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Section 1

1-dimensional substitutions and
tilings



Discrete substitutions

• A = {1, 2 . . . , r}=alphabet, r ≥ 2.

• A∗= finite words on A.

• S : A → A∗ “substitution”: Sa = a1a2 . . . aea .

• Sn : A → A∗ iterated substitution (S : A∗ → A∗).

Assume primitive: for all a, b ∈ A there exist n and k so that
b = (Sna)k.

Define the substitution subshift by

X = {x : x[j, j + `] = (Sn0)[k, k + `] ⊆ AZ,

with x = . . . x−2x−1.x0x1x2 . . . , and the left-shit map T .

One has S : X → X. We usually assume S is “recognizable”
(essentially, S is 1:1 on X).



The Perron-Frobenius suspension

M = (ma,b) = the r × r incidence matrix x:

ma,b := #{k : (Sb)k = a}.

Primitive implies Mn > 0.

Find the left and right Perron-Frobenius eigenvalue-eigenvectors

Mr = λr M t` = λ`.

Note ` > 0, r > 0 and λ > 0.
Usually we normalize r · 1 = 1 and ` · r = 1.

Note that r defiens the frequencies of symbols, and ultimately
determines the unique T -invariant measure on X. (T on X is
minimal & uniquely ergodic).



Susupension flow and tiling flow

Define h : X → R≥0 by h(x) := `a0 and construct the
corresponding suspension:

X̃ = {(x, r) : x ∈ X, r ∈ [0, h(x))}.

with suspension flow Hs, s ∈ R.

Orbits of Hs in X̃ naturally tiled by intervals

Ã = {Ia = [0, `a] : a ∈ A}.

In particular, the tiling of R by the intervals Ã are x̃ ∼ (x, r) ∈ X̃:

x̃ = {. . . Ia−2Ia−1 ·r Ia0Ia1Ia2 . . . }

where x = . . . a−2a−1.a0a1, . . . and r ∈ [0, `a0).



Tiling substitution

Define the tiling substitution G(Ia) := Ia1Ia2 . . . Iaea where

Sa = a1a2 . . . aea . Use to define a tiling space X̃ with tiling
topology (i.e., d(x̃, ỹ) ≤ ε if x̃ and ỹ agree prefectly on (−1/ε, 1/ε)
after an ε shift).

• Hs acts on X̃ by translation.

• G can be used to define X̃ directly.

• X̃ is a tiling space. Compact metric in “tiling topology”.

• Tiling topology on X̃ is same as the “product topology”.

• Always strictly ergodic. Unique invariant measure comes from
right eigenvector r.



Transverse dynamics

Extend G to a homeomorphism G : X̃ → X̃.

• This expands a tiling by λ and substitutes the elongated tiles.

It is hyperbolic: a “Smale space” in the terminology of Putnam:

• Two tilings that differ by a translation move apart.

• Two tilings that agree in a neighborhood of 0 move together.

The partition ξ = {ξa = {(x, s) : x0 = a} is a Markov partition.

There is a commutation relation

GHs = HλsG.



Section 2

Some examples and results



Fibonacci substitution

Substitution S: a→b b→ba.

Iterate b→ba→bab→babba→ babbabaa . . .
Substitution shift X = {. . . ba.babba . . . } ⊆ {a, b}Z, with shift T .

(
0 1
1 1

)(
1
γ

)
= γ

(
1
γ

)
, γ =

1 +
√

5

2
∼ 1.6180.

Tiles: Ia = [0, 1], Ib = [0, γ]. Tiling substitution G:
Ia→Ib, Ib→IbIa, expansion γ.

1
1ɣ

ɣ ɣ

ɣɣ2

Tiling space X̃ = {. . . IbIa ·s IbIaIbIbIa . . . } ⊆ {Ia, Ib}R with
translation flow Hs.

Strictly ergodic, entropy 0 (linear complexity), pure point
spectrum: Z[γ].



Suspension and Markov partition



Markov partition



Penrose tilings

Expansion λ = 1+
√
5

2 tiling sub-
stitution G. Translation flow
Hλs.

A =




1 1 0 1
1 1 1 0
−1 0 0 −1

0 −1 −1 0


 ∼

(
0 1
1 1

)
⊕
(

0 1
1 1

)

Penrose tiling dynamical system has pure point spectrum:
Z
(
e2πi/5

)
⊆ C ∼ R2. Satisfies commutation relation:

GHs = HλsG.



General results

Theorem
Assume a substitution S (or tiling substitution G with finitely
many prototiles) is primitive and recognizable. Then (X,T ) (or
(X̃,Hs)):

• is minimal and uniquely ergodic,

• may have discrete, mixed, or continuous spectrum (i.e., may
be weakly mixing).

• has all eigenfunctions continuous.

• never strongly mixing but may be topological mixing.

• may have some absolutely continuous spectrum, but no pure
Lebesgue spectrum,

• Pure singular continuous spectrum is possible*.

• Always finite spectral multiplicity and entropy zero.



History

Discrete substitutions:

• Minimality for discrete substitutions goes back (at least) to
Gottschalk (1969), and unique ergodicity to Kamae (1969)
and Host (1986).

• Host (1986) also proved continuity of eigenfunctions and a
condition for their existence (or not) involving Pisot numbers.

• Entropy zero and finite spectral multiplicity.

• No mixing and possibility of topological mixing example due
to Dekking-Keane (1976). Weak mixing =⇒ topological
mixing (2-letter) Kenyon-Sadun-Solomyak, (2005).

Most results generalized to R (and many to Rd) Solomyak (1996).
Topological mixing for 2-tile weakly mixing substitution tiling flows
due to Kenyon-Sadun-Solomyak, (2005).



Results for similar dynamical systems

• Interval exchange transformations
• Generically minimal (Keane, 1975), uniquely ergodic (Veech

1978, Masur 1982) and weakly mixing (Avila-Forni, 2004).
• Never strongly mixing (Katok, 1980) but generically

topological mixing (Chaika, 2011; Chaika-Fickenscher, 2013).
Partial mixing? (Chaika).

• Finite spectral multiplicity: m ≤ i− 1 (Oseledec, 1966).
• Entropy zero.

• Rank 1 Z-actions and R-actions.
• Ergodic (uniquely), simple spectrum (m = 1). Entropy zero.

Sometimes minimal.
• Can be weakly (chacon, 1967) or strongly mixing (Ornstein,

1974) =⇒ mixing of all orders (Kalikow, 1984; Rhyzakhov,
1993)

• In Z, continuous spectrum always singular.

Also: finite rank, Zd or Rd. “Fusion”: Frank-Sadun (2015).



Mixed spectrum

Thue-Morse substitution:
a→ ab
b→ ba.

Has point spectrum Z[1/2], but also a singular continuous
complementary component. Simple spectrum.

Rudin-Shapiro substitution:
a→ ab b→ ac
c→ db d→ dc.

Also has point spectrum Z[1/2], but complementary component
absolutely continuous. Non-simple spectrum: m = 2.

Baake and Grimm have an example with mixed spectrum of all
three types.



Weakly mixing example

Substitution a→b, b→abbb. “Non-Pisot”:

(
0 3
1 1

)t(
1
λ

)
= λ

(
1
λ

)
, λ =

1 +
√

13

2
∼ 2.3028, λ′,∼ −1.3028

Tiling substitution S, expansion λ

λ λ

λ

λ2

λ1
1 1 1

• Weakly mixing, not strongly mixing (Solomyak, 1997), but
topologically mixing (Solomyak, Kenyon, Sadun, 2005).

Theorem (Baake, Frank, Grimm, R (2019))

Has purely singular continuous diffraction spectrum.

Related examples: Baake, Grimm, Gahler, Manibo (2019).



Diffraction spectrum

Let Λx be the set of endpoints of a tiling x ∈ X̃ and let f be a
function on X̃ that is a “bump” on each y ∈ Λx. The diffraction
spectrum is the (finite Borel) measure Σ

X̃
= σf on R. In

particular, it has Fourier transform

Σ̂
X̃

:= σ̂f (s) :=

∫

R
e2πistdσf (t) =< f ◦Hs, f > .

• If Hs has pure point spectrum then Σ
X̃

= σH (f has maximal
spectral type in this case).

• Otherwise, it is possible that Σ
X̃
<< σH (f does not have

maximal spectral type).

• Cases are known where inequality is strict.



Four interval exchange. T. Fitzkee, 2003:

1→ 1424, 2→ 142424, 3→ 14334, 4→ 1434

M =




1 1 1 1
1 2 0 0
0 0 2 1
2 3 2 2




λ =∼ 4.39026, ` ∼ (1.09529, 1.71333, 1.29496, 1).

Weakly mixing flow Hs along stable leaves of pseudo-Anosov map
G (up to almost 1:1 extension).
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Infinite local complexity (ILC)



Infinite local complexity (ILC) example

“Product variation” of a→ abbb, b→ a (N. Frank-R, 2007).

1
β

β 1

1β
β 1

• infinitely many 2-tile patches (Frank-R, 2007): dot in pink tile
moves to infinitelly many places
• ILC tiling systems with finitely many prototiles (like this) have

essentially same theory as FLC case (Lee-Solomyak 2018)
• Singular diffraction (Baake-Grimm, 2018).



Pinwheel substitution

Conway-Radin “pinwheel” substitution S: θ = arctan(1/2).
Infinite local complexity due to infinitely many tiles (up to
rotation): tiling space X is rotation invariant.

Weakly mixing (Radin, 1994). Proof: Spectrum rotation invariant,
but discrete spectrum countable but also rotation invariant.

Radin conjecture: mixing and pure Lebesgue spectrum unresolved,
but numerical evidence against it.



Pinwheel tiling



Pinwheel diffraction

Circular Symmetry of Pinwheel Di↵raction 17

Figure 3: Part of the support of the pinwheel autocorrelation measure ⌘

and finally, by the definition of vague convergence,

⌘n �! �0 + �U(1) ⌦ µ .

⇤
Our understanding of the autocorrelation of the pinwheel tiling only lacks

knowledge regarding the pure point measure µ, and hence about the radii and

heights of the circles. In [10], Charles Radin suggests that the support of µ has a

self-similar structure. While we were not able to exploit this observation, it may

prove useful to future pinwheel enthusiasts.

4.6 Di↵raction

The di↵raction of an object is the Fourier transform of its autocorrelation mea-

sure. One may consult [6], [7] for the di↵raction theory and [3] for the theory of

translation bounded measures and their Fourier transforms. Note that ⌘n, ⌘ are all

translation bounded, positive-definite, and positive measures ([2], Proposition 7).

Recall that for all f 2 Cc(R2) and n � 1, hb⌫, fi = h⌫, bfi.
Since the Fourier transformation is a homeomorphism on the set of all pos-

itive and positive-definite measures on R2 equipped with the vague topology

Moody, Postkinov, Strungaru, 2006.



Sadun Generalized Pinwheel

Fix 0 < R ≤ 1 and expansion λ = max{sin θ, (1/2) cos θ}−1.

A

A A

A

B

R

λR

1

With appropriate choice of R, the tiling space X̃ has infinitely
many scales and rotations.

We will show this action is mixing, multiple mixing and has
Lebesgue spectrum.
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1-dimensional VTL substitution



Hilbert Cube

Fix R > 1. Consider the Hilbert cube

Q = [1, R+ 1]Z = {x = . . . a−1.a0a1a2 · · · : a ∈ [1, R+ 1]}

with shift (Tx)k = xk+1.

Substitution: let λ = R+1
R . Define S : [1, R+ 1]→ [1, R+ 1]∗ by

a→ a1 if a ∈ [1, R)

a→ aa2 if a ∈ [R,R+ 1],

where a1 = λa and a2 = (λ− 1)a.

Make a Hilbert cube substitution subshift X ⊆ [1, R+ 1]Z.



As a tiling dynamical system

Define the suspension space X̃ where h(x) = a0. The substitution
tiling flow the suspension flow Hs (s ∈ R) over X.

• The prototiles are I = {Ia = [0, a] : a ∈ [1, R+ 1]}.
• Tiling substitution G : I → I∗ is defined by

Ia → Ia1 if a ∈ [1, R)

Ia → IaIa2 if a ∈ [R,R+ 1],

• Tilings x̃ = {. . . Ia−2Ia−1 .rIa0 , Ia1 . . . } where 0 ≤ r < a0.
Note that r = position of time 0 in Ia0 .

• Hs acts by translation.

Comment: slightly different notion of tiling topology needed.



The case R = 2

The case R = 2 was the case studied by Frank and Sadun (2009).

Here λ = R+1
R = 3

2 , and S : [1, 3]→ [1, 3]∗ is given by

a→
(
3
2a
)

if a ∈ [1, 2)

a→
(
a
) (

1
2a
)

if a ∈ [2, 3].

Note: expansion by λ = 3
2 .

Theorem (Frank-Sadun, 2009)

(In the case R = 2) the tiling flow Hs is minimal, uniquely
ergodic*, entropy zero and has infinitely many tile lengths.



Section 5

Unique ergodicity and mixing



The invariant measure

1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

The “matrix” M and corresponding Perron-Frobenius operator M∗

(in the case R = 2):

M(a) =

{
{(3/2)a} if a ∈ [1, 2),

{a, (1/2)a} if a ∈ [2, 3],

and for ρ ∈ L1([1, R+ 1], da):

(M∗ρ)(a) =





2ρ(2a) if a ∈ [1, 3/2),

(2/3)ρ((2/3)a) if a ∈ [3/2, 2),

ρ(a) + (2/3)ρ((2/3)a) if a ∈ [2, 3])



Invariant density

In the case R = 2:

ρ(a) =

{
1
a2

if a ∈ [1, 2)
3
a2

if a ∈ [2, 3]
=
η(a)

a2
,

where η1(a) is a step function. It satisfies M∗ρ = λρ, so M∗

λ ρ = ρ
on [1, 3].

In general:

ρ(a) =

{
1
a2

if a ∈ [1, R)
R+1
a2

if a ∈ [R,R+ 1].



Higher blocks

A T -invariant probability measure µ on [1, R+ 1]Z specified by
consistent choice of probability measure µ2n+1 on each cylinder
[1, R+ 1]2n+1 (centered at 0).

For n = 1, we use dµ1(a) = ρ(a)da = η1(a)da
a2

.

Use “supertiles” to extend this to each [1, R+ 1]2n+1:

dµn(~a) = ηn(~a)
da

a2
,

where ηn(~a) is a step function, and

~a = (a−n, . . . , a−1, a, a1, . . . an) ∈ [1, R+ 1]2n+1.

• Define µ̃ = µ× dr on X̃ = {(x, r) : x ∈ X, r ∈ [0, h(x))}.



The flow Gt

The substitution map G embeds in a flow Gt (G = Gln 3
2 ).

• For Gt expand by et then subdivide (recursively, ratio R : 1)
any tile longer than R+ 1.

The measure µ is Gt invariant.

There is a commutation relation: Gt ◦Hs = Hset ◦Gt.
The flow Gt is hyperbolic:

• W s(x, r) = {(y, r) : x[−N,N ] = y[−N,N ], N ≥ 0}.
• W u(x, r) = {Hs(x, r) : s ∈ R}.

Lemma
Unique ergodicity follows from minimality (which follows from
primitivity).

Essentially, we copy the proof of unique ergodicity of horocycle
flow (e.g., Coudene, 2009).



Lebesgue spectrum and mixing

Theorem
The flow Hs has Lebesgue spectrum, therefore strongly mixing. In
fact, mixing of all orders.

The commutation relation Gt ◦Hs = Hset ◦Gt implies Hs is
isomorphic to all its time changes.

Lemma (Katok-Thouvenot, 2006)

A flow isomorphic to all its time hanges has Lebersgue spectrum.

No proof given.



Proof

The maximal spectral type satisfies σH ∼ (et)∗σH for all t.
Lebesgue measure is Haar measure for (R+, ·). However σH is
finite, so can’t have σH = (et)∗σH

Theorem (Mackey-Weil theorem)

In a Polish group (eg, (R+, ·)) the only translation invariant
measure class is the Harr measure class.

Comment: Horocycle flow has countable Lebesgue spectrum.
What is multiplicity for Ht?

Theorem (Rhyzakov, 1991)

If a measure preserving flow satisfies Hs is isomorphic to H1 for all
s > 0 (or more generally, for a set of positive Lebesgue measure)
then it is mixing of all orders.



Tiling of the (s, t)-plane



Upper half-plane: (s, a) with a = et



In the disc model
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Primitivity



Interval map

The map F : [1, R+ 1]→ [1, R+ 1] (“part” of substitution) is
defined

F (a) =

{
R+1
R a if a ∈ [1, R)

1
Ra if a ∈ [R,R+ 1].

Define primitivity’ to mean every a has dens M forward orbit.

1.0 1.5 2.0 2.5
1.0

1.5

2.0

2.5

Figure shows the case R = 1+
√
5

2 .

Lemma
Primitive implies minimal.

Theorem
The tiling flow Hs is strictly ergodic if and only if g is primitive.



Conjugacy to rotation

Apply φ : [1, R+ 1]→ [0, 1], φ(a) = logR+1(a), to see F is
conjugate to rotation on [0, 1] by α = logR+1(

R+1
R ).

• “Primitivity” if and only if α ∈ Qc.

• Otherwise, α = p
q = logR+1(

R+1
R ) and solve for R:

q logR = (q − p) log(R+ 1),

or
Rq − (R+ 1)q−p = 0.

Unique real root R > 1.

Example. α = 1
2 implies R = 1+

√
5

2 .



Finitary cases

For α = p
q let R = Rp,q denote the corresponding parameter.

Then for any j ∈ [1, R+ 1], for all n, Sn(j) has only q different
values (tile lengths) the orbit of a rational rotation. In other words,
the substitution is FLC!

Let A = {Fn(j0)}q−1n=0 = {j0, j1, . . . , jq−1}. Then

ja → ja+p if a < q − p,
ja → jaja+p−q if a ≥ q − p.

Example: The case α = 1/2, R = (1/2)(1 +
√

5) is the Fibonacci
substitution: j0 → j1, j1 → j1j0 on A = {j0, j1}. This is the only
Pisot case.
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Sadun Pinwheel



Sadun Generalized Pinwheel

Fix 0 < R ≤ 1. The prototiles are (`, r)-right-triangles with
r/` = R (angle θ = tan−1(R)). Let a = 1

2
√
1+R2

= 1
2 cos θ,

b = R√
1+R2

= sin θ.

A

A A

A

B

R

λR

1

• Restrict ` ∈ [ζ, 1] where ζ = min{a, b}.
• Expansion λ = max{a, b}−1.

Substitution: Expand ` ∈ [ζ, 1] by λ. Subdivide if λ` ≥ 1 (see later
picture).

• A larger if R < 1/2; B larger if R > 1/2.



R = 4/5 > 1/2

θ = 38.6598o

λ = (2/5)
√

41 ∼ 2.56

ζ = 4/
√

41 ∼ 0.6246



R = 2/5 < 1/2

θ = 21.8014o

λ =
√

29/2 ∼ 2.69258

ζ = 5/(2
√

29) ∼ 0.464238



The matrices

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

R=4/5

ab 1

λ =1/b
1

λ' = b/a
4

11

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R=2/5

1
λ =1/a

λ' = a/b

1
4

a b 1



θ = 36o



“Finitary” vs ”Generic”

Theorem (L. Sadun (1998))

• Finitely many rotations ⇐⇒ θ ∈ 2πQ.

• Finitely many sizes ⇐⇒
log(sin θ)

log((1/2) cos θ) = logR−log
√
1+R2

−(log 2+log
√
1+R2)

∈ Q

Corollary
The only case with both finitely many sizes and finitely many
rotations is R = 1 (θ = 45o). It has 3 sizes and 8 rotations.

Call cases of neither “generic”.

Theorem (Sadun, 1998)

In the generic cases, H~s is minimal, uniquely ergodic and weakly
mixing.

Conjecture (Sadun, 1998): Lebesgue spectrum.



θ = 45o

Doubly non-generic



Lebesgue spectrum

Theorem
In the generic cases, H~s has Lebesgue spectrum.

In these cases the translation action H~s and the expansion Gt

satisfy
Gt ◦H~s = H~set ◦Gt.

This, in itself, is not enough to guarantee Lebesgue spectrum
because {~set : t ∈ R} is 1-dimensional.

However, the tiling space also is Rθ invariant θ ∈ R.

It follows that the measure class σH is invariant under both
rotation and dilation (a cylinder). This implies it is the class of
Lebesgue measure.



Multiple mixing

Here is the multidimensional version of Ryzhikov’s theorem, which
does not quite work for our purposes.

Theorem (Ryzhivov, 1998)

Let H~s be a weakly mixing Rd-action. Let (H|Zd)~n be its
restriction to Zd and let (H|L~r)~n be its restriction to
L~r := Z[r1~e1, . . . , rd~ed], ~r = (r1, . . . rd) ∈ Rd. If there is a positive
Lebesgue measure set of ~r ≥ 0 so that H|Zd is isomorphic to H|L~r
then H~t is mixing of all orders.

Theorem in progress
In the generic cases, the Sadun Pinwheel tilings are H~s is mixing
of all orders.

Think of ~s ∈ C. The rotation and expansion become complex
multiplication by ~s = reiθ ∈ C. The one dimensional proof then
works for C = R2.
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