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Warsaw (1986) and Cambridge (2000)

Tolya and I both attended a programme at the Banach center in 1986.
In 2000, we co-organized a 6 month programme at the Newton Institute,
in Cambridge, UK.
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Warwick (1980)

Tolya appears in the group photograph for the 1980 symposium at
Warwick on Smooth Ergodic theory.
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Lyapunov analysis : A general comment

Let T : X → X be a hyperbolic map (e,g, a diffeomorphism or an
expanding map).

We can ask about the size of the set of points x ∈ X for which the
Lyapunov exponent exists takes a given value α, say, i.e.,

lim
n→+∞

1

n
log ‖DT n(x)‖ = α.

Question

What is the size of the set of points whose Lyapunov exponent is α?

As a starting point we can consider the (perhaps) more familiar case of a
classical example of multifractal analysis.

But first we want to fix a particularly simple class of maps T .
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Setting: Cookie cutters

Here X is a Cantor set in the unit interval and T : X → X is a (piecewise)
linear expanding map.

I1 I2 In

Figure: A cookie cutter

More precisely, let I1, · · · , In ⊂ [0, 1] be
closed pairwise disjoint subintervals and
consider a piecewise linear expanding map

T : ∪ni=1Ii → [0, 1]

T : x 7→ aix + bi for x ∈ Ii

where ai = 1/|Ii | > 1 and bi ∈ [0, 1].

We then define X = ∩∞n=0T
−n[0, 1] and let T : X → X be the restriction

of the map defined above.

Mark Pollicott (University of Warwick) Non-convexity of Lyapunov Spectra 16 August, 2019 5 / 30



Simple(st) example of a cookie cutter: Middle 1
3 Cantor set

In the special case of the usual middle 1
3 Cantor set

X =

{
x =

∞∑

n=1

εn3−n : εn ∈ {0, 2}, n ∈ N

}

we can let I1 = [0, 13 ] and I2 = [23 , 1].

0 1
3

2
3 1

Figure: 2-interval cookie cutter

Consider the piecewise linear expanding
maps T1 : I1 → [0, 1] and T2 : I2 → [0, 1] of
the form

T1(x) = 3x for x ∈ I1

T2(x) = 3x − 2 for x ∈ I2

Then X = ∩∞n=0T
−n[0, 1] and let T : X → X and T (x) = 3x (mod 1).
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What is in a name?

The name “cookie cutter” was popularized by Dennis Sullivan.

The first reference (in Mathscinet) appears in the article of Bohr and Rand.

“‘For clarity we are not going to treat the general case here, but instead
concentrate on the proto- typical example of Sullivan’s ’cookie-cutter’
Cantor sets. In this way we avoid non-essential technical problems and
quickly get down to the heart of the problem.”

- T. Bohr and D. Rand, Physica D, 1987
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A simple example in Multifractal Analysis

Consider (again) the middle 1
3 Cantor set

X =

{
x =

∞∑

n=1

εn3−n : εn ∈ {0, 2}, n ∈ N

}
.

Let

µp = (p, 1− p)N be a Bernoulli measure on X .

T : X → X be the natural (trebling) map defined by
T (x) = 3x (mod 1).

Let f : X → R be defined by

f (x) =

{
1 if x ∈ X ∩

[
0, 13
]
∩ X

0 if x ∈ X ∩
[
2
3 , 1
]
∩ X
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Birkhoff Ergodic Theorem

In particular, the Ceséro (or Birkhoff) averages

Anf (x) =
1

n

n−1∑

k=0

f (T kx)

are merely the proportion of the digit 0 in the first n
terms ε1(x), ε2(x), · · · , εn(x) in the base 3
expansion.

Theorem (Birkhoff Ergodic Theorem, 1931)

For the ergodic probability measure µp and a.e. (µp) the limit
limn→+∞ Anf (x) exists and equals p.

Of course, different choices 0 < p < 1 show there are at least some points
(in fact a full µp measure set) with that frequency of 0s.
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Size of sets with a given limit

Question

Given 0 < p < 1, how many points x actually have that limit?

We can consider the size of the sets in terms of the Hausdorff Dimension.

Definition

For 0 < p < 1 we define

Xp =

{
x ∈ X : lim

n→+∞
Anf (x) = p

}

i.e., the set of points whose frequency of 0s in its expansion is p.
and F(p) = dim(Xp).
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Besicovich Multifractal result

In 1935 Besicovich considered the fequency of digits for diadic expansions
in the unit interval. However, this easily adapts to show the following.

Lemma (After Besicovich)

F(p) := dim(Xp) = −p log p−(1−p) log(1−p)
log 3 .
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Moving onto the Lyapunov spectrum
Let T : X 7→ X be a cookie cutter and consider next f (x) = log |T ′(x)|.
In particular, in place of ergodic averages we can consider Lyapunov
exponents, i.e.,

Ln(x) :=
1

n
log |(T n)′(x)| (= Anf (x)) ,

for x ∈ X and n ≥ 1, by the chain rule.

Definition

For α ∈ R we define

Yα =

{
x ∈ X : lim

n→+∞
Lnf (x) = α

}

and L(α) = dim(Yα).

On might anticipate that the Lyapunov spectrum (i.e., the function
α 7→ L(α)) has similar properties to the Multifractal spectrum... or
perhaps not.
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Properties of the Lyapunov spectrum

Motivated by properties of the multifractal spectra F(α) we can ask:

Is α 7→ L(α) analytic?

Is α 7→ L(α) convex?

Howie Weiss resolved the first question.

Theorem (H. Weiss)

The Lyapunov spectrum L(α) is real analytic.

Convexity of L(α) was also (incorrectly) claimed by Howie Weiss:

“An important tool in studying these questions is the Lyapunov spectrum,
which records the the Hausdorff dimension of the level sets for the
apectum Lyapunov exponent. We show that for most conformal repellers,
this []map] is real analytic and strictly convex.”

- H. Weiss, J. Stat. Phys., 1999.
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Howie Weiss

Mark Pollicott (University of Warwick) Non-convexity of Lyapunov Spectra 16 August, 2019 14 / 30



J. Kiwi and G. Iommi

However, Kiwi and Iommi came up with explicit counter examples.

There examples are based on cookie cutters with two branches with
different expansion rates b > a > 1, say.
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The Kiwi-Iommi counter examples

More precisely, let

b > a > 1 with 1
a + 1

b < 1,

I1 = [0, 1a ] and I2 = [1− 1
b , 1],

T : I1 ∪ I2 → [0, 1] is defined by

T (x) =

{
ax if x ∈ I1

bx + (1− b) if x ∈ I2.

I1 I2
0 1

a 11− 1
b

Figure: A cookie cutter

Then the Lyapunov spectrum has a simple explicit closed form expression

L(α) =
1

α

(
−
(

log b − α
log(b/a)

)
log

(
log b − α
log(b/a)

)
−
(
α− log a

log(b/a)

)
log

(
α− log a

log(b/a)

))
,
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The lack of convexity in Kiwi-Iommi examples
In particular, they concluded the following.

Theorem (Iommi-Kiwi)

The function L : (log a, log b)→ R is convex if and only if

log b

log a
≤
√

2 log 2 + 1√
2 log 2− 1

= 12.2733 · · ·

Thus for choices of a and b which do not satisfy this inequality there are
inflection points.

10 GODOFREDO IOMMI AND JAN KIWI

Figure 2. The Lyapunov spectra for maps with three linear
branches of slopes a = exp(1) < b = exp(2) < c. At the left a
concave spectra corresponding to c = exp(4). At the center, a
non-concave corresponding to c = exp(8). At the right, another
non-concave spectrum corresponding to b = exp(16).

Hence,

(10) α(t) = −P (−t log |T ′|)′ =

∑n
i=1 |mi|t log |mi|∑n

i=1 |mi|t
.

The formula for L(α(t)) follows from Equation (3). !

Proof of Corollary C. From the formula (10) for α(t), it follows that:

σ2(t) =

∑n
i=1 |mi|t(log |mi|)2∑n

i=1 |mi|t
−
(∑n

i=1 |mi|t log |mi|∑n
i=1 |mi|t

)2

.

We introduce the following notation:

∥ log |T ′|∥2
2,t =

∑n
i=1 |mi|t(log |mi|)2∑n

i=1 |mi|t

∥ log |T ′|∥1,t =

∑n
i=1 |mi|t log |mi|∑n

i=1 |mi|t

Now from Equation (9), we have that L is concave if and only if, for all t ∈ R,

2P (−t log |T ′|)
(
∥ log |T ′|∥2

2,t − ∥ log |T ′|∥2
1,t

)
≤ ∥ log |T ′|∥2

1,t.

!
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Figure: Fix a = e1 and then (i) b = e1; (ii) b = 12.2733 · · · ; and (iii) b = e45
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The Kiwi-Iommi’s first (warm-up) problem

Iommi and Kiwi conjectured that their linear two branches examples
cannot have have more than two points of inflection.

Conjecture (Iommi-Kiwi)

In this example can there be more points of inflection?

This conjecture is confimed in our first result.

Theorem (Jenkinson-P-Vytnova)

For two linear branches there are at most two points of inflection

(I am not sure what happens for nonlinear branches. )
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The Kiwi-Iommi’s second problem : More inflection points

Iommi and Kiwi also asked the natural question.

Conjecture (Iommi-Kiwi)

If we have a cookie cutter with more branches then can we have more
points of inflection? Is the number of points of inflection bounded?

We have an answer for this too.

Theorem (Jenkinson-P-Vytnova)

For any N > 0 there are examples of cookie cutters T whose Lyapunov
spectrum α 7→ L(α) has at least N inflection points.

Before discussing the proof, let us look at some examples.
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An ad hoc example
One can construct an explicit example (using 11 intervals) such that L(α)
has 4 points of inflection.
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Another ad hoc example
One can construct an explicit example (using 62 intervals) such that L(α)
has 6 points of inflection.
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Pressure
The key to analyzing the Lyapunov spectrum L(α) is the pressure function.
Let I1, · · · , In be the subintervals used in the definition of the cookie cutter.

Definition

The pressure function P : R→ R takes the simple explicit form

P(t) = log

(
n∑

i=1

|Ii |t
)
.

0

P(t)
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The derivatives of Pressure

Recall that

P(t) = log

(
n∑

i=1

|Ii |t
)
.

Clearly (unless I made a mistake!) the first derivative is

P ′(t) =

∑n
i=1(log |Ii |)|Ii |t∑n

i=1 |Ii |t

and the second derivative is

P ′′(t) =

∑n
i=1(log |Ii |)2|Ii |t∑n

i=1 |Ii |t
−
(∑n

i=1(log |Ii |)|Ii |t∑n
i=1 |Ii |t

)2

.

The Lyapunov spectra L(α) can now be written in terms of the pressure
P(t) and P ′(t) ...

Mark Pollicott (University of Warwick) Non-convexity of Lyapunov Spectra 16 August, 2019 23 / 30



Pressure P(t) and the Lyapunov spectrum L(α)

Lemma (H.Weiss)

Given α− < α < α+ we can write

L(α) =
1

α
(P(tα) + tαα)

where tα is the unique solution to P ′(tα) = −α.

0

P(t)

slope −α

tα

P(tα)
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Pressure and inflection points in L(α)

Moreover, the inflection points of L(α) are characterized by the pressure.

Lemma (after Kiwi-Iommi)

The Lyapunov spectrum has a point of inflection at α0 corresponding to t0
(i.e., L′′(α0) = 0 and P ′(t0) = −α0) if and only if

2
P ′′(t0)P(t0)

P ′(t0)2
= 1. (1)

This gives us the following criterion.

Criterion for several inflection points

To find an example with Lyapunov spectra L(α) with N inflection points it
suffices to show that there are N solutions t0 to the pressure equation (1).

Mark Pollicott (University of Warwick) Non-convexity of Lyapunov Spectra 16 August, 2019 25 / 30



An example revisited

Let us reconsider an earlier example (with 62 intervals):

0 5 10 15 20α

0
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0.4
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0.9

L

m̄ = [1.25, 24 · 52, 210 · 53, 216 · 54], n=[1,30,30,1]

0 5 10 15 α

-0.01

-0.005

0

0.005

0.01

∂
2
L

∂
α
2

m̄ = [1.25, 24 · 52, 210 · 53, 216 · 54], n=[1,30,30,1]

Figure: (i) The plot of L(α); (ii) The plot of 2P′′(t)P(t)
P′(t)2 − 1

The number of inflection points is 4 (i.e., the number of zeros t = t0 for

2P′′(t)P(t)
P′(t)2

− 1).
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An infinite series
Consider the explicit function F : R+ → R+ given by

F (t) =
∞∑

j=1

2j
2−2j t

We can formally define P : R+ → R by P(t) := log F (t).

Strategy

Assume that we can show that there are infinitely many solutions t = t0
to

2
P ′′(t)P(t)

P ′(t)2
= 1

Then by truncating the series to P(t) := log
(∑M

j=1 2j
2−2j t

)
, say we still

get examples with arbitrarily many solutions (for M sufficiently large),

since 2j
2−2j t = 2j

2
2−2

j t this corresponds to the pressure function for a
(finite branch) cookie cutter (2−2

j
= interval lengths, 2j

2
= multiplicity).
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Solutions for the infinite series

It remains to show that for P(t) := log
(∑∞

j=1 2j
2−2j t

)
there are infinitely

many solutions t = t0 to

2
P ′′(t)P(t)

P ′(t)2
= 1

The method follows a suggestion of Victor Kleptsyn.
We want to choose two sequences t1 > m1 > t2 > m2 > t3 > · · · such
that

2
P ′′(ti )P(ti )

P ′(ti )2
> 1 and 2

P ′′(mi )P(mi )

P ′(mi )2
< 1

and then apply the Intermediate Value Theorem. It suffices to take

tj :=
2j + 1

2j
and mj :=

tj + tj−1
2

=
6j − 1

2j+1
,

and to do pages and pages of calculus!
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Finally ...

Thank you for your attention
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Where limits don’t converge

Question

But what about the set of points where the limit doesn’t exist?

These form a set of zero measure (with respect
to any ergodic measure µ) but the Birkhoff
ergodic theorem. However, ....

Theorem (Barreira, Schmeling)

The set of points for which the averages don’t converge have full
dimension, i.e.,

dim

({
x ∈ X : lim

n→+∞
Anf (x) doesn’t exist

})
= dim(X ).
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