Periodic orbit growth on covers of Anosov flows

Richard Sharp University of Warwick (Joint work with Rhiannon Dougall)

> 2020 Vision for Dynamics Bedlewo Conference Centre

> > 13 August 2019

Anosov flows

M compact Riemannian manifold.

 $\phi_t: M \to M$ (transitive) Anosov flow.

Topological entropy $h_{top}(\phi) > 0$.

Countably infinite set of prime periodic orbits $\mathcal{P}(\phi)$.

For $\gamma \in \mathcal{P}(\phi)$, write $\ell(\gamma)$ for its least period.

Exponential growth rate

For each T > 0, $\{\gamma \in \mathcal{P}(\phi) : \ell(\gamma) \leq T\}$ is finite. Furthermore, $\lim_{T \to \infty} \frac{1}{T} \log \#\{\gamma \in \mathcal{P}(\phi) : \ell(\gamma) \leq T\} = h_{top}(\phi).$

Covers

Let \widetilde{M} be a regular cover of M with covering group G. We can lift $\phi_t:M\to M$ to

$$\widetilde{\phi}_t:\widetilde{M}\to\widetilde{M}.$$

We assume that the lifted flow is transitive.

Let $\mathcal{P}(\tilde{\phi})$ denote the set of prime periodic orbits for $\tilde{\phi}.$ (It may be empty.)

We would like to understand the exponential growth rate associated to $\mathcal{P}(\tilde{\phi})$. (Note that some care is needed with the definition when G is infinite.)

Finite covers

If the covering group G is finite then \widetilde{M} is compact and $\widetilde{\phi}_t: \widetilde{M} \to \widetilde{M}$ is an Anosov flow.

Furthermore, $h_{top}(\tilde{\phi}) = h_{top}(\phi)$.

So

$$\lim_{T\to\infty}\frac{1}{T}\log\#\{\gamma\in\mathcal{P}(\tilde{\phi}):\,\ell(\gamma)\leq T\}=h_{top}(\phi).$$

The question is more interesting when G is infinite.

First note that if $\gamma \in \mathcal{P}(\tilde{\phi})$ then, for each $g \in G$, the translate $g \cdot \gamma \in \mathcal{P}(\tilde{\phi})$ and $\ell(g \cdot \gamma) = \ell(\gamma)$. So, whenever $\{\gamma \in \mathcal{P}(\tilde{\phi}) : \ell(\gamma) \leq T\}$ is non-empty, it is also infinite.

Thus we need to restrict our counting.

Gurevič entropy

Following Paulin–Pollicott–Schapira, choose $K \subset \widetilde{M}$ open and relatively compact and define

$$h(\tilde{\phi}) := \lim_{T \to \infty} \frac{1}{T} \log \# \{ \gamma \in \mathcal{P}(\tilde{\phi}) : \ell(\gamma) \leq T, \ \gamma \cap K \neq \varnothing \}.$$

(The limit exists and is independent of the choice of K.)

We have $h(\tilde{\phi}) \leq h_{top}(\phi)$.

Question: When do we have equality?

Geodesic flows

A special class of Anosov flows are geodesic flows over a compact manifold with negative sectional curvatures:

 $\phi_t: T^1N \to T^1N$, where N is a compact manifold with negative sectional curvatures.

These flows have *time-reversal symmetry*, i.e. there is a fixed point free involution $\iota: T^1N \to T^1N$ such that $\phi_t \circ \iota = \iota \circ \phi_{-t}$. (Here, ι is simply given by $\iota(x, v) = (x, -v)$, for $x \in N$ and $v \in T_x^1N$.)

This symmetry allows us to give a nice answer to the question in this case.

Geodesic flows

Let $M = T^1 N$, where N is compact with negative sectional curvatures and let $\phi_t : M \to M$ be the geodesic flow.

Let \widetilde{N} be a regular *G*-cover of *N*, let $\widetilde{M} = T^1 \widetilde{N}$ and let $\widetilde{\phi}_t : \widetilde{M} \to \widetilde{M}$ be the geodesic flow.

By a result of Eberlein, $\tilde{\phi}$ is transitive provided $G \neq \pi_1(N)$. Theorem (Roblin, 2005; Dougall–S, 2016) $h(\tilde{\phi}) = h_{top}(\phi)$ if and only if G is amenable.

There are many ways of characterising amenable groups. A natural one is the following Følner criterion.

A countable group G is *amenable* if, for all finite sets $A \subset G$ and for all $\epsilon > 0$, there exists a finite set $F \subset G$ such that

$$\frac{\#(F\cap a\cdot F)}{\#F}>1-\epsilon$$

for all $a \in A$.

Symmetric extensions of shifts

A major ingredient of the proof is a theorem on Stadlbauer for group extensions of shifts. We only need it for subshifts of finite type but it also holds a large class of countable state shifts.

Let $\sigma: \Sigma \to \Sigma$ be a subshift of finite type, let *G* be a finitely generated group and let $\psi: \Sigma \to G$ be a function depending only on the first coordinate, $\psi((x_n))_{n=0}^{\infty}) = \psi(x_0)$. (This us just for simplicity – one can extend to any continuous ψ .)

Define a skew product $\sigma_{\psi}: \Sigma \times G \rightarrow \Sigma \times G$ by

$$\sigma_{\psi}(x,g) = (\sigma x, g\psi(x)).$$

Assume that σ_{ψ} is transitive.

Gurevič pressure

Let $f: \Sigma \to \mathbb{R}$ be Hölder continuous and define $\tilde{f}: \Sigma \times G \to \mathbb{R}$ by $\tilde{f}(x,g) = f(x)$.

The *Gurevič pressure* $P(\tilde{f}, \sigma_{\psi})$ is defined by

$$P(\tilde{f}, \sigma_{\psi}) := \limsup_{n \to \infty} \frac{1}{n} \log \sum_{\substack{\sigma^n x = x \\ \psi_n(x) = e}} \exp\left(\sum_{i=0}^{n-1} f(\sigma^i x)\right),$$

where

$$\psi_n(x) = \psi(x)\psi(\sigma x)\cdots\psi(\sigma^{n-1}x)$$

and e is the identity in G. (This is a special case of Sarig's general definition.)

Stadlbauer's theorem

It is clear from the definition that

$$P(\tilde{f}, \sigma_{\psi}) \leq P(f, \sigma),$$

where $P(f, \sigma)$ is the standard pressure of f with respect to σ .

Theorem (Stadlbauer, 2013)

Suppose there is a fixed point-free involution $a \mapsto a^{\dagger}$ on the alphabet of Σ such that $\psi(a^{\dagger}) = \psi(a)^{-1}$ and that f satisfies a weak symmetry condition (which we omit). Then $P(\tilde{f}, \sigma_{\psi}) = P(f, \sigma)$ if and only if G is amenable.

(日) (同) (三) (三) (三) (○) (○)

The amenability dichotomy for geodesic flows fails for general Anosov flows.

In fact, we can have G abelian with $h(\tilde{\phi}) < h_{top}(\phi)$.

This is easy if we drop transitivity for $\tilde{\phi}: \widetilde{M} \to \widetilde{M}$.

Mapping torus

Let $T: N \rightarrow N$ be an Anosov diffeomorphism and let

 $M = (N \times [0,1]) / \sim,$

where \sim is the identification

 $(x,1) \sim (Tx,0).$

Then M is a compact manifold.

Now define $\phi: M \to M$ by

$$\phi_t(x,s) = (x,s+t) \mod \sim .$$

This is an Anosov flow.

M has a natural \mathbb{Z} -cover \widetilde{M} with lifted flow $\widetilde{\phi} : \widetilde{M} \to \widetilde{M}$. It is easy to see that $\widetilde{\phi}$ has no periodic orbits.

We can also have examples of transitive lifted flows on abelian covers where the growth rate drops.

Homology covers

Let $\phi_t : M \to M$ be a transitive Anosov flow.

We can consider the universal homology cover \overline{M} and the lifted flow $\overline{\phi}_t : \overline{M} \to \overline{M}$. Here, the covering group is

$$H_1(M,\mathbb{Z})\cong\mathbb{Z}^b\oplus$$
 (torsion),

where $b \ge 0$.

We will assume that $b \ge 1$ (so we have an infinite cover) and that $\overline{\phi}_t : \overline{M} \to \overline{M}$ is transitive. (The latter implies that $\phi_t : M \to M$ homologically full, i.e. that every homology class in $H_1(M, \mathbb{Z})$ is represented by a periodic orbit.)

We want to understand when $h(\overline{\phi})$ is equal to $h_{top}(\phi)$.

Winding cycles

We introduce the winding cycles (or asymptotic cycles) of Schwartzman.

Let μ be a ϕ -invariant probability measure on M. We define the associated *winding cycle*

$$\Phi_\mu \in H_1(M,\mathbb{R}) = H^1(M,\mathbb{R})^*$$

by

$$\langle \Phi_{\mu}, [\omega]
angle = \int \omega(\mathcal{X}_{\phi}) \, d\mu,$$

where ω is a closed 1-form on M, $[\omega] \in H^1(M, \mathbb{R})$ is its cohomology class, \mathcal{X}_{ϕ} is the vector field generating ϕ , and

$$\langle \cdot, \cdot \rangle : H_1(M, \mathbb{R}) \times H^1(M, \mathbb{R}) \to \mathbb{R}$$

is the duality pairing. (Φ_{μ} is well-defined.)

Growth of null homologous periodic orbits

Let \mathcal{M}_{ϕ} denote the set of ϕ -invariant probability measures on M. Theorem (S, 1993) Suppose that $\phi_t : M \to M$ is homologically full. Then

$$h(\overline{\phi}) = \sup\{h_{\phi}(\mu) : \mu \in \mathcal{M}_{\phi}, \ \Phi_{\mu} = 0\}.$$

In fact, we have the precise asymptotic

$$\#\{\gamma\in\mathcal{P}(\phi):\ell(\gamma)\leq T,\ [\gamma]=0\}\sim Crac{e^{h(\phi)\,T}}{T^{1+b/2}},\ extbf{as}\ T
ightarrow\infty,$$

for some C > 0.

Growth of null homologous periodic orbits

Using the variational principle

$$h_{top}(\phi) = \sup\{h_{\phi}(\mu) : \mu \in \mathcal{M}_m u\}$$

and the uniqueness of the measure of maximal entropy $\mu_{\rm 0},$ we have:

Corollary

$$h(\overline{\phi}) = h_{top}(\phi)$$
 if and only if $\Phi_{\mu_0} = 0$.

So if $\Phi_{\mu_0} \neq 0$ then $h(\overline{\phi}) < h_{top}(\phi)$ even though the covering group is amenable.

Result for general covers

What can we say about $h(\tilde{\phi})$ for a general regular *G*-cover \widetilde{M} and the lifted flow $\tilde{\phi}_t : \widetilde{M} \to \widetilde{M}$?

Let \overline{M} be the largest abelian subcover of \widetilde{M} , i.e. the cover of M with covering group G/[G, G], the abelianisation of G.

Let $\overline{\phi}_t : \overline{M} \to \overline{M}$ be the lifted flow. Then $h(\overline{\phi})$ can be characterised in the same way as for the homology cover.

More precisely, we can define winding cycles $\Phi^{\overline{M}}_{\mu}$ relative to the cover \overline{M} and

$$h(\overline{\phi}) = \sup\{h_{\phi}(\mu): \ \mu \in \mathcal{M}_{\phi}, \ \Phi^{\overline{M}}_{\mu} = 0\}.$$

It turns out that one should compare $h(\tilde{\phi})$ with $h(\overline{\phi})$.

Theorem (Dougall–S, 2019+) $h(\tilde{\phi}) = h(\bar{\phi})$ if and only if G is amenable.

So the only mechanisms that allow $h(ilde{\phi})$ to drop are

- G being non-amenable;
- "drift" in an abelian subcover.

Equidistribution

When we have an amenable cover, we can also describe the spatial distribution of periodic ϕ -orbits which lift to periodic $\tilde{\phi}$ -orbits.

For $\xi \in ((G/[G,G]) \otimes \mathbb{R})^*$, let ω_{ξ} be a representative closed 1-form and let $F_{\xi} : M \to \mathbb{R}$ be the function

$$F_{\xi}(x) = \omega_{\xi}(\mathcal{X}_{\phi}(x)).$$

Let μ_{ξ} be the equilibrium state for F_{ξ} . Then the supremum

$$h(\overline{\phi}) = \sup\{h_{\phi}(\mu): \mu \in \mathcal{M}_{\phi}, \ \Phi_{\mu} = 0\}$$

is attained at μ_{ξ} .

Equidistribution

Associated to each periodic ϕ -orbit γ is a *Frobenius class* $\langle \gamma \rangle_G$ (a conjugacy class in *G*) so that γ lifts to a periodic $\tilde{\phi}$ -orbit if and only if $\langle \gamma \rangle_G = \{e\}$. Let

$$\mathcal{P}_{\mathcal{G}}(\phi) := \{ \gamma \in \mathcal{P}(\phi) : \langle \gamma \rangle_{\mathcal{G}} = \{ e \} \}.$$

Write δ_{γ} for the Lebesgue measure on γ .

Theorem (Dougall–S, 2019+) *If G is amenable then*

$$\frac{1}{\#\{\gamma \in \mathcal{P}_{\mathcal{G}}(\phi) : \ell(\gamma) \leq T\}} \sum_{\substack{\gamma \in \mathcal{P}_{\mathcal{G}}(\phi) \\ \ell(\gamma) \leq T}} \frac{\delta_{\gamma}}{\ell(\gamma)}$$

converges weak* to μ_{ξ} , as $T \to \infty$.

Equidistribution

We have $\xi=0$ if and only if $\Phi_{\mu_0}^{\overline{M}}=0.$ This is satisfied by geodesic flows.

Corollary

For the geodesic flow over a compact negatively curved manifold, if G is amenable then

$$\frac{1}{\#\{\gamma \in \mathcal{P}_{\mathcal{G}}(\phi) : \ell(\gamma) \leq T\}} \sum_{\substack{\gamma \in \mathcal{P}_{\mathcal{G}}(\phi) \\ \ell(\gamma) \leq T}} \frac{\delta_{\gamma}}{\ell(\gamma)}$$

converges weak* to μ_0 , as $T \to \infty$.

Reference

R. Dougall and R. Sharp, Anosov flows, growth rates on covers and group extensions of subshifts, arXiv:1904.01423

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you for listening!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>