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Spectral theory. Koopman operator

m (X, B, 1) probability, standard Borel space (non-atomic!),
m [%(X,B, ) is separable,

m T :(X,B,un) — (X, B, u) invertible, measure-preserving; also
notation T € Aut(X, B, u),
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Spectral theory. Koopman operator

(X, B, 1) probability, standard Borel space (non-atomic!),
L?(X, B, ) is separable,

T :(X,B,u) — (X, B, p) invertible, measure-preserving; also
notation T € Aut(X, B, u),

m Koopman operator: Ut : L?(X, B, u) — L%(X, B, i),
Urf:=foT for f € L2(X,B, ),

Spectral theory: properties of Ur, that is, properties of T that
are stable under spectral isomorphism in Aut(X, B, ).

Ergodicity, weak mixing, mixing are spectral properties.!

'Entropy is not; mixing of all orders unknown...
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Why not Koopman on LP(X, B, 11)? ~(

mpF£2
m T e Aut(X,B,u), S € Aut(Y,C,v) are ergodic,

V : LP(X,B,u) — LP(Y,C,v) an isometry such that
VolUr=UsoV.
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Why not Koopman on LP(X, B, 11)? ~(

mpF£2

BT eAut(X,B,pun), S € Aut(Y,C,v) are ergodic,
V : LP(X,B,u) — LP(Y,C,v) an isometry such that
VolUr=UsoV.

Proposition

Under the above assumptions T and S are measure-theoretically
isomorphic.

m Use Lamperti's theorem to obtain that (Vf)(y) =j(y) - f(Jy),
where J: Y — X is non-singular.

m Equivariance yields: j(y)f(TJy) = j(Sy)f(JSy); take f =1, to
obtain that j = const by the ergodicity of S.

m Notice that the image J.(v) is a T-invariant, ergodic measure
satisfying J.(v) < p, and use ergodicity of T to conclude.
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Why not Koopman on LP(X, B, 11)? :-)

m (Thouvenot's problem, 1986) Is is true that for each ergodic
T € Aut(X, B, 1) there exists f € L*(X, B, ) such that
LY(X,B, ) =span{f o Tk : k € Z} for some
fell(X,B,u)?
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Why not Koopman on LP(X, B, 11)? :-)

m (Thouvenot's problem, 1986) Is is true that for each ergodic
T € Aut(X, B, 1) there exists f € L*(X, B, ) such that
LY(X,B, ) =span{f o Tk : k € Z} for some
fell(X,B,u)?

m (lwanik, 1991) For each Bernoulli automorphism T and p > 1,
each n>1andall fi,...,f, € LP(X,B, 1), we have

span{fio TX: k€ Z,j=1,...,n} # LP(X, B, 1)

(Bernoulli automorphisms have infinite “multiplicity” in all LP
spaces whenever p > 1).
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Classification of unitary operators on separable Hilbert

spaces. |

Theorem (Herglotz)

If U:H — H is a unitary operator on a Hilbert space H and

f € H, then the sequence Z > k +— (UXf, f) is positive definite and
theorefore there exists a unique (positive, Borel) measure o on St
such that

or(k) := /Sl ¥ do¢(z) = (UXF, f) for each k € Z.
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Theorem (Herglotz)

If U:H — H is a unitary operator on a Hilbert space H and

f € H, then the sequence Z > k +— (UXf, f) is positive definite and
theorefore there exists a unique (positive, Borel) measure o on St
such that

or(k) := /Sl ¥ do¢(z) = (UXF, f) for each k € Z.

m oy is called the spectral measure of f.
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Classification of unitary operators on separable Hilbert

spaces. |l

m H, := L%(S!,0), where o is a (positive, Borel) finite measure
on the circle,

m V,: H, = Hy; (V,f)(z) = zf(z) is unitary,

m H, =Z(1) ;= span{ VX1 : k € Z} — one says that H, is
equal to the cyclic space Z(1), where 1(z) = 1.
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Classification of unitary operators on separable Hilbert

spaces. |l

m H, := L%(S!,0), where o is a (positive, Borel) finite measure
on the circle,

m V,: H, = Hy; (V,f)(z) = zf(z) is unitary,

m H, =Z(1) ;= span{ VX1 : k € Z} — one says that H, is
equal to the cyclic space Z(1), where 1(z) = 1.

m V, is an example of a unitary operator (defined on a separable
Hilbert space) with simple spectrum.

m If H is a (separable) Hilbert space and U is a unitary operator
on it such that H = Z(f) for some f € H, then the map

UKf = VE (1) = 2

extends to a (linear) isometry intertwining U and V,,,.

m If above holds, we say that U has simple spectrum.
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Classification of unitary operators on separable Hilbert

spaces. I

m U: H — H unitary on a separable Hilbert space
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Classification of unitary operators on separable Hilbert

spaces. I

m U: H — H unitary on a separable Hilbert space H.

Spectral theorem

There exists a decomposition, called a spectral decomposition,
H = @,>1 Z(f,) such that

(%) of, > o, > ... (spectral sequence).
For any other spectral decomposition H = @~ Z(f,), we have
(xx) of, = of for each n > 1.

9/25



Classification of unitary operators on separable Hilbert

spaces. I

m U: H — H unitary on a separable Hilbert space H.

Spectral theorem

There exists a decomposition, called a spectral decomposition,
H = @,>1 Z(f,) such that

(%) of, > o, > ... (spectral sequence).
For any other spectral decomposition H = @~ Z(f,), we have
(xx) of, = of for each n > 1.

m (the type of) o4 is called the maximal spectral type of U and is denoted

by oyu.
= My(z) = 2@1 ]lsuppjln(z) is called the spectral multiplicity function
9 fy

of U (it is defined oy-a.e.).
= Any sequence o1 > 02 ... can be realized as a spectral sequence of some
u.

= Two unitary operators are (spectrally) isomorphic if and only if they have

the same spectral sequence (*) (up to equivalence od spectral measures). o/25



Basic questions of spectral theory of Koopman operators

m Which sequences o1 > 0o > ... appear as spectral sequences
of Koopman operators UT|L3(X,5,,,) for ergodic
T € Aut(X, B, u)?
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called Koopman realizable).
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Basic questions of spectral theory of Koopman operators

m Which sequences o1 > 0o > ... appear as spectral sequences
of Koopman operators UT|L3(X,5,,,) for ergodic
T € Aut(X, B, u)?

(A) What measures appear as maximal spectral type of an ergodic
automorphism?

(B) What subsets of NU {oc} appear as the set essval(M7) of
essential values of an ergodic automorphism T7 (Such sets are
called Koopman realizable).

Examples: (i) T Bernoulli: A= A= ..., s0 oy, = o1 = [A],
essval(Mt) = {oo} (all Bernoulli automorphisms are spectrally
isomorphic).

(ii) T irrational rotation: 0 > 0=0=..., where

oT =0 =172 21766277,[& and essval(M1) = {1} (ergodic
automorphisms with discrete spectrum have simple spectrum).
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Maximal spectral type. |

Proposition (Known restrictions:)

(i) Topological support supp(c7) of o7 is S.

(i) The measure o7(A) := o71(A) is equivalent to or.

i) If e2™@ is an eigenvalue of Ut then the measure
18

o71.,i(A) := o7 (e®™* - A) is equivalent to oT.
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Maximal spectral type. |

Proposition (Known restrictions:)

(i) Topological support supp(c7) of o7 is S.

(i) The measure 07(A) := o7 (A) is equivalent to o.
(iii) If €™ is an eigenvalue of Ut then the measure
or.,i(A) = or(e?™ - A) is equivalent to o1.

m Use supp(o7) ={z€ C:z-Id — Ut is not a bijection} =
{z € C: zis an approximative eigenvalue}; to solve
|UT(f) — zf|| 2 < € use Rokhlin lemma f = S/} 21 .
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Maximal spectral type. I

m If o is a continuous symmetric measure on the circle and
U=¢e" = @220 VE#, then U is a Koopman operator via the classical
Gaussian construction. Indeed, take a centered, real stationary Gaussian
process (Xa)nez with spectral measure o, i.e. E(X, - Xo) = o(n) for each
n € Z, with joint distribution 1, on R% and consider the shift T on
(Rzy o)
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m If o is a continuous symmetric measure on the circle and
U=¢e" = @220 VE#, then U is a Koopman operator via the classical
Gaussian construction. Indeed, take a centered, real stationary Gaussian
process (Xa)nez with spectral measure o, i.e. E(X, - Xo) = o(n) for each
n € Z, with joint distribution 1, on R% and consider the shift T on

(Rzy Mo )-

®ooy= L

n>1 2n
in fact, weakly mixing) automorphism.
Girsanov's theorem, 1950th) Either My =1 or My has to be unbounded.

We can have essval(My) = {1,000} (take o L A\ with o x o = )),
otherwise this set is infinite and probably has interesting arithmetic
properties. Danilenko and Ryzhikov in 2010 proved that every
multiplicative sub-semigroup of N has a a Gaussian “realization”.

n

o*" is a measure of maximal spectral type for an ergodic
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Maximal spectral type. I

m If o is a continuous symmetric measure on the circle and
U= = ®e>0 VE#, then U is a Koopman operator via the classical
Gaussian construction. Indeed, take a centered, real stationary Gaussian
process (Xa)nez with spectral measure o, i.e. E(X, - Xo) = o(n) for each
n € Z, with joint distribution 1, on R% and consider the shift T on
(RZ“LLG . i
mou= n>1 270
2in fact, weakly mixing) automorphism.

Girsanov's theorem, 1950th) Either My =1 or My has to be unbounded.
We can have essval(My) = {1,000} (take o L A\ with o x o = )),
otherwise this set is infinite and probably has interesting arithmetic
properties. Danilenko and Ryzhikov in 2010 proved that

has a a Gaussian “realization”.

m Not every continuous, symmetric measure can be realized as a maximal
spectral type of a Koopman operator. Indeed, we can find a so called
Kronecker measure o (continuous, with full topological support)
satisfying: For each f € L2(S',0) and € > 0 there exists k € Z such that
|f — z"||12(o) < €. Then the famous Foias-Stratila theorem from 1967
tells us that whenever T € Aut(X, B, i) is ergodic and a real-valued
f € L*(X,B, ) has or = o then the process (f o T")nez has to be
Gaussian; then f will be in the first chaos of the corresponding L2-space

and also o L 2122 %a*j, so o cannot be a measure of maximal spectral

type. 12/25

" is a measure of maximal spectral type for an ergodic



Maximal spectral type. Ill

OUR KNOWLEDGE ABOUT THE MAXIMAL SPECTRAL TYPE
HAS NOT CHANGED SINCE THE 1960TH!!
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Maximal spectral multiplicity

m Oseledets (1966): There exists an ergodic T such that
1 < esssup(M7) < o0. 2

= Robinson (1983): For each n > 1, there exists an ergodic T
such that esssup(M7) = n. 3

2Double group extensions of IETs.
3Double group extensions, Katok-Stepin theory of periodic approximation to
apply a generic type arguments.
14 /25



Essential values of the multiplicity function

m T € Aut(X, B, p); essval(M7) stands for the essential values
of the multiplicity function M.
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Essential values of the multiplicity function

m T € Aut(X, B, p); essval(M7) stands for the essential values
of the multiplicity function M.

m General multiplicity conjecture: Each subset E C N is
realizable as essval(M7).

Recall: Generally, we are interested which sequences o1 > 02 > ...
are realizable as spectral sequences of Koopman operators. In this
sequence we have either = or > (without equivalence).

Reformulation of spectral multiplicity conjecture

Is it true that each sequence (finite or infinite) (sp)n>1 € {=, >}
is Koopman realizable?
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Essential values of the multiplicity function. 1 € E

Theorem (Robinson (1986), Goodson-Kwiatkowski-L.-Liardet (1992),

Kwiatkowski (jr.)-L. (1995) with final result)

Each subset 1 € E C N is Koopman realizable, i.e. there exists an ergodic T
such that essval(M7) = E.
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Essential values of the multiplicity function. 1 € E

Theorem (Robinson (1986), Goodson-Kwiatkowski-L.-Liardet (1992),

Kwiatkowski (jr.)-L. (1995) with final result)

Each subset 1 € E C N is Koopman realizable, i.e. there exists an ergodic T
such that essval(M7) = E.

= How to create symmetry? T € Aut(X, B, u), G a compact, Abelian

group, ¢ : X — G a cocycle, one considers
Ty : XX G— X xG, Ty(x,g) =(Tx,p(x) + g).

B XX x G, u®mg) = ;XeELZ(X’N) ® x. Note that
Ur, (L3(X,p) ® x) = L2(X, 1) @ x.

m Assume that S € C(T) and for some v € Aut(G) we can solve the
equation ¢(Sx) — v(¢(x)) = &(Tx) — &(x) for a measurable £ : X — G.

B Scu(x,8) :=(5x,&(x) + v(g)) is an element of the centralizer of T.

m Us,  (L(X, 1) ® x) = L*(X, 1) @ (x 0 V).

m The lengths of the orbits of v on G yields a lower bound on the
multiplicity.

m Passing to Tyu for a closed subgroup H C G yields LESS subspaces of
the form [*(X, u) ® x (algebra!) under consideration.
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Essential values of the multiplicity function. Rokhlin problem

Rokhlin's homogeneous spectrum problem

Is it true that for each n > 2 there is an ergodic automorphism T
such that essval(M7) = {n}?
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essval(Myxn) = {n,n(n—1),...,n'} (note that for n =2 it
yields positive answer to Rokhlin's question).

m Proof of Katok’s conjecture: Ageev (1999) - general case,
Ryzhikov (1999) - n = 2.

m Ageev (2005): For each n > 2 there is an ergodic
T € Aut(X, B, 1) with homogenous spectrum of multiplicity n
(full answer to Rokhlin’s question).
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Essential values of the multiplicity function. Rokhlin problem

Rokhlin's homogeneous spectrum problem

Is it true that for each n > 2 there is an ergodic automorphism T
such that essval(M7) = {n}?

m Katok (mid 1980): For a generic automorphism T,
essval(Mr, 1) C {2,4} (via Katok’s linked approximation
theory).

m Katok's conjecture: Generically, we have
essval(Myxn) = {n,n(n—1),...,n'} (note that for n =2 it
yields positive answer to Rokhlin's question).

m Proof of Katok’s conjecture: Ageev (1999) - general case,
Ryzhikov (1999) - n = 2.

m Ageev (2005): For each n > 2 there is an ergodic
T € Aut(X, B, 1) with homogenous spectrum of multiplicity n
(full answer to Rokhlin’s question).

m Danilenko (2006): For each n > 2, and 1 € E C N there is an
ergodic T € Aut(X, B, i) such that essval(M7) = n- E.

17 /25



Essential values of the multiplicity function. 2 € E

Theorem (Katok-L., 2009)

Each finite set 2 € E C N is Koopman realizable.
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Each finite set 2 € E C N is Koopman realizable.

m Obtained through studying isometric extensions of Cartesian
squares.

m Exploiting the technique of weak limits to obtain simplicity of
the spectrum of tensor products operators of the form eV @ W
with a simultaneous control of homogenous multiplicity for the
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Essential values of the multiplicity function. 2 € E

Theorem (Katok-L., 2009)
Each finite set 2 € E C N is Koopman realizable.

m Obtained through studying isometric extensions of Cartesian
squares.

m Exploiting the technique of weak limits to obtain simplicity of
the spectrum of tensor products operators of the form eV @ W
with a simultaneous control of homogenous multiplicity for the
weWw.

Remark (i) The above theorem was extended by Danilenko to all

2 € E C Nin 2010.

(ii) Other sets: {k, ¢, k¢}, {k, €, m, kl, km,¢m, kiém}, etc.: Ryzhikov
(2009), Solomko (2012); {2,3,...,n}: * Ageev (2008).

*Special case of the theorem above.
18/25



Comments and questions from Katok-L. (2009). Multiplicity

In all known constructions, appearance of nonsimple finite
multiplicity spectrum is due to some symmetries:

m symmetry of double skew products with a group structure in
the second extension, first noticed by Oseledets, originally
systematically explored by Robinson and further developed
Goodson-Kwiatkowski-L.-Liardet,

m the obvious symmetry of the Cartesian powers, first used in the
unpublished version of Katok's notes which has circulated
since mid-eighties, and brought to the final form by Ageev and
Ryzhikov and

® symmetry involving a certain non-Abelian finite extension of a
cyclic group discovered by Ageev.
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Comments and questions from Katok-L. (2009). Multiplicity

In all known constructions, appearance of nonsimple finite
multiplicity spectrum is due to some symmetries:

m symmetry of double skew products with a group structure in
the second extension, first noticed by Oseledets, originally
systematically explored by Robinson and further developed
Goodson-Kwiatkowski-L.-Liardet,

m the obvious symmetry of the Cartesian powers, first used in the
unpublished version of Katok's notes which has circulated
since mid-eighties, and brought to the final form by Ageev and
Ryzhikov and

® symmetry involving a certain non-Abelian finite extension of a
cyclic group discovered by Ageev.

Problem: The simplest unsolved cases are {3,4}, {3,5}, {3,7}.
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Comments and questions from Katok-L. (2009). Maximal

spectral type

Problem 1: Can the maximal spectral type be absolutely continuous
but not Lebesgue?

20 /25



Comments and questions from Katok-L. (2009). Maximal

spectral type

Problem 1: Can the maximal spectral type be absolutely continuous
but not Lebesgue?

Problem 2: Can the maximal spectral type o for Ut be absolutely
continuous with respect to its convolution o * o but not equivalent
to it? ®

Notice that there are three known possibilities:

m 0 is equivalent to o * g, as for Lebesgue spectrum or for
Gaussian systems;

m o and o * o are mutually singular, as for a generic measure
preserving transformation T;

m o and o * 0 have a common part but neither is absolutely
continuous with respect to the other, as for T x T for a
generic T.

®Recall: the first counterexample to Kolmogorov's group property of the
spectrum was given by Katok and Stepin in 1967.

20 /25



Comments and questions from Katok-L. (2009). On other

problems

“Chances for theorems:”
Problem 3: Is it true that all spectral types of a measure preserving
transformation with continuous spectrum are dense?
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Comments and questions from Katok-L. (2009). On other

problems

“Chances for theorems:”
Problem 3: Is it true that all spectral types of a measure preserving
transformation with continuous spectrum are dense?

m Fraczek proved it for some group extensions of rotations.

Problem 4: Does there exist an ergodic measure preserving
transformation whose maximal spectral type is absolutely
continuous but the spectrum is not Lebesgue with countable
multiplicity? ©

5The difference from Problem 1 is that it is conceivable that the maximal

spectral type is Lebesgue while not all others are.
21/25



Other spectral problems raised by Anatole Katok. Time
changes of flows. |

m Horocycle flows have Lebesgue spectrum of infinite multiplicity
(Parasyuk, 1953).

m Smooth time changes of them are mixing (Kushnirenko, 1974,
Marcus, 1977).
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Other spectral problems raised by Anatole Katok. Time
changes of flows. |

m Horocycle flows have Lebesgue spectrum of infinite multiplicity
(Parasyuk, 1953).
m Smooth time changes of them are mixing (Kushnirenko, 1974,
Marcus, 1977).
Conjecture (Katok, Thouvenot; 2006): All flows obtained by a
sufficiently smooth time change of horocycle flows have countable
Lebesgue spectrum.
m Maximal spectral type Lebesgue was proved by Forni and

Ulcigrai in 2012, and (the absolute continuity of the maximal
spectral type) independently by Tiedra de Aldecoa (2012).

m Countable Lebesgue spectrum has been proved by Fayad, Forni
and Kanigowski (in 2019).

22 /25
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changes of flows. Il

B Ix=x+aq,

m f: T — R", piecewise smooth, with the sum of jumps
different from zero,
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Other spectral problems raised by Anatole Katok. Time

changes of flows. Il

B Tx=x+aq,

m f: T — R", piecewise smooth, with the sum of jumps
different from zero,

m special flow T weak mixing proved by von Neumann in
1932(1),

m If  has bounded partial quotients - they have a Ratner’s
property (“similarity” with horocycle flows), Fraczek-L. 2006.

Conjecture (Katok, 2004) Von Neumann's special flows have finite
multiplicity.”

"When the roof function f is smooth, and « “Liouville”, then T has simple

spectrum - Katok-Stepin 1967.
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Conjecture (Katok, 2004) Von Neumann's special flows have finite
multiplicity.”
m Still open...
m Kanigowski and Solomko in 2016 proved that these flows have
no finite rank.
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