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1 Introduction

• We want to draw inferences on the transmission parameter λ(θ) and the distri-
bution of the infectious period I by means of Maximum Likelihood (ML) theory.

• Consider a vector of counting processes N = (N1, . . . , Nk), where each component
Ni(t) is (NHPP) counting the number of times a specific event has occurred up to
time t.

• The probability that such an event occurs in (t, t + h] given the history of the
whole vector process up until t, denoted Ht satisfies

P (Ni(t+ h)−Ni(t) = 1|Ht) = hλj(t) + o(h), j = 1, . . . , k,

P (N(t+ h)−N(t) = 0|Ht) = 1− hλ0(t) + o(h).

where λ0(t) =
∑

i λi(t). Assume λi(t) = λi(θi;x(t)) and let θ = (θ1, . . . , θk).

• Let x = {x(t); 0 ≤ t ≤ T} be an observed trajectory of N(t); 0 ≤ t ≤ T.
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Complete data likelihood

• The likelihood corresponding to the i-th event (say of type νi) is just the joint
density of the time and type of that event.

λ0(θ;x(ti−1)) exp{−λ0(θ;x(ti−1))[ti − ti−1]} ×
λνi(θνi;x(ti−1))

λ0(θ;x(ti−1))

= exp{−λ0(θ;x(ti−1))[ti − ti−1]}λνi(θνi;x(ti−1).

• The full likelihood is the product of these terms, together with a final term

reflecting no event in the final interval (tn, T ] giving the combined likelihood

L(θ;x) =
n∏
i=1

λνi(θνi;x(ti−1)) exp{−λ0(θ;x(ti−1))[ti − ti−1]} exp{−λ0(θ;x(tn))[T − tn]}

=
n∏
i=1

λνi(θνi;x(ti−1)) exp{−
k∑
i=1

∫ T

0

λi(θi;x(t))dt}

= exp

{
k∑
i=1

(∫ T

0

log(λi(θi, x(t−)))dNi(t)−
∫ T

0

λi(θi;x(t−))dt

)}
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Score equations and martinagles

• Here and elsewhere dNi(t) is a random variable equal to one at the jump of Ni(t)
and zero otherwise.

• We denote `T (θ) = log(L(θ;x)) and also write x(t−) and λ(t−) for the left limit
of the data and intensity processes, resp.

• Maximum likelihood estimates may be obtained by differentiating the loglikeli-
hood and solving the score equations for k = 1, 2 . . .

∂`T (θ)/∂θk = ∂k`T (θ) =
∑
i

∫ T

0

(
∂kλi(θ; t−)

λi(θ; t−)
dNi(t)− ∂kλi(θ; t−)dt

)
= 0.

• It follows that the log-likelihood (score) process {`u(θ0);u ≥ 0}, evaluated at the
true parameter value θ0 is a zero mean martingale. Note: since `0(θ0) ≡ 0 then
E(`u(θ0)) = 0 for all u ≥ 0.
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Micro: Stochastic SIR (McKendrick 1926)

The classical biochemical reaction model at the level of unit (molecule)

• Three types of molecules: susceptibles (S), infectives (I), removed (R)

• Molecules combine after exponential holding time according to the current
reaction rates (Gillespie algorithm)

• Rates given by the law of mass action

S + I
λ1−→ 2I; λ1 = βSI

I
λ2−→ R; λ2 = γI

• The basic reproductive number R0 = β/γ.

• Let’s look at this model more closely!
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Micro: Stochastic SIR (II)

• (S(t), I(t), R(t)) state of the collection of units at time t > 0

• S(0) = n; I(0) = m; R(0) = 0;

• β overall transmission rate; γ recovery rate

Trajectory Equation

S(t) = S(0)− Y1
(
β

n

∫ t

0

S(u)I(u)du

)
I(t) = I(0) + Y1

(
β

n

∫ t

0

S(u)I(u)du

)
− Y2

(
γ

∫ t

0

I(u)du

)
R(t) = Y2

(
γ

∫ t

0

I(u)du

)
• Y1 and Y2 are two independent unit Poisson processes.

• basic assumption: the population is uniformly mixed.
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Micro: Stochastic SIR (III)

• Under our assumptions the micro SIR system is Markovian

• One may simulate its trajectory using the Gillespie algorithm

• adapted from stochastic biochemical networks literature

Gillespie Algorithm

1. Initiate at (S(0), I(0), R(0))

2. Assume you have the process value (S(t), I(t), R(t)) at t ≥ 0

3. Calculate rates λ1(t) = βS(t)I(t)/n and λ2(t) = γ I(t)

4. Set next transition time ∆t as Exp(λ1(t) + λ2(t))

5. Set transition type (1 or 2) as Ber
(

λ1(t)
λ1(t)+λ2(t)

)
6. Update (S(t′), I(t′), R(t′)) at t′ = t+ ∆t and go to 2
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Micro: Sellke Construction (I)

Another way of looking at stoch. SIR model from the perspective of an individual
unit (Sellke 1983):

• Initial infectives are −(m − 1),−(m − 2), . . . , 0 and initial susceptibles are
1, 2, . . . , n.

• Let I−(m−1), I−(m−2), . . . , In ∼ Exp(γ) be independent removal times

• Let Q1,Q2, . . . ,Qn be ∼ Exp(1) be individual independent infection thresh-
olds

• Let I(t) be the number of infectives at time t, and set

A(t) =
β

n

∫ t

0

I(u)du

to be the cumulative infection pressure or hazard exerted on a given suscep-
tible up to time t.
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Micro: Sellke Construction (II)

• The susceptible labeled i becomes infected when A(t) exceeds Qi.

• The j-th infected susceptible remains infectious for a time Exp(γ) and is then
removed.

m = 1, n = 5
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Micro: Sellke Construction (III)

• Let Q ∼ Exp(1) be the threshold for random individual (unit)

• Let TI be its failure (infection) time

• If Ht is history of the infections/recoveries up to t then

P (Q > A(t)|Ht) = P (Q > A(t)|A(t)) = e−A(t) = P (TI > t|A(t))

Hence for a random unit failure time (conditionally on A(t)) is

P (TI < t|A(t)) = 1− e−A(t)

Note: SC simply samples failure (infection) time TI from the survival distribution
with the cumulative hazard A(t).
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Macro: Kermack and Mc-Kendrick SIR (1927)

According to our LLN, as n→∞, assuming that

|(S(0), I(0), R(0))/n− (1, ρ, 0)| P→ 0

the stochastic vector

sup
0<t<T

|(S(t), I(t), R(t))/n− (st, ιt, rt)|
P→ 0

where (st, ιt, rt) is the solution of

ṡt = −βstιt
ι̇t = βstιt − γιt
ṙt = γιt

s0 = 1; ι0 = ρ > 0; r0 = 0;
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Mic Discrete vs Mac Continuous

S + I
λ1−→ 2I; λ1 = βSI (β = 0.5)

I
λ2−→ R; λ2 = γI (γ = 0.3)

R0 = β/γ > 1 P (major outbreak)> 0
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Macro: Continuous SIR (I)

In different notation (CSIR(θ)) θ = (β, γ, ρ, τ)

Ṡt = −βItSt
İt = βItSt − γIt
Ṙt = γIt
S0 = 1; I0 = ρ;R0 = 0;

Denote µ0 := R0 and observe

St = Exp[−β
∫ t

0

Isds] = Exp[−µ0Rt]

It = ρe−γt −
∫ t

0

Ṡue
−γ(t−u)du

Rt = γ

∫ t

0

Isds

S0 = 1; I0 = ρ;R0 = 0;
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Macro: CSIR (II)

• Mass (probability) transfer model from S to R compartment

• The state of a random unit u at t is ut ∈ {S, I,R} with u0 = S

• St = Exp[−µ0Rt] is an improper survival function with S∞ = 1− τ > 0

• τ = R∞ − ρ > 0 satisfies the final size equation

1− τ = Exp[−µ0(τ + ρ)]

• Here τ is the probability of transfer out of state S (ever)

• µ0Rt = β
∫ t
0 Isds is the cumulative hazard function

• βIt is the hazard function !
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Micro CSIR (I)

• Let TI be the exposure (infection) time of random u. By the law of total
probability

P (TI > t) = St = τ S̃t + 1− τ

• S̃t = (St − 1 + τ)/τ is the proper conditional survival function

• Conditioned on u getting exposed (or failing, i.e. transferring out of S)

• According to CSIR equation the density for S̃t is

fτ(t) =
β

τ
ItSt =

β

τ
ItExp[−µ0Rt], t > 0
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Micro CSIR: Distribution of Transfer Times

• Let TR be the recovery time of random u with exposure time TI .

• Consider joint distribution of (TI , TR). Note that for s < t CSIR equation
implies

P (TI < s, TR > t|unit fails) = Ĩse
−γ(t−s)/τ

with Ĩs = Is − ρe−γs

• Differentiating, we get

z(s, t) = γe−γ(t−s)fτ(s)1I [s < t]

• That implies TI and TR − TI are independent and TR − TI ∼ Exp(γ)

• This allows us to simulate a random u from CSIR !
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Micro CSIR: Empirical Trajectories

Left: sample of n = 100 histories of the units transferring from S to R

Right: Macro CSIR vs empirical trajectories based on n = 500 unit histories

Itineraries in the symbolic dynamics theory (e.g., Hao and Bailin 1989)
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Micro CSIR: Inference

• We have n sentinels monitored up to time tmax of which k failed at times
0 < t1 < . . . < tk of which l recovered after δt1, . . . , δtl.

• Since failure times and recovery times are all independent, the joint likelihood
is then

L(t1, . . . , tk, δt1, . . . , δtl, tmax) = γl
k∏
i=1

fτ(ti)
l∏

j=1

e−γδtj Sn−ktmax

k∏
j=l+1

e−γ(tmax−tj)

where

fτ(t) = βτ−1Ite
−µ0Rt

St = e−µ0Rt

and τ = R∞ − ρ satisfies the equation

1− τ = e−µ0(τ+ρ)

• MCMC: 2000 iterations with n = 500; all params within 5% error range.
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1.1 Example: H1N1 Epidemic

In practice we would often impute recovery times, population size and/or use a
continuous likelihood instead.

Hybrid Gibbs Sampler

1. Initiate θ = (β, γ, ρ, κ, µ) from the prior distribution and set n = k.

2. Perform M-H step for the target conditional distribution of (θ|n) using the
SDS likelihood

3. Calculate τ based on the current value of θ

4. Sample the conditional distribution of (n|θ) by drawing n ∼ NegBinom(k, τ).

5. Return to step 2.

6. Repeat until convergence.
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Binomial Random Measure

• Let (E, E) be measurable sp. with a collection {Xi} of iid rvs (stones) with
law ν and

• Let K be a non-negative integer-valued, finite mean rv that is independent
of {Xi}

• In all applications below we take K ∼ binomial(τ, n)

• Consider a random measure N associated with the pair (K, ν)

Nω(A) = N (ω,A) =

K(ω)∑
i=1

1I [A] (Xi(ω)) for ω ∈ Ω, A ∈ E .

• On any test function f ∈ E+, Nωf =
∑K(ω)

i f(Xi(ω)).

• We write N f , so that N (A) = N 1I [A].
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SDS as BRM

• Consider the collection of n independent individuals (Ui) surveyed for symp-
toms of infectious disease as BRM N = (K, ν×Q) on the space (E, E) where
E = {(x, y) : 0 < x < y}

ν(x) := fτ(x) = − ṡx
τ

and Q(x, y) := Hx(y) ∼ Exp(γ)1I [{x < y}] (y)

• Each individual Ui = (Ti,I , Ti,R) is described by a pair of infection and recovery
times

• Assume that at time t > 0 the collection of labels Lt(Ui) ∈ {S, I, R} for
i = 1, . . . , n is observed

• Notice that the law of BRMN is equal to the law of n independent trajectories
simulated according to SDS model
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CRM Partition

• Assume we have two observation points t1 and t2 with 0 < t1 < t2

• The pair induces the partition of the state space:

ESS := {(x, y) | t1 < t2 < x < y}, EII := {(x, y) | x < t1 < t2 < y},
ESI := {(x, y) | t1 < x < y < t2}, EIR := {(x, y) | x < t1 < y < t2},
ESR := {(x, y) | t1 < x < t2 < y}, ERR := {(x, y) | x < y < t1 < t2}.

• E.g., the observed labels of an individual in the partition ESS are S at times
t1 and t2, etc

• Define
s̃t = (St − 1 + τ)/τ

ι̃t = It − ρ exp{−γt}



23/26 Greg Rempala CRNs Lecture 3

CRM Likelihood

• Setting k = kSS+kSI+kSR+kII+kIR+kRR, we can write the CRM likelihood
as follows

P (N (ESS) = kSS, . . . ,N (ERR) = kRR)

=
n!

kSS! · · · kRR!(n− k)!
τ k(1− τ)n−k(s̃t1 s̃t2−t1)

kSS

× (s̃t1 ι̃t2−t1)
kSI (s̃t1(1− s̃t2−t1 − ι̃t2−t1))

kSR

×
(
ι̃t1e

−γ(t2−t1)
)kII (

ι̃t1(1− e−γ(t2−t1))
)kIR

× (1− s̃t1 − ι̃t1)
kRR

• We can marginalize out the unobservable counts retaining the multinomial
likelihood form
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Example: 2009 H1N1 at WSU
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Example: H1N1 Analysis Results
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