ows obtained by a

su�ciently smooth time change of horocycle �ows have countable

Lebesgue spectrum.

Maximal spectral type Lebesgue was proved by Forni and

Ulcigrai in 2012, and (the absolute continuity of the maximal

spectral type) independently by Tiedra de Aldecoa (2012).

Countable Lebesgue spectrum has been proved by Fayad, Forni

and Kanigowski (in 2019).
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Other spectral problems raised by Anatole Katok. Time
changes of �ows. II

Tx = x + α,

f : T→ R+, piecewise smooth, with the sum of jumps

di�erent from zero,

special �ow T f weak mixing proved by von Neumann in

1932(!),

If α has bounded partial quotients - they have a Ratner's

property (�similarity� with horocycle �ows), Fra�czek-L. 2006.

Conjecture (Katok, 2004) Von Neumann's special �ows have �nite

multiplicity.7

Still open...

Kanigowski and Solomko in 2016 proved that these �ows have

no �nite rank.
7When the roof function f is smooth, and α �Liouville�, then T f has simple

spectrum - Katok-Stepin 1967.
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