DYNAMICAL PROPERTIES OF GENERALIZED PINWHEEL TILINGS

E. Arthur (Robbie) Robinson
The George Washington University

(Joint work with Natalie P. Frank, Vassar College)

2020 Vision for Dynamics
In memory of Anatole Katok
Bedlewo, Poland

August 11-16, 2019
(1) 1-DIMENSIONAL SUBSTITUTIONS AND TILINGS
(2) Some examples And RESULTS
(3) Infinite local COMPLEXity (ILC)
(4) 1-Dimensional VTL substitution
(5) Unique ERGODICITY AND MIXING
(6) Primitivity
(7) Sadun Pinwheel

Section 1

1-DIMENSIONAL SUBSTITUTIONS AND TILINGS

Discrete substitutions

- $\mathcal{A}=\{1,2 \ldots, r\}=$ alphabet, $r \geq 2$.
- $\mathcal{A}^{*}=$ finite words on \mathcal{A}.
- $S: \mathcal{A} \rightarrow \mathcal{A}^{*}$ "substitution": $S a=a_{1} a_{2} \ldots a_{e_{a}}$.
- $S^{n}: \mathcal{A} \rightarrow \mathcal{A}^{*}$ iterated substitution $\left(S: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}\right)$.

Assume primitive: for all $a, b \in \mathcal{A}$ there exist n and k so that $b=\left(S^{n} a\right)_{k}$.
Define the substitution subshift by

$$
X=\left\{x: x[j, j+\ell]=\left(S^{n} 0\right)[k, k+\ell] \subseteq \mathcal{A}^{\mathbb{Z}},\right.
$$

with $x=\ldots x_{-2} x_{-1} \cdot x_{0} x_{1} x_{2} \ldots$, and the left-shit map T.
One has $S: X \rightarrow X$. We usually assume S is "recognizable" (essentially, S is 1:1 on X).

The Perron-Frobenius suspension

$M=\left(m_{a, b}\right)=$ the $r \times r$ incidence matrix $\mathrm{x}:$

$$
m_{a, b}:=\#\left\{k:(S b)_{k}=a\right\}
$$

Primitive implies $M^{n}>0$.
Find the left and right Perron-Frobenius eigenvalue-eigenvectors

$$
M \boldsymbol{r}=\lambda \boldsymbol{r} \quad M^{t} \boldsymbol{\ell}=\lambda \boldsymbol{\ell} .
$$

Note $\boldsymbol{\ell}>0, \boldsymbol{r}>0$ and $\lambda>0$.
Usually we normalize $\boldsymbol{r} \cdot \mathbf{1}=1$ and $\boldsymbol{\ell} \cdot \boldsymbol{r}=1$.
Note that r defiens the frequencies of symbols, and ultimately determines the unique T-invariant measure on X. (T on X is minimal \& uniquely ergodic).

Susupension flow and tiling flow

Define $h: X \rightarrow \mathbb{R}_{\geq 0}$ by $h(x):=\boldsymbol{\ell}_{a_{0}}$ and construct the corresponding suspension:

$$
\widetilde{X}=\{(x, r): x \in X, r \in[0, h(x))\}
$$

with suspension flow $H^{s}, s \in \mathbb{R}$.
Orbits of H^{s} in \widetilde{X} naturally tiled by intervals

$$
\widetilde{\mathcal{A}}=\left\{I_{a}=\left[0, \ell_{a}\right]: a \in \mathcal{A}\right\} .
$$

In particular, the tiling of \mathbb{R} by the intervals $\tilde{\mathcal{A}}$ are $\tilde{x} \sim(x, r) \in \tilde{X}$:

$$
\tilde{x}=\left\{\ldots I_{a_{-2}} I_{a_{-1}} \cdot r I_{a_{0}} I_{a_{1}} I_{a_{2}} \ldots\right\}
$$

where $x=\ldots a_{-2} a_{-1} \cdot a_{0} a_{1}, \ldots$ and $r \in\left[0, \ell_{a_{0}}\right)$.

Tiling Substitution

Define the tiling substitution $G\left(I_{a}\right):=I_{a_{1}} I_{a_{2}} \ldots I_{a_{e_{a}}}$ where $S a=a_{1} a_{2} \ldots a_{e_{a}}$. Use to define a tiling space \widetilde{X} with tiling topology (i.e., $d(\tilde{x}, \tilde{y}) \leq \epsilon$ if \tilde{x} and \tilde{y} agree prefectly on $(-1 / \epsilon, 1 / \epsilon)$ after an ϵ shift).

- H^{s} acts on \tilde{X} by translation.
- G can be used to define \widetilde{X} directly.
- \tilde{X} is a tiling space. Compact metric in "tiling topology".
- Tiling topology on \widetilde{X} is same as the "product topology".
- Always strictly ergodic. Unique invariant measure comes from right eigenvector \boldsymbol{r}.

TRANSVERSE DYNAMICS

Extend G to a homeomorphism $G: \widetilde{X} \rightarrow \widetilde{X}$.

- This expands a tiling by λ and substitutes the elongated tiles.

It is hyperbolic: a "Smale space" in the terminology of Putnam:

- Two tilings that differ by a translation move apart.
- Two tilings that agree in a neighborhood of 0 move together.

The partition $\xi=\left\{\xi_{a}=\left\{(x, s): x_{0}=a\right\}\right.$ is a Markov partition.
There is a commutation relation

$$
G H^{s}=H^{\lambda s} G
$$

Section 2

Some examples and Results

Fibonacci substitution

Substitution $S: \quad a \rightarrow b \quad b \rightarrow b a$. Iterate $b \rightarrow b a \rightarrow b a b \rightarrow b a b b a \rightarrow b a b b a b a a \ldots$
Substitution shift $X=\{\ldots b a . b a b b a \ldots\} \subseteq\{a, b\}^{\mathbb{Z}}$, with shift T.

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{1}{\gamma}=\gamma\binom{1}{\gamma}, \quad \gamma=\frac{1+\sqrt{5}}{2} \sim 1.6180
$$

Tiles: $I_{a}=[0,1], I_{b}=[0, \gamma]$. Tiling substitution G :
$I_{a} \rightarrow I_{b}, I_{b} \rightarrow I_{b} I_{a}$, expansion γ.

Tiling space $\widetilde{X}=\left\{\ldots I_{b} I_{a} \cdot{ }_{s} I_{b} I_{a} I_{b} I_{b} I_{a} \ldots\right\} \subseteq\left\{I_{a}, I_{b}\right\}^{\mathbb{R}}$ with translation flow H^{s}.

Strictly ergodic, entropy 0 (linear complexity), pure point spectrum: $\mathbb{Z}[\gamma]$.

Suspension and Markov partition

Penrose tilings

Expansion $\lambda=\frac{1+\sqrt{5}}{2}$ tiling substitution G. Translation flow $H^{\lambda s}$.

$$
A=\left(\begin{array}{rrrr}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
-1 & 0 & 0 & -1 \\
0 & -1 & -1 & 0
\end{array}\right) \sim\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \oplus\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

Penrose tiling dynamical system has pure point spectrum:
$\mathbb{Z}\left(e^{2 \pi i / 5}\right) \subseteq \mathbb{C} \sim \mathbb{R}^{2}$. Satisfies commutation relation:
$G H^{s}=H^{\lambda s} G$.

General Results

Theorem

Assume a substitution S (or tiling substitution G with finitely many prototiles) is primitive and recognizable. Then (X, T) (or $\left.\left(\widetilde{X}, H^{s}\right)\right)$:

- is minimal and uniquely ergodic,
- may have discrete, mixed, or continuous spectrum (i.e., may be weakly mixing).
- has all eigenfunctions continuous.
- never strongly mixing but may be topological mixing.
- may have some absolutely continuous spectrum, but no pure Lebesgue spectrum,
- Pure singular continuous spectrum is possible*.
- Always finite spectral multiplicity and entropy zero.

Discrete substitutions:

- Minimality for discrete substitutions goes back (at least) to Gottschalk (1969), and unique ergodicity to Kamae (1969) and Host (1986).
- Host (1986) also proved continuity of eigenfunctions and a condition for their existence (or not) involving Pisot numbers.
- Entropy zero and finite spectral multiplicity.
- No mixing and possibility of topological mixing example due to Dekking-Keane (1976). Weak mixing \Longrightarrow topological mixing (2-letter) Kenyon-Sadun-Solomyak, (2005).

Most results generalized to \mathbb{R} (and many to \mathbb{R}^{d}) Solomyak (1996). Topological mixing for 2-tile weakly mixing substitution tiling flows due to Kenyon-Sadun-Solomyak, (2005).

Results for similar dynamical systems

- Interval exchange transformations
- Generically minimal (Keane, 1975), uniquely ergodic (Veech 1978, Masur 1982) and weakly mixing (Avila-Forni, 2004).
- Never strongly mixing (Katok, 1980) but generically topological mixing (Chaika, 2011; Chaika-Fickenscher, 2013). Partial mixing? (Chaika).
- Finite spectral multiplicity: $m \leq i-1$ (Oseledec, 1966).
- Entropy zero.
- Rank $1 \mathbb{Z}$-actions and \mathbb{R}-actions.
- Ergodic (uniquely), simple spectrum ($m=1$). Entropy zero. Sometimes minimal.
- Can be weakly (chacon, 1967) or strongly mixing (Ornstein, 1974) \Longrightarrow mixing of all orders (Kalikow, 1984; Rhyzakhov, 1993)
- In \mathbb{Z}, continuous spectrum always singular.

Also: finite rank, \mathbb{Z}^{d} or \mathbb{R}^{d}. "Fusion" : Frank-Sadun (2015).

Mixed spectrum

Thue-Morse substitution:

$$
\begin{aligned}
& a \rightarrow a b \\
& b \rightarrow b a .
\end{aligned}
$$

Has point spectrum $\mathbb{Z}[1 / 2]$, but also a singular continuous complementary component. Simple spectrum.

Rudin-Shapiro substitution:

$$
\begin{array}{ll}
a \rightarrow a b & b \rightarrow a c \\
c \rightarrow d b & d \rightarrow d c .
\end{array}
$$

Also has point spectrum $\mathbb{Z}[1 / 2]$, but complementary component absolutely continuous. Non-simple spectrum: $m=2$.
Baake and Grimm have an example with mixed spectrum of all three types.

WEAKLY MIXING EXAMPLE

Substitution $a \rightarrow b, b \rightarrow a b b b$. "Non-Pisot":

$$
\left(\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right)^{t}\binom{1}{\lambda}=\lambda\binom{1}{\lambda}, \lambda=\frac{1+\sqrt{13}}{2} \sim 2.3028, \lambda^{\prime}, \sim-1.3028
$$

Tiling substitution \mathcal{S}, expansion λ

- Weakly mixing, not strongly mixing (Solomyak, 1997), but topologically mixing (Solomyak, Kenyon, Sadun, 2005).

Theorem (BaAke, Frank, Grimm, R (2019))

Has purely singular continuous diffraction spectrum.
Related examples: Baake, Grimm, Gahler, Manibo (2019).

DIFFRACTION SPECTRUM

Let Λ_{x} be the set of endpoints of a tiling $x \in \widetilde{X}$ and let f be a function on \widetilde{X} that is a "bump" on each $y \in \Lambda_{x}$. The diffraction spectrum is the (finite Borel) measure $\Sigma_{\tilde{X}}=\sigma_{f}$ on \mathbb{R}. In particular, it has Fourier transform

$$
\widehat{\Sigma}_{\widetilde{X}}:=\widehat{\sigma_{f}}(s):=\int_{\mathbb{R}} e^{2 \pi i s t} d \sigma_{f}(t)=<f \circ H^{s}, f>
$$

- If H^{s} has pure point spectrum then $\Sigma_{\tilde{X}}=\sigma_{H}$ (f has maximal spectral type in this case).
- Otherwise, it is possible that $\Sigma_{\tilde{X}} \ll \sigma_{H}$ (f does not have maximal spectral type).
- Cases are known where inequality is strict.

Four interval exchange. T. Fitzkee, 2003:
$1 \rightarrow 1424,2 \rightarrow 142424,3 \rightarrow 14334,4 \rightarrow 1434$
$M=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 2 & 3 & 2 & 2\end{array}\right)$
$\lambda=\sim 4.39026, \ell \sim(1.09529,1.71333,1.29496,1)$.

Weakly mixing flow H^{s} along stable leaves of pseudo-Anosov map G (up to almost $1: 1$ extension).

Section 3

Infinite local complexity (ILC)

Infinite local complexity (ILC) EXAMPle

"Product variation" of $a \rightarrow a b b b, b \rightarrow a$ (N. Frank-R, 2007).

- infinitely many 2-tile patches (Frank-R, 2007): dot in pink tile moves to infinitelly many places
- ILC tiling systems with finitely many prototiles (like this) have essentially same theory as FLC case (Lee-Solomyak 2018)
- Singular diffraction (Baake-Grimm, 2018).

Pinwheel substitution

Conway-Radin "pinwheel" substitution \mathcal{S} : $\theta=\arctan (1 / 2)$. Infinite local complexity due to infinitely many tiles (up to rotation): tiling space X is rotation invariant.

Weakly mixing (Radin, 1994). Proof: Spectrum rotation invariant, but discrete spectrum countable but also rotation invariant.

Radin conjecture: mixing and pure Lebesgue spectrum unresolved, but numerical evidence against it.

Pinwheel diffraction

Moody, Postkinov, Strungaru, 2006.

Sadun Generalized Pinwheel

Fix $0<R \leq 1$ and expansion $\lambda=\max \{\sin \theta,(1 / 2) \cos \theta\}^{-1}$.

With appropriate choice of R, the tiling space \widetilde{X} has infinitely many scales and rotations.

We will show this action is mixing, multiple mixing and has Lebesgue spectrum.

Section 4

1-Dimensional VTL substitution

Hilbert Cube

Fix $R>1$. Consider the Hilbert cube

$$
Q=[1, R+1]^{\mathbb{Z}}=\left\{x=\ldots a_{-1} \cdot a_{0} a_{1} a_{2} \cdots: a \in[1, R+1]\right\}
$$

with shift $(T x)_{k}=x_{k+1}$.
Substitution: let $\lambda=\frac{R+1}{R}$. Define $S:[1, R+1] \rightarrow[1, R+1]^{*}$ by

$$
\begin{aligned}
& a \rightarrow a_{1} \text { if } a \in[1, R) \\
& a \rightarrow a a_{2} \text { if } a \in[R, R+1],
\end{aligned}
$$

where $a_{1}=\lambda a$ and $a_{2}=(\lambda-1) a$.
Make a Hilbert cube substitution subshift $X \subseteq[1, R+1]^{\mathbb{Z}}$.

As a tiling dynamical System

Define the suspension space \widetilde{X} where $h(x)=a_{0}$. The substitution tiling flow the suspension flow $H^{s}(s \in \mathbb{R})$ over X.

- The prototiles are $\mathcal{I}=\left\{I_{a}=[0, a]: a \in[1, R+1]\right\}$.
- Tiling substitution $G: \mathcal{I} \rightarrow \mathcal{I}^{*}$ is defined by

$$
\begin{aligned}
I_{a} & \rightarrow I_{a_{1}} \text { if } a \in[1, R) \\
I_{a} & \rightarrow I_{a} I_{a_{2}} \text { if } a \in[R, R+1],
\end{aligned}
$$

- Tilings $\tilde{x}=\left\{\ldots I_{a_{-2}} I_{a_{-1} \cdot r} I_{a_{0}}, I_{a_{1}} \ldots\right\}$ where $0 \leq r<a_{0}$. Note that $r=$ position of time 0 in $I_{a_{0}}$.
- H^{s} acts by translation.

Comment: slightly different notion of tiling topology needed.

The case $R=2$

The case $R=2$ was the case studied by Frank and Sadun (2009). Here $\lambda=\frac{R+1}{R}=\frac{3}{2}$, and $S:[1,3] \rightarrow[1,3]^{*}$ is given by

$$
\begin{aligned}
& a \rightarrow\left(\frac{3}{2} a\right) \text { if } a \in[1,2) \\
& a \rightarrow(a)\left(\frac{1}{2} a\right) \text { if } a \in[2,3] .
\end{aligned}
$$

Note: expansion by $\lambda=\frac{3}{2}$.
Theorem (Frank-Sadun, 2009)
(In the case $R=2$) the tiling flow H^{s} is minimal, uniquely ergodic*, entropy zero and has infinitely many tile lengths.

Section 5

Unique ergodicity and mixing

The invariant measure

The "matrix" M and corresponding Perron-Frobenius operator M^{*} (in the case $R=2$):

$$
M(a)= \begin{cases}\{(3 / 2) a\} & \text { if } a \in[1,2) \\ \{a,(1 / 2) a\} & \text { if } a \in[2,3]\end{cases}
$$

and for $\rho \in L^{1}([1, R+1], d a)$:

$$
\left(M^{*} \rho\right)(a)= \begin{cases}2 \rho(2 a) & \text { if } a \in[1,3 / 2), \\ (2 / 3) \rho((2 / 3) a) & \text { if } a \in[3 / 2,2), \\ \rho(a)+(2 / 3) \rho((2 / 3) a) & \text { if } a \in[2,3])\end{cases}
$$

INVARIANT DENSITY

In the case $R=2$:

$$
\rho(a)=\left\{\begin{array}{ll}
\frac{1}{a^{2}} & \text { if } a \in[1,2) \\
\frac{3}{a^{2}} & \text { if } a \in[2,3]
\end{array}=\frac{\eta(a)}{a^{2}},\right.
$$

where $\eta_{1}(a)$ is a step function. It satisfies $M^{*} \rho=\lambda \rho$, so $\frac{M^{*}}{\lambda} \rho=\rho$ on $[1,3]$.

In general:

$$
\rho(a)= \begin{cases}\frac{1}{a^{2}} & \text { if } a \in[1, R) \\ \frac{R+1}{a^{2}} & \text { if } a \in[R, R+1]\end{cases}
$$

Higher Blocks

A T-invariant probability measure μ on $[1, R+1]^{\mathbb{Z}}$ specified by consistent choice of probability measure $\mu_{2 n+1}$ on each cylinder $[1, R+1]^{2 n+1}$ (centered at 0).
For $n=1$, we use $d \mu_{1}(a)=\rho(a) d a=\eta_{1}(a) \frac{d a}{a^{2}}$.
Use "supertiles" to extend this to each $[1, R+1]^{2 n+1}$:

$$
d \mu_{n}(\vec{a})=\eta_{n}(\vec{a}) \frac{d a}{a^{2}}
$$

where $\eta_{n}(\vec{a})$ is a step function, and

$$
\vec{a}=\left(a_{-n}, \ldots, a_{-1}, a, a_{1}, \ldots a_{n}\right) \in[1, R+1]^{2 n+1}
$$

- Define $\widetilde{\mu}=\mu \times d r$ on $\widetilde{X}=\{(x, r): x \in X, r \in[0, h(x))\}$.

The flow G^{t}

The substitution map G embeds in a flow $G^{t}\left(G=G^{\ln \frac{3}{2}}\right)$.

- For G^{t} expand by e^{t} then subdivide (recursively, ratio $R: 1$) any tile longer than $R+1$.

The measure μ is G^{t} invariant.
There is a commutation relation: $G^{t} \circ H^{s}=H^{s e^{t}} \circ G^{t}$.
The flow G^{t} is hyperbolic:

- $W^{s}(x, r)=\left\{(y, r): x_{[-N, N]}=y_{[-N, N]}, N \geq 0\right\}$.
- $W^{u}(x, r)=\left\{H^{s}(x, r): s \in \mathbb{R}\right\}$.

Lemma

Unique ergodicity follows from minimality (which follows from primitivity).
Essentially, we copy the proof of unique ergodicity of horocycle flow (e.g., Coudene, 2009).

LEBESGUE SPECTRUM AND MIXING

Theorem

The flow H^{s} has Lebesgue spectrum, therefore strongly mixing. In fact, mixing of all orders.
The commutation relation $G^{t} \circ H^{s}=H^{s e^{t}} \circ G^{t}$ implies H^{s} is isomorphic to all its time changes.
Lemma (Katok-Thouvenot, 2006)
A flow isomorphic to all its time hanges has Lebersgue spectrum.
No proof given.

The maximal spectral type satisfies $\sigma_{H} \sim\left(e^{t}\right)^{*} \sigma_{H}$ for all t. Lebesgue measure is Haar measure for $\left(\mathbb{R}^{+}, \cdot\right)$. However σ_{H} is finite, so can't have $\sigma_{H}=\left(e^{t}\right)^{*} \sigma_{H}$

Theorem (Mackey-Weil theorem)

In a Polish group (eg, $\left(\mathbb{R}^{+}, \cdot\right)$) the only translation invariant measure class is the Harr measure class.
Comment: Horocycle flow has countable Lebesgue spectrum. What is multiplicity for H^{t} ?
Theorem (Rhyzakov, 1991)
If a measure preserving flow satisfies H^{s} is isomorphic to H^{1} for all $s>0$ (or more generally, for a set of positive Lebesgue measure) then it is mixing of all orders.

Tiling of the (s, t)-Plane

UPPER HALF-PLANE: (s, a) WIth $a=e^{t}$

In THE DISC MODEL

Section 6

Primitivity

Interval map

The map $F:[1, R+1] \rightarrow[1, R+1]$ ("part" of substitution) is defined

$$
F(a)= \begin{cases}\frac{R+1}{R} a & \text { if } a \in[1, R) \\ \frac{1}{R} a & \text { if } a \in[R, R+1] .\end{cases}
$$

Define primitivity' to mean every a has dens M forward orbit.

Figure shows the case $R=\frac{1+\sqrt{5}}{2}$.
Lemma
Primitive implies minimal.
Theorem
The tiling flow H^{s} is strictly ergodic if and only if g is primitive.

Conjugacy to rotation

Apply $\phi:[1, R+1] \rightarrow[0,1], \phi(a)=\log _{R+1}(a)$, to see F is conjugate to rotation on $[0,1]$ by $\alpha=\log _{R+1}\left(\frac{R+1}{R}\right)$.

- "Primitivity" if and only if $\alpha \in \mathbb{Q}^{c}$.
- Otherwise, $\alpha=\frac{p}{q}=\log _{R+1}\left(\frac{R+1}{R}\right)$ and solve for R :

$$
q \log R=(q-p) \log (R+1)
$$

or

$$
R^{q}-(R+1)^{q-p}=0
$$

Unique real root $R>1$.
Example. $\alpha=\frac{1}{2}$ implies $R=\frac{1+\sqrt{5}}{2}$.

Finitary cases

For $\alpha=\frac{p}{q}$ let $R=R_{p, q}$ denote the corresponding parameter.
Then for any $j \in[1, R+1]$, for all $n, S^{n}(j)$ has only q different values (tile lengths) the orbit of a rational rotation. In other words, the substitution is FLC!
Let $\mathcal{A}=\left\{F^{n}\left(j_{0}\right)\right\}_{n=0}^{q-1}=\left\{j_{0}, j_{1}, \ldots, j_{q-1}\right\}$. Then

$$
\begin{array}{ll}
j_{a} \rightarrow j_{a+p} & \text { if } a<q-p \\
j_{a} \rightarrow j_{a} j_{a+p-q} & \text { if } a \geq q-p
\end{array}
$$

Example: The case $\alpha=1 / 2, R=(1 / 2)(1+\sqrt{5})$ is the Fibonacci substitution: $j_{0} \rightarrow j_{1}, j_{1} \rightarrow j_{1} j_{0}$ on $\mathcal{A}=\left\{j_{0}, j_{1}\right\}$. This is the only Pisot case.

Section 7

Sadun Pinwheel

Sadun Generalized Pinwheel

Fix $0<R \leq 1$. The prototiles are (ℓ, r)-right-triangles with $r / \ell=R$ (angle $\theta=\tan ^{-1}(R)$). Let $a=\frac{1}{2 \sqrt{1+R^{2}}}=\frac{1}{2} \cos \theta$, $b=\frac{R}{\sqrt{1+R^{2}}}=\sin \theta$.

- Restrict $\ell \in[\zeta, 1]$ where $\zeta=\min \{a, b\}$.
- Expansion $\lambda=\max \{a, b\}^{-1}$.

Substitution: Expand $\ell \in[\zeta, 1]$ by λ. Subdivide if $\lambda \ell \geq 1$ (see later picture).

- A larger if $R<1 / 2 ; B$ larger if $R>1 / 2$.

$$
R=4 / 5>1 / 2
$$

$$
R=2 / 5<1 / 2
$$

$$
\begin{aligned}
& \theta=21.8014^{\circ} \\
& \lambda=\sqrt{29} / 2 \sim 2.69258 \\
& \zeta=5 /(2 \sqrt{29}) \sim 0.464238
\end{aligned}
$$

The matrices

$$
\theta=36^{\circ}
$$

"Finitary" vs "Generic"

Theorem (L. Sadun (1998))

- Finitely many rotations $\Longleftrightarrow \theta \in 2 \pi \mathbb{Q}$.
- Finitely many sizes \Longleftrightarrow

$$
\frac{\log (\sin \theta)}{\log ((1 / 2) \cos \theta)}=\frac{\log R-\log \sqrt{1+R^{2}}}{-\left(\log 2+\log \sqrt{1+R^{2}}\right)} \in \mathbb{Q}
$$

Corollary

The only case with both finitely many sizes and finitely many rotations is $R=1\left(\theta=45^{\circ}\right)$. It has 3 sizes and 8 rotations.
Call cases of neither "generic".
Theorem (Sadun, 1998)
In the generic cases, $H^{\vec{s}}$ is minimal, uniquely ergodic and weakly mixing.
Conjecture (Sadun, 1998): Lebesgue spectrum.

LEBESGUE SPECTRUM

Theorem

In the generic cases, $H^{\vec{s}}$ has Lebesgue spectrum.
In these cases the translation action $H^{\vec{s}}$ and the expansion G^{t} satisfy

$$
G^{t} \circ H^{\vec{s}}=H^{\overrightarrow{s e} e^{t}} \circ G^{t}
$$

This, in itself, is not enough to guarantee Lebesgue spectrum because $\left\{\overrightarrow{s e} e^{t}: t \in \mathbb{R}\right\}$ is 1-dimensional.
However, the tiling space also is R_{θ} invariant $\theta \in \mathbb{R}$.
It follows that the measure class σ_{H} is invariant under both rotation and dilation (a cylinder). This implies it is the class of Lebesgue measure.

Multiple mixing

Here is the multidimensional version of Ryzhikov's theorem, which does not quite work for our purposes.
Theorem (Ryzhivov, 1998)
Let $H^{\vec{s}}$ be a weakly mixing \mathbb{R}^{d}-action. Let $\left(\left.H\right|_{\mathbb{Z}^{d}}\right)^{\vec{n}}$ be its restriction to \mathbb{Z}^{d} and let $\left(\left.H\right|_{\mathcal{L}_{\vec{r}}}\right)^{\vec{n}}$ be its restriction to $\mathcal{L}_{\vec{r}}:=\mathbb{Z}\left[r_{1} \vec{e}_{1}, \ldots, r_{d} \vec{e}_{d}\right], \vec{r}=\left(r_{1}, \ldots r_{d}\right) \in \mathbb{R}^{d}$. If there is a positive Lebesgue measure set of $\vec{r} \geq 0$ so that $\left.H\right|_{\mathbb{Z}^{d}}$ is isomorphic to $\left.H\right|_{\mathcal{L}_{\vec{r}}}$ then $H^{\vec{t}}$ is mixing of all orders.

Theorem in progress

In the generic cases, the Sadun Pinwheel tilings are $H^{\vec{s}}$ is mixing of all orders.
Think of $\vec{s} \in \mathbb{C}$. The rotation and expansion become complex multiplication by $\vec{s}=r e^{i \theta} \in \mathbb{C}$. The one dimensional proof then works for $\mathbb{C}=\mathbb{R}^{2}$.

