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We consider a version of coarse geometry that came from the geometric

group theory. Thus, we work with metric spaces, but we are interested only

in what happens in large scale. We look at our space from further and

further away. In particular, any given bounded set looks like a singleton.





















Let X and Y be metric spaces. We will use d for the metric in both spaces.

A map ϕ : X → Y is called a quasi-isometric embedding if there exist

positive constants L and C, such that

1

L
d(x, y)− C ≤ d(ϕ(x), ϕ(y)) ≤ Ld(x, y) + C

for all points x, y ∈ X. Note that ϕ does not have to be continuous. If

additionally there is a positive constant M such that ϕ(X) is M -dense in

Y , that is, for every y ∈ Y there is x ∈ X such that d(ϕ(x), y) ≤M , then ϕ

is called a quasi-isometry. We say then that Y is quasi-isometric to X.



If ξ, ψ : X → Y are maps, we will say that they are almost equal if there

exists a constant M such that d(ξ(x), ψ(x)) ≤M for every x ∈ X.

A quasi-isometry ϕ : X → Y has a quasi-inverse, that is, a map ψ : Y → X

such that ψ ◦ ϕ is almost equal to the identity on X and ϕ ◦ ψ is almost

equal to the identity on Y . This map ψ is also a quasi-isometry.



The relation of being quasi-isometric is an equivalence relation.

Quasi-isometries play the same role in coarse geometry as isometries in

geometry or homeomorphisms in topology. A simple example of a

quasi-isometry is the embedding ϕ : Z→ R. Thus, Z and R are

quasi-isometric.

If ϕ satisfies only the second inequality in the definition of a quasi-isometric

embedding, that is,

d(ϕ(x), ϕ(y)) ≤ Ld(x, y) + C,

then we will say that f is coarse Lipschitz.



Dynamical system: we iterate a map f : X → X. It is not clear what we

should assume about f , so we do not assume anything.

If g : Y → Y is a map, we will say that f is quasi-embedded in g if there

exists a quasi-isometric embedding ϕ : X → Y such that ϕ ◦ f is almost

equal to g ◦ ϕ.

How to define quasi-conjugacy? A natural idea would be to say that f is

quasi-conjugate to g if f is quasi-embedded in g via a quasi-isometry.

Unfortunately, this does not work.



Example 1. Let X = Z and Y = R and let f : X → X and g : Y → Y be

defined by the same formula x 7→ x2. If ϕ : X → Y is the natural

embedding, ϕ(x) = x, then clearly ϕ is a quasi-isometry and ϕ ◦ f = g ◦ ϕ.

However, there is no quasi-isometry ψ : Y → X for which ψ ◦ g is almost

equal to f ◦ ψ.

Definition 1. The maps f : X → X and g : Y → Y are coarsely conjugate

if there exists a quasi-isometry ϕ : X → Y and its quasi-inverse ψ : Y → X

such that ϕ ◦ f is almost equal to g ◦ ϕ and ψ ◦ g is almost equal to f ◦ ψ.

Coarse conjugacy defined in this way is an equivalence relation.



Note that if f and g are conjugate (in the classical sense) they are not

necessarily quasi-conjugate.

Proposition 1. Consider maps f : X → X and g : Y → Y for which there

exists a quasi-isometry ϕ : X → Y such that ϕ ◦ f is almost equal to g ◦ ϕ
and g is coarse Lipschitz. Then f is also coarse Lipschitz and for any

quasi-inverse ψ of ϕ the maps f and g are coarsely conjugate via ϕ and ψ.



Example 2. Take X = Y = [2,∞), f(x) = x2, g(x) = x2 + 1
x , and both ϕ

and ψ equal to the identity. clearly, the pair (ϕ,ψ) is a coarse conjugacy

between f and g. However, it is not a coarse conjugacy between f2 and g2.

Nevertheless, f2 and g2 are coarsely conjugate via ϕ′(x) = x− 1
2x2 and

ψ′(x) = x+ 1
2x2 .

Conjecture 1. If f and g are coarsely conjugate then so are fn and gn for

all natural n.

Lemma 1. If f and g are coarsely conjugate and g is coarse Lipschitz,

then for any natural n the maps fn and gn are coarsely conjugate via the

same quasi-isometries as f and g.



Bowen’s definition of topological entropy in the usual case, when

f : X → X is a continuous map:

(Piece of) trajectory of length n: a finite sequence

(x, f(x), f2(x), . . . , fn(x)). Distance between (x0, x1, x2, . . . , xn) and

(y0, y1, y2, . . . , yn) is maxi d(xi, yi).

s(f, n, ε) is the supremum of the cardinalities of ε-separated sets of orbits of

f of length n; r(f, n, ε) is the infimum of the cardinalities of ε-spanning sets

of orbits of f of length n.

Topological entropy of f :

h(f) = lim
ε→0

lim sup
n→∞

1

n
log s(f, n, ε) = lim

ε→0
lim sup
n→∞

1

n
log r(f, n, ε).



We look through a better and better binocular and note the exponential

growth rate of distinguishable orbits of length n as n→∞.

Instead of orbits we may use δ-pseudoorbits. A δ-pseudoorbit of f of length

n starting at x0 is a sequence (x0, x1, . . . , xn) such that d(f(xi), xi+1) ≤ δ
for i = 0, 1, . . . , n− 1. Let s(f, n, ε, δ) be the supremum of the cardinalities

of ε-separated sets of δ-pseudoorbits of f of length n.

Theorem 1 (M., 1986). If X is a compact metric space and f : X → X a

continuous map, then

h(f) = lim
ε→0

lim
δ→0

lim sup
n→∞

1

n
log s(f, n, ε, δ).



In the coarse case, using δ-pseudoorbits is natural, since if we look from far

away, we do not see exactly the location of the points. Instead of looking

from far away we may look through a better and better binocular, but from

the other side of it. This means that ε (which we now rename R) goes to

infinity, rather than to zero.

Moreover, since our space is not bounded (otherwise the situation is

trivial), we have to fix the starting point x0 of the δ-pseudoorbits.



Definition of the coarse entropy of f :

h∞(f) = lim
δ→∞

lim
R→∞

lim sup
n→∞

1

n
log s(f, n,R, δ, x0),

The value of h∞(f) does not depend on the choice of x0.

Theorem 2. We have

h∞(f) = lim
δ→∞

lim
R→∞

lim sup
n→∞

1

n
log r(f, n,R, δ, x0),



Theorem 3. If f is quasi-embedded in g then h∞(f) ≤ h∞(g).

Corollary 1. If f is quasi-embedded in g and g is quasi-embedded in f

then h∞(f) = h∞(g). Therefore, the coarse entropy is an invariant of

quasi-conjugacy. In particular, if we change the metric d in the phase space

to a metric that is bi-Lipschitz equivalent to d, the coarse entropy will not

change.

Note that if there are quasi-isometric embeddings from X to Y and from Y

to X, it does not mean that X and Y are quasi-isometric. Therefore, if f is

quasi-embedded in g and g is quasi-embedded in f then it may happen that

f and g are not quasi-conjugate (take the identities in X and Y ).





Example 3. This is an example where f and g are homeomorphisms, they

are conjugate via a Lipschitz continuous homeomorphism ϕ (that is,

ϕ ◦ f = g ◦ ϕ), but h∞(g) > h∞(f).

Let X = Y be the half-plane {(x, y) ∈ R2 : y ≥ 0}. Let f : X → X be given

by the formula f(x, y) = (2x, y). We have h∞(f) ≤ log 2.

The map ϕ : X → Y maps each horizontal line Ht = {(x, y) ∈ R2 : y = t} to

itself by squeezing linearly the segment (in the variable x) [−et, et] to the

segment [−1, 1] and translating the remaining two half-lines. Thus, if

−ey ≤ x ≤ ey, then ϕ(x, y) = (xe−y, y); if x > ey then

ϕ(x, y) = (x− ey + 1, y); and if x < −ey then ϕ(x, y) = (x+ ey − 1, y).

Clearly, ϕ is a homeomorphism.

We set g = ϕ ◦ f ◦ ϕ−1. Then h∞(g) =∞.



Theorem 4. For any k ≥ 1 we have h∞(fk) ≤ kh∞(f). If additionally f

is coarse Lipschitz, then h∞(fk) = kh∞(f).



Example 4. This is an example that in the above theorem, if we do not

make any additional assumptions, then it can happen that

h∞(fk) < kh∞(f).

Let X be a disjoint union of rectangles Pn, n = 0, 1, 2, . . . . Rectangle P2m

has size 1× 2m and rectangle P2m+1 has size 2m × 1. Let cn be the center

of the rectangle Pn. On each rectangle the metric is the maximum of

horizontal and vertical distances. If x ∈ Pn and y ∈ Pm for n < m, then

d(x, y) = d(x, cn) + d(y, cm) + (n+ 1) + (n+ 2) + · · ·+m

(that is, the distance between Pn and Pn+1 is n+ 1).

The map f maps Pn onto Pn+1 by a linear map that preserves the

horizontal and vertical directions. Thus, as we apply f repeatedly, the

rectangles get alternately stretched horizontally while contracted vertically,

and stretched vertically while contracted horizontally. However, f2 only

stretches each rectangle in one direction by factor 2.

We have h∞(f2) ≤ log 2 < 2 log 2 ≤ 2h∞(f).



Theorem 5. Let f : X → X and g : Y → Y be maps. Then

h∞(f × g) ≤ h∞(f) + h∞(g).



Example 5. This example shows that even if we assume that if f and g

increase distances at most 2 times and do not decrease distances, we may

not get equality in Theorem 5.

We define the spaces X and Y in a similar way as in Example 4, except

that instead of rectangles, we take segments of the real line. The point cn

will be the left endpoint of the nth segment, and the distance in the space

is defined in a similar way as in Example 4. The length of the zeroth

segment is 1. The lengths of the next segments will be determined by the

maps f and g. Both of them map the nth segment onto the (n+ 1)st one in

a linear way; it will be multiplication by 1 or 2. If 2k
2 ≤ n < 2(k+1)2 , then if

k is even then f multiplies by 1 and g by 2; if k is odd then f multiplies by

2 and g by 1.

We have h∞(f) ≥ log 2 and h∞(g) ≥ log 2, while h∞(f × g) ≤ log 2.



Lemma 2. If f : Rq → Rq is a linear map with all eigenvalues of absolute

value larger than 1 and the absolute value of the determinant of f is Λ,

then h∞(f) = log Λ.

Lemma 3. If f : Rq → Rq is a Lipschitz continuous map with Lipschitz

constant λ > 1 then h∞(f) ≤ q log λ.

Remark 1. If instead of assuming in Lemma 3 that f is Lipschitz, we

assume only that it is coarse Lipschitz, the result will be the same.

Theorem 6. If f : Rq → Rq is a linear map, then h∞(f) = log Λ, where Λ

is the absolute value of the product of all eigenvalues of f that have absolute

value larger than 1.



Example 6. Let X be the space l∞ of bounded real sequences, with the

sup norm, and let f : X → X be the identity map. Fix δ,R > 0. Let x0 be

the zero sequence. If n ≥ R/δ then for every k there exists a δ-pseudoorbit

of length n starting at x0 and ending at the sequence whose only non-zero

term is the kth one, and it is equal to R. The set of those δ-pseudoorbits is

an R-separated set of cardinality infinity. This proves that h∞(f) =∞.

The above example, and easy to construct similar ones, is based on the

property of the space X that for every R there are bounded sets with

R-separated infinite subsets. However, there is an example of a space where

the closure of every bounded set is compact, so every R-separated subset of

a bounded set is finite, but nevertheless the identity has coarse entropy

infinity.



Box counting dimension BCD(A) of a set A is the limit (if it exists)

BCD(X) = lim
ε→0

log r(X, ε)

− log ε
,

where r(X, ε) is the minimum of cardinalities of ε-spanning subsets of X.

Example 7. Let Sq−1 be the unit sphere in Rq. Let A ⊂ Sq−1 be a set

having box-counting dimension. Set

X = {tx ∈ Rq : t ≥ 0, x ∈ A}.

Take λ > 1 and define f : X → X by f(x) = λx. Then

h∞(f) = (BCD(A) + 1) log λ.


