Dynamical properties of generalized pinwheel tilings

E. Arthur (Robbie) Robinson The George Washington University

(Joint work with Natalie P. Frank, Vassar College)

2020 Vision for Dynamics In memory of Anatole Katok Bedlewo, Poland

August 11-16, 2019

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

1 1-DIMENSIONAL SUBSTITUTIONS AND TILINGS

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

- **2** Some examples and results
- **3** INFINITE LOCAL COMPLEXITY (ILC)
- **4** 1-DIMENSIONAL VTL SUBSTITUTION
- **5** Unique ergodicity and mixing
- 6 Primitivity
- **7** SADUN PINWHEEL

Section 1

1-DIMENSIONAL SUBSTITUTIONS AND TILINGS

DISCRETE SUBSTITUTIONS

•
$$\mathcal{A} = \{1, 2..., r\}$$
=alphabet, $r \geq 2$.

- \mathcal{A}^* = finite words on \mathcal{A} .
- $S: \mathcal{A} \to \mathcal{A}^*$ "substitution": $Sa = a_1 a_2 \dots a_{e_a}$.
- $S^n : \mathcal{A} \to \mathcal{A}^*$ iterated substitution $(S : \mathcal{A}^* \to \mathcal{A}^*)$.

Assume primitive: for all $a, b \in \mathcal{A}$ there exist n and k so that $b = (S^n a)_k$.

Define the substitution subshift by

$$X = \{x : x[j, j+\ell] = (S^n 0)[k, k+\ell] \subseteq \mathcal{A}^{\mathbb{Z}},\$$

with $x = \ldots x_{-2}x_{-1}.x_0x_1x_2\ldots$, and the left-shit map T. One has $S: X \to X$. We usually assume S is "recognizable" (essentially, S is 1:1 on X).

THE PERRON-FROBENIUS SUSPENSION

 $M = (m_{a,b}) =$ the $r \times r$ incidence matrix x:

$$m_{a,b} := \#\{k : (Sb)_k = a\}.$$

Primitive implies $M^n > 0$.

Find the left and right Perron-Frobenius eigenvalue-eigenvectors

$$M\mathbf{r} = \lambda \mathbf{r} \qquad M^t \boldsymbol{\ell} = \lambda \boldsymbol{\ell}$$

Note $\ell > 0$, r > 0 and $\lambda > 0$. Usually we normalize $r \cdot 1 = 1$ and $\ell \cdot r = 1$.

Note that r defiens the frequencies of symbols, and ultimately determines the unique T-invariant measure on X. (T on X is minimal & uniquely ergodic).

SUSUPENSION FLOW AND TILING FLOW

イロン 不良 イビン イビン しょうく

Define $h: X \to \mathbb{R}_{\geq 0}$ by $h(x) := \ell_{a_0}$ and construct the corresponding suspension:

$$\widetilde{X} = \{(x,r) : x \in X, r \in [0,h(x))\}.$$

with suspension flow H^s , $s \in \mathbb{R}$.

Orbits of H^s in X naturally tiled by intervals

$$\widetilde{\mathcal{A}} = \{ I_a = [0, \boldsymbol{\ell}_a] : a \in \mathcal{A} \}.$$

In particular, the tiling of \mathbb{R} by the intervals $\widetilde{\mathcal{A}}$ are $\tilde{x} \sim (x, r) \in \widetilde{X}$:

$$\tilde{x} = \{ \dots I_{a_{-2}} I_{a_{-1}} \cdot_r I_{a_0} I_{a_1} I_{a_2} \dots \}$$

where $x = \dots a_{-2}a_{-1}.a_0a_1, \dots$ and $r \in [0, \ell_{a_0})$.

TILING SUBSTITUTION

ション ふゆう ふけう ふけい しょうくう

Define the tiling substitution $G(I_a) := I_{a_1}I_{a_2} \dots I_{a_{e_a}}$ where $Sa = a_1a_2 \dots a_{e_a}$. Use to define a tiling space \widetilde{X} with tiling topology (i.e., $d(\widetilde{x}, \widetilde{y}) \leq \epsilon$ if \widetilde{x} and \widetilde{y} agree prefectly on $(-1/\epsilon, 1/\epsilon)$ after an ϵ shift).

- H^s acts on \widetilde{X} by translation.
- G can be used to define \widetilde{X} directly.
- \tilde{X} is a tiling space. Compact metric in "tiling topology".
- Tiling topology on \widetilde{X} is same as the "product topology".
- Always strictly ergodic. Unique invariant measure comes from right eigenvector *r*.

TRANSVERSE DYNAMICS

ション ふゆう ふけう ふけい しょうくう

Extend G to a homeomorphism $G: \widetilde{X} \to \widetilde{X}$.

• This expands a tiling by λ and substitutes the elongated tiles.

It is hyperbolic: a "Smale space" in the terminology of Putnam:

- Two tilings that differ by a translation move apart.
- Two tilings that agree in a neighborhood of 0 move together.

The partition $\xi = \{\xi_a = \{(x, s) : x_0 = a\}$ is a Markov partition.

There is a commutation relation

$$GH^s = H^{\lambda s}G.$$

Section 2

Some examples and results

FIBONACCI SUBSTITUTION

シロシ ふぼう ふほう ふほう ふしう

Substitution S: $a \rightarrow b$ $b \rightarrow ba$. Iterate $b \rightarrow ba \rightarrow bab b \rightarrow babba b a a \dots$ Substitution shift $X = \{\dots ba. babba \dots\} \subseteq \{a, b\}^{\mathbb{Z}}$, with shift T.

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \gamma \end{pmatrix} = \gamma \begin{pmatrix} 1 \\ \gamma \end{pmatrix}, \quad \gamma = \frac{1 + \sqrt{5}}{2} \sim 1.6180.$$

Tiles: $I_a = [0, 1]$, $I_b = [0, \gamma]$. Tiling substitution G: $I_a \rightarrow I_b, I_b \rightarrow I_b I_a$, expansion γ .

Tiling space $\widetilde{X} = \{ \dots I_b I_a \cdot_s I_b I_a I_b I_b I_a \dots \} \subseteq \{I_a, I_b\}^{\mathbb{R}}$ with translation flow H^s .

Strictly ergodic, entropy 0 (linear complexity), pure point spectrum: $\mathbb{Z}[\gamma]$.

SUSPENSION AND MARKOV PARTITION

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

MARKOV PARTITION

PENROSE TILINGS

Expansion $\lambda = \frac{1+\sqrt{5}}{2}$ tiling substitution G. Translation flow $H^{\lambda s}$.

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ -1 & 0 & 0 & -1 \\ 0 & -1 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \oplus \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

Penrose tiling dynamical system has pure point spectrum: $\mathbb{Z}(e^{2\pi i/5}) \subseteq \mathbb{C} \sim \mathbb{R}^2$. Satisfies commutation relation: $GH^s = H^{\lambda s}G$.

GENERAL RESULTS

THEOREM

Assume a substitution S (or tiling substitution G with finitely many prototiles) is primitive and recognizable. Then (X,T) (or (\tilde{X}, H^s)):

- is minimal and uniquely ergodic,
- may have discrete, mixed, or continuous spectrum (i.e., may be weakly mixing).
- has all eigenfunctions continuous.
- never strongly mixing but may be topological mixing.
- may have some absolutely continuous spectrum, but no pure Lebesgue spectrum,
- Pure singular continuous spectrum is possible*.
- Always finite spectral multiplicity and entropy zero.

HISTORY

Discrete substitutions:

- Minimality for discrete substitutions goes back (at least) to Gottschalk (1969), and unique ergodicity to Kamae (1969) and Host (1986).
- Host (1986) also proved continuity of eigenfunctions and a condition for their existence (or not) involving Pisot numbers.
- Entropy zero and finite spectral multiplicity.
- No mixing and possibility of topological mixing example due to Dekking-Keane (1976). Weak mixing ⇒ topological mixing (2-letter) Kenyon-Sadun-Solomyak, (2005).

Most results generalized to \mathbb{R} (and many to \mathbb{R}^d) Solomyak (1996). Topological mixing for 2-tile weakly mixing substitution tiling flows due to Kenyon-Sadun-Solomyak, (2005).

Results for similar dynamical systems

- Interval exchange transformations
 - Generically minimal (Keane, 1975), uniquely ergodic (Veech 1978, Masur 1982) and weakly mixing (Avila-Forni, 2004).
 - Never strongly mixing (Katok, 1980) but generically topological mixing (Chaika, 2011; Chaika-Fickenscher, 2013).
 Partial mixing? (Chaika).
 - Finite spectral multiplicity: $m \le i 1$ (Oseledec, 1966).
 - Entropy zero.
- Rank 1 Z-actions and R-actions.
 - Ergodic (uniquely), simple spectrum (m = 1). Entropy zero. Sometimes minimal.
 - Can be weakly (chacon, 1967) or strongly mixing (Ornstein, 1974) ⇒ mixing of all orders (Kalikow, 1984; Rhyzakhov, 1993)

• In \mathbb{Z} , continuous spectrum always singular.

Also: finite rank, \mathbb{Z}^d or \mathbb{R}^d . "Fusion": Frank-Sadun (2015).

Thue-Morse substitution:

 $\begin{array}{l} a \rightarrow ab \\ b \rightarrow ba. \end{array}$

Has point spectrum $\mathbb{Z}[1/2],$ but also a singular continuous complementary component. Simple spectrum.

Rudin-Shapiro substitution:

 $\begin{array}{ll} a \to ab & b \to ac \\ c \to db & d \to dc. \end{array}$

Also has point spectrum $\mathbb{Z}[1/2]$, but complementary component absolutely continuous. Non-simple spectrum: m = 2.

Baake and Grimm have an example with mixed spectrum of all three types.

WEAKLY MIXING EXAMPLE

Substitution $a \rightarrow b$, $b \rightarrow abbb$. "Non-Pisot":

$$\begin{pmatrix} 0 & 3\\ 1 & 1 \end{pmatrix}^t \begin{pmatrix} 1\\ \lambda \end{pmatrix} = \lambda \begin{pmatrix} 1\\ \lambda \end{pmatrix}, \lambda = \frac{1+\sqrt{13}}{2} \sim 2.3028, \lambda', \sim -1.3028$$

Tiling substitution \mathcal{S} , expansion λ

• Weakly mixing, not strongly mixing (Solomyak, 1997), but topologically mixing (Solomyak, Kenyon, Sadun, 2005).

THEOREM (BAAKE, FRANK, GRIMM, R (2019)) Has purely singular continuous diffraction spectrum. Related examples: Baake, Grimm, Gahler, Manibo (2019).

DIFFRACTION SPECTRUM

Let Λ_x be the set of endpoints of a tiling $x \in \widetilde{X}$ and let f be a function on \widetilde{X} that is a "bump" on each $y \in \Lambda_x$. The diffraction spectrum is the (finite Borel) measure $\Sigma_{\widetilde{X}} = \sigma_f$ on \mathbb{R} . In particular, it has Fourier transform

$$\widehat{\Sigma}_{\widetilde{X}} := \widehat{\sigma_f}(s) := \int_{\mathbb{R}} e^{2\pi i s t} d\sigma_f(t) = < f \circ H^s, f > .$$

- If H^s has pure point spectrum then Σ_{X̃} = σ_H (f has maximal spectral type in this case).
- Otherwise, it is possible that $\Sigma_{\widetilde{X}} << \sigma_H$ (f does not have maximal spectral type).
- Cases are known where inequality is strict.

FOUR INTERVAL EXCHANGE. T. FITZKEE, 2003:

$$1 \to 1424, 2 \to 142424, 3 \to 14334, 4 \to 1434$$
$$M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 2 & 3 & 2 & 2 \end{pmatrix}$$
$$\lambda = \sim 4.39026, \ \ell \sim (1.09529, 1.71333, 1.29496, 1)$$

Weakly mixing flow H^s along stable leaves of pseudo-Anosov map G (up to almost 1:1 extension).

Section 3

INFINITE LOCAL COMPLEXITY (ILC)

INFINITE LOCAL COMPLEXITY (ILC) EXAMPLE

"Product variation" of $a \rightarrow abbb$, $b \rightarrow a$ (N. Frank-R, 2007).

- infinitely many 2-tile patches (Frank-R, 2007): dot in pink tile moves to infinitelly many places
- ILC tiling systems with finitely many prototiles (like this) have essentially same theory as FLC case (Lee-Solomyak 2018)

うっつ 山 ふかく 山 く 山 く う

• Singular diffraction (Baake-Grimm, 2018).

PINWHEEL SUBSTITUTION

Conway-Radin "pinwheel" substitution $S: \theta = \arctan(1/2)$. Infinite local complexity due to infinitely many tiles (up to rotation): tiling space X is rotation invariant.

Weakly mixing (Radin, 1994). Proof: Spectrum rotation invariant, but discrete spectrum countable but also rotation invariant.

Radin conjecture: mixing and pure Lebesgue spectrum unresolved, but numerical evidence against it.

PINWHEEL TILING

PINWHEEL DIFFRACTION

ヘロン 人間と 人間と 人間と 一階

Moody, Postkinov, Strungaru, 2006.

SADUN GENERALIZED PINWHEEL

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Fix $0 < R \le 1$ and expansion $\lambda = \max\{\sin \theta, (1/2) \cos \theta\}^{-1}$.

With appropriate choice of R, the tiling space \tilde{X} has infinitely many scales and rotations.

We will show this action is mixing, multiple mixing and has Lebesgue spectrum.

Section 4

1-DIMENSIONAL VTL SUBSTITUTION

HILBERT CUBE

Fix R > 1. Consider the Hilbert cube

$$Q = [1, R+1]^{\mathbb{Z}} = \{x = \dots a_{-1} \cdot a_0 a_1 a_2 \cdots : a \in [1, R+1]\}$$

with shift $(Tx)_k = x_{k+1}$. Substitution: let $\lambda = \frac{R+1}{R}$. Define $S : [1, R+1] \rightarrow [1, R+1]^*$ by $a \rightarrow a_1$ if $a \in [1, R)$ $a \rightarrow aa_2$ if $a \in [R, R+1]$,

where $a_1 = \lambda a$ and $a_2 = (\lambda - 1)a$.

Make a Hilbert cube substitution subshift $X \subseteq [1, R+1]^{\mathbb{Z}}$.

・ロト ・ 理ト ・ ヨト ・ ヨー ・ つへぐ

As a tiling dynamical system

Define the suspension space \widetilde{X} where $h(x) = a_0$. The substitution tiling flow the suspension flow H^s ($s \in \mathbb{R}$) over X.

- The *prototiles* are $\mathcal{I} = \{I_a = [0, a] : a \in [1, R+1]\}.$
- Tiling substitution $G:\mathcal{I}\to\mathcal{I}^*$ is defined by

$$\begin{split} I_a &\to I_{a_1} \text{ if } a \in [1,R) \\ I_a &\to I_a I_{a_2} \text{ if } a \in [R,R+1] \end{split}$$

- Tilings $\tilde{x} = \{ \dots I_{a_{-2}} I_{a_{-1}} \cdot r I_{a_0}, I_{a_1} \dots \}$ where $0 \le r < a_0$. Note that r = position of time 0 in I_{a_0} .
- *H^s* acts by translation.

Comment: slightly different notion of tiling topology needed.

The case R = 2

イロン 不良 イモン イモン ほうののの

The case R = 2 was the case studied by Frank and Sadun (2009). Here $\lambda = \frac{R+1}{R} = \frac{3}{2}$, and $S : [1,3] \rightarrow [1,3]^*$ is given by $a \rightarrow \left(\frac{3}{2}a\right)$ if $a \in [1,2)$ $a \rightarrow \left(a\right) \left(\frac{1}{2}a\right)$ if $a \in [2,3]$.

Note: expansion by $\lambda = \frac{3}{2}$.

THEOREM (FRANK-SADUN, 2009) (In the case R = 2) the tiling flow H^s is minimal, uniquely ergodic^{*}, entropy zero and has infinitely many tile lengths.

Section 5

UNIQUE ERGODICITY AND MIXING

THE INVARIANT MEASURE

The "matrix" M and corresponding Perron-Frobenius operator M^* (in the case R = 2):

$$M(a) = \begin{cases} \{(3/2)a\} & \text{if } a \in [1,2), \\ \{a, (1/2)a\} & \text{if } a \in [2,3], \end{cases}$$

and for $\rho \in L^1([1, R+1], da)$:

$$(M^*\rho)(a) = \begin{cases} 2\rho(2a) & \text{if } a \in [1,3/2), \\ (2/3)\rho((2/3)a) & \text{if } a \in [3/2,2), \\ \rho(a) + (2/3)\rho((2/3)a) & \text{if } a \in [2,3]) \end{cases}$$

INVARIANT DENSITY

In the case R = 2:

$$\rho(a) = \begin{cases} \frac{1}{a^2} & \text{ if } a \in [1,2) \\ \frac{3}{a^2} & \text{ if } a \in [2,3] \end{cases} = \frac{\eta(a)}{a^2},$$

where $\eta_1(a)$ is a step function. It satisfies $M^*\rho = \lambda\rho$, so $\frac{M^*}{\lambda}\rho = \rho$ on [1, 3].

In general:

$$\rho(a) = \begin{cases} \frac{1}{a^2} & \text{if } a \in [1, R) \\ \frac{R+1}{a^2} & \text{if } a \in [R, R+1]. \end{cases}$$

HIGHER BLOCKS

A *T*-invariant probability measure μ on $[1, R + 1]^{\mathbb{Z}}$ specified by consistent choice of probability measure μ_{2n+1} on each cylinder $[1, R + 1]^{2n+1}$ (centered at 0).

For n = 1, we use $d\mu_1(a) = \rho(a)da = \eta_1(a)\frac{da}{a^2}$. Use "supertiles" to extend this to each $[1, R+1]^{2n+1}$:

$$d\mu_n(\vec{a}) = \eta_n(\vec{a}) \frac{da}{a^2},$$

where $\eta_n(\vec{a})$ is a step function, and

$$\vec{a} = (a_{-n}, \dots, a_{-1}, a, a_1, \dots a_n) \in [1, R+1]^{2n+1}.$$

• Define $\widetilde{\mu} = \mu \times dr$ on $\widetilde{X} = \{(x,r) : x \in X, r \in [0,h(x))\}.$

<ロト < 回 ト < 三 ト < 三 ト < 三 ・ のへで</p>

The flow G^t

シロシ ふぼう ふほう ふほう ふしう

The substitution map G embeds in a flow G^t $(G = G^{\ln \frac{3}{2}})$.

• For G^t expand by e^t then subdivide (recursively, ratio R:1) any tile longer than R+1.

The measure μ is G^t invariant.

There is a commutation relation: $G^t \circ H^s = H^{se^t} \circ G^t$.

The flow G^t is hyperbolic:

•
$$W^s(x,r) = \{(y,r) : x_{[-N,N]} = y_{[-N,N]}, N \ge 0\}.$$

•
$$W^u(x,r) = \{H^s(x,r) : s \in \mathbb{R}\}.$$

Lemma

Unique ergodicity follows from minimality (which follows from primitivity).

Essentially, we copy the proof of unique ergodicity of horocycle flow (e.g., Coudene, 2009).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Theorem

The flow H^s has Lebesgue spectrum, therefore strongly mixing. In fact, mixing of all orders.

The commutation relation $G^t \circ H^s = H^{se^t} \circ G^t$ implies H^s is isomorphic to all its time changes.

LEMMA (KATOK-THOUVENOT, 2006)

A flow isomorphic to all its time hanges has Lebersgue spectrum. No proof given.

Proof

The maximal spectral type satisfies $\sigma_H \sim (e^t)^* \sigma_H$ for all t. Lebesgue measure is Haar measure for (\mathbb{R}^+, \cdot) . However σ_H is finite, so can't have $\sigma_H = (e^t)^* \sigma_H$

THEOREM (MACKEY-WEIL THEOREM)

In a Polish group (eg, (\mathbb{R}^+, \cdot)) the only translation invariant measure class is the Harr measure class.

Comment: Horocycle flow has countable Lebesgue spectrum. What is multiplicity for H^t ?

THEOREM (RHYZAKOV, 1991)

If a measure preserving flow satisfies H^s is isomorphic to H^1 for all s > 0 (or more generally, for a set of positive Lebesgue measure) then it is mixing of all orders.

Tiling of the (s, t)-plane

Upper half-plane: (s, a) with $a = e^t$

◆□ > ◆□ > ◆ □ > ◆ □ > ─ □ = ─ つへで

IN THE DISC MODEL

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うらの

Section 6

PRIMITIVITY

INTERVAL MAP

The map $F:[1,R+1]\rightarrow [1,R+1]$ ("part" of substitution) is defined

$$F(a) = \begin{cases} \frac{R+1}{R}a & \text{if } a \in [1, R) \\ \frac{1}{R}a & \text{if } a \in [R, R+1]. \end{cases}$$

Define primitivity' to mean every a has dens M forward orbit.

Figure shows the case $R = \frac{1+\sqrt{5}}{2}$.

LEMMA

Primitive implies minimal.

THEOREM

The tiling flow H^s is strictly ergodic if and only if g is primitive.

CONJUGACY TO ROTATION

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Apply $\phi : [1, R+1] \rightarrow [0, 1]$, $\phi(a) = \log_{R+1}(a)$, to see F is conjugate to rotation on [0, 1] by $\alpha = \log_{R+1}(\frac{R+1}{R})$.

• "Primitivity" if and only if $\alpha \in \mathbb{Q}^c$.

• Otherwise,
$$\alpha = \frac{p}{q} = \log_{R+1}(\frac{R+1}{R})$$
 and solve for R :
 $q \log R = (q-p) \log(R+1),$

or

$$R^q - (R+1)^{q-p} = 0.$$

Unique real root R > 1.

Example. $\alpha = \frac{1}{2}$ implies $R = \frac{1+\sqrt{5}}{2}$.

FINITARY CASES

For $\alpha = \frac{p}{q}$ let $R = R_{p,q}$ denote the corresponding parameter.

Then for any $j \in [1, R + 1]$, for all n, $S^n(j)$ has only q different values (tile lengths) the orbit of a rational rotation. In other words, the substitution is FLC!

Let
$$\mathcal{A} = \{F^n(j_0)\}_{n=0}^{q-1} = \{j_0, j_1, \dots, j_{q-1}\}$$
. Then
 $j_a \rightarrow j_{a+p} \qquad \text{if } a < q-p,$
 $j_a \rightarrow j_a j_{a+p-q} \qquad \text{if } a \ge q-p.$

Example: The case $\alpha = 1/2$, $R = (1/2)(1 + \sqrt{5})$ is the Fibonacci substitution: $j_0 \rightarrow j_1$, $j_1 \rightarrow j_1 j_0$ on $\mathcal{A} = \{j_0, j_1\}$. This is the only Pisot case.

Section 7

SADUN PINWHEEL

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SADUN GENERALIZED PINWHEEL

Fix $0 < R \le 1$. The prototiles are (ℓ, r) -right-triangles with $r/\ell = R$ (angle $\theta = \tan^{-1}(R)$). Let $a = \frac{1}{2\sqrt{1+R^2}} = \frac{1}{2}\cos\theta$, $b = \frac{R}{\sqrt{1+R^2}} = \sin\theta$.

- Restrict $\ell \in [\zeta, 1]$ where $\zeta = \min\{a, b\}$.
- Expansion $\lambda = \max\{a, b\}^{-1}$.

Substitution: Expand $\ell \in [\zeta, 1]$ by λ . Subdivide if $\lambda \ell \ge 1$ (see later picture).

• A larger if R < 1/2; B larger if R > 1/2.

R = 4/5 > 1/2

R = 2/5 < 1/2

- イロト (雪) (目) (目) (日) (の)

THE MATRICES

 $\theta = 36^{\circ}$

"FINITARY" VS "GENERIC"

THEOREM (L. SADUN (1998))

• Finitely many rotations $\iff \theta \in 2\pi \mathbb{Q}$.

• Finitely many sizes
$$\iff$$

 $\frac{\log(\sin \theta)}{\log((1/2)\cos \theta)} = \frac{\log R - \log \sqrt{1+R^2}}{-(\log 2 + \log \sqrt{1+R^2})} \in \mathbb{Q}$

COROLLARY

The only case with both finitely many sizes and finitely many rotations is R = 1 ($\theta = 45^{\circ}$). It has 3 sizes and 8 rotations.

Call cases of neither "generic".

THEOREM (SADUN, 1998)

In the generic cases, $H^{\vec{s}}$ is minimal, uniquely ergodic and weakly mixing.

Conjecture (Sadun, 1998): Lebesgue spectrum.

 $\theta = 45^{o}$

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Theorem

In the generic cases, $H^{\vec{s}}$ has Lebesgue spectrum.

In these cases the translation action $H^{\vec{s}}$ and the expansion G^t satisfy

$$G^t \circ H^{\vec{s}} = H^{\vec{s}e^t} \circ G^t.$$

This, in itself, is not enough to guarantee Lebesgue spectrum because $\{\vec{s}e^t : t \in \mathbb{R}\}$ is 1-dimensional.

However, the tiling space also is R_{θ} invariant $\theta \in \mathbb{R}$.

It follows that the measure class σ_H is invariant under both rotation and dilation (a cylinder). This implies it is the class of Lebesgue measure.

MULTIPLE MIXING

Here is the multidimensional version of Ryzhikov's theorem, which does not quite work for our purposes.

THEOREM (RYZHIVOV, 1998)

Let $H^{\vec{s}}$ be a weakly mixing \mathbb{R}^d -action. Let $(H|_{\mathbb{Z}^d})^{\vec{n}}$ be its restriction to \mathbb{Z}^d and let $(H|_{\mathcal{L}_{\vec{r}}})^{\vec{n}}$ be its restriction to $\mathcal{L}_{\vec{r}} := \mathbb{Z}[r_1\vec{e}_1, \ldots, r_d\vec{e}_d]$, $\vec{r} = (r_1, \ldots r_d) \in \mathbb{R}^d$. If there is a positive Lebesgue measure set of $\vec{r} \ge 0$ so that $H|_{\mathbb{Z}^d}$ is isomorphic to $H|_{\mathcal{L}_{\vec{r}}}$ then $H^{\vec{t}}$ is mixing of all orders.

THEOREM IN PROGRESS

In the generic cases, the Sadun Pinwheel tilings are $H^{\vec{s}}$ is mixing of all orders.

Think of $\vec{s} \in \mathbb{C}$. The rotation and expansion become complex multiplication by $\vec{s} = re^{i\theta} \in \mathbb{C}$. The one dimensional proof then works for $\mathbb{C} = \mathbb{R}^2$.