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1 Systems biology models

e SB - studying of ways in which interactions between the components of a bio-
logical system give rise to its function and behavior

e Computational SB - building models of complex biological pathways, then vali-
dating and analyzing those models using a variety of methods, including time-course
simulation

e CSB models represented as sets of (pseudo-)biochemical reactions: chemical
reactions network (CRN)

e C(lassically, this leads to continuous and deterministic models (DMs: coupled
ODE or PDE systems)

e However, stochastic models (SMs) are increasingly of interest
o Much intra-cellular behavior (e.g., gene expression) is intrinsically stochastic

o In macro models (eq. ID models) probability of disease transmission is more
natural to study

o Epidemic or chem. process initiation is a stochastic event (threshold thm)
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1.1 SB and stochastic models

e Law of large numbers (mean field theory) may not apply so DMs may not offer
good approximations

e Multi-scaling: some species may be present in much greater abundance than
others

e The rate constants for the reactions may vary over several orders of magnitude

e Main tool: stochastic trajectory equations and Markov jump processes theory

o Classical simulation techniques in chemical physics: Gillespie direct algorithm
(SSA) and its extensions

o Underlying assumptions: law of mass action (system in thermal equilibrium,
well stirred)

o CRNs offer a principled way of describing the system

e Examples: gene transcription kinetics and SIR epidemic
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Example: genetic auto-regulation (Wilkinson 2011)

a b g DNA
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Reactions:

(1) g +P= g P Repression

(2) g — g+r Transcription

(3) r—=r+P Translation

(4) 2P = P, Dimerization

(5) r— 1 mRNA degradation

(6) P—1 Protein degradation
Petri Net:

e Reaction rates needed !
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1.2 Markov jump processes

e Assume X is a continuous time Markov chain in £ C Z? The rate matrix,
Q) = [qp] for the chain gives

and hence for f in an appropriate domain D(A)

E[f(X(t+At)) — f(X(1)|H]] = qu — f(X (1) At = Af(X(¢)At

where H; is the history of the process

e Alternative notation is via intensity. Define (k) = gy ;4. Then

Zﬁl flk+1)— f(k))  forany f € D(A)
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1.3 Martingale problem and master equation

e ~ is made precise by the requirement that

J‘/~’f(7f)Zf(X(t))—J”(X(O))—/O Af(X(s))ds

be a {HX}-martingale for all f.
e X is called a solution of the martingale problem for A.

e Defining u(x,t) = E[f(X(t))|X(0) = x|, one can derive the backward equation
Owu(t, z) = Au(t, x)

and setting 14(G) = P{X(t) € G} and v, f = [, fdv;, the martingale property
gives the forward equation (in weak form)

t
thzuof—l—/ viAfds, feD(A).

0
o f =1y, and setting pi(t) = v4({k}), gives the master equation

r(t) =Y pea () Bk — 1) = pr(8) > Bik)
z z
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1.4 Rescaling into Poisson process

Counting process N(t) (i.e., increases by 1) adapted to filtration {#;}

Process intensity ()

P(N(t+ At) — N(t) > 0|F,) = M)At + o(At)

7(t)
Let 7(t) be a stopping time such that / A(s)ds =t
0

Define Y'(t) = N(7(t)) then one can show (Y'(t) —t) is {#H () }-martingale

Watanabe’s thm implies that Y (¢) is a unit Poisson process

N(r)= Y(/Or A(s)ds)
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1.5 Time change equation (TCE)

e Consider the process evolution
X(t) = X(0) + » IN(t)
!

where N;(t) is the number of jumps of [ at or before time ¢t. N; is a counting process
with intensity (propensity in the chemical literature) G;(X(t)), that is,

v - | Bi(X(5))ds

is a martingale. Consequently, we can write

Ni(t) = Yi( / Bi(X (s))ds),

where the Y, are independent, unit Poisson processes, and
t
X(6) = X(0) + 30 ACX()ds)
z 0

- o - _— N - N - L
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1.6 Simulation — Gillespie direct method (SSA)
1. For given state of the system X (¢) = k compute [;(k) for all M possible vals
of [.

2. Simulate the reaction time as the minimum of M independent exponential
variables with means 1/5;(k) for k=1..., M.

3. Simulate the reaction type r by drawing from M point discrete distribution

where P(r = ;) = pi(k)/B(k).

4. Update the system state to new k and repeat.

e Not very efficient for large systems
e Lots of work over last decade to speed up SSA

e (Quasi-steady state and 7-leaping methods most popular
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2 Reaction networks

e Standard notation for chemical reactions

A+BE o

is interpreted as “a molecule of A combines with a molecule of B to give a
molecule of C in the presence of a catalyst k” (or at rate k).

A+B=C
means that the reaction can go in either direction, that is, a molecule of C' can
dissociate into a molecule of A and a molecule of B

e We consider a network of reactions involving m chemical species, Ay, ..., A,.

m

iVZkAZAZV;kAZ k:1,27
i=1

1=1

where the v, and v, are nonnegative integers
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Definition 2.0.1. A chemical reaction network is a triple {, €, %} where
(i) & ={S1,...,S.} is the set of species,

(ii) € is the set of complexes, consisting of nonnegative linear combinations of
the species,

(1)) Z = {yr = v : Y, Y. € € and yy # y,.} is the set of reactions.

e For instance for the reaction network

S+E=C—=S+P, E=1

S ={S,E,C, P},
¢ ={S+E,C,S+ P E,D}, and
#={S+F—-CC—-S+FEC—S+PE—0 0—FE}
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2.1 Markov chain models

e X(t) number of molecules of each species in the system at time ¢.

e ;. number of molec’s of each chemical species consumed in the kth reaction.
e v, number of molecules of each species created by the kth reaction.

e )\;(x) rate at which the kth reaction occurs.

e If the kth reaction occurs at time ¢, the new state becomes
X(t)=X({t—)+ v, — v

The number of times that the kth reaction occurs by time ¢ is given by the counting
process satisfying

Ry(t) = Vi / M (X (5))ds),

where the Y} are independent unit Poisson processes

X(t) = X(0)+ ) Re(t) (v — )
k

= X(0) + Zyk(/ A(X (8))ds)(vh, — 1) = (V' — V) R(t)
7. 0
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2.2 Law of mass action (LMA)

e Rates obtained via the stochastic law of mass action

Ny v i\ o L vie! i
A (@) = R N1 H (%k) = Rk N H ( )j

Vik

where |vp| =Y. vy, and N is a scaling parameter usually taken to be the volume
of the system times Avogadro’s number

11 X 2o )\{V(x) = K171

T + 19 2 23 MY (2) = Koxy 29/ N

e Basic assumption: the system is uniformly mized and in thermal equilibrium.
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2.3 First scaling limit — the reaction rate equation

If = gives the number of molecules of each species present, then ¢ = N~z gives the
concentrations in moles per unit volume

Then )
A (z) = N | [ ¢ = NAk(o).

The law of large numbers for the Poisson process implies N~ 'Y (Nu) =~ u,
t
Ct)=N'X@t) ~C0)+ Y / o [T Cils)™ (v — ),
k70 i

which in the large volume limit gives the classical deterministic law of mass action

(RRE)

LA > ki H Ci(t)"* (v, — vi)

dt
k
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2.4 Example: Speed of genetic transcription (SGT)

e Two chemical species, 7 (mRNA) and TP (transcription proteins) with the
following simplified reactions

TP 2% TP +r
r 2 )
0 = TP

TP 2

a b g DNA
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Time change representation

e Denote the number of molecules of r by X; and the number of protein molecules
(T'P) by Xo.

o Let X(t) = (Xi(t), Xa(t)) be the state of the system at time t.

X\(1) = X,(0)+ Vi < /O t /leQ(s)ds) v, ( /O t @Xl(s)ds>
Xo(t) = Xo(0)+ Y (sst) — Vi ( /0 t /14X2(s)d5>

where Y; for i = 1,...,4 are independent unit Poisson processes.
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Reaction rate equation

Let N be system volume. Set
Cl(t> = Xl(t)/N and Cg(t) = Xg(t)/N

e When N is large, the above consideration gives us the following deterministic
approximation to the system of the stochastic Poisson equations

C1(t) = C1(0) + /61/0 Cy(s)ds — /12/0 Ci(s)ds
Cy(t) = Co(0) + Rt — Ky /t Cs(s)ds

or in the equivalent form obtained by differentiating the above

Ci(t) = k:ng(t) — KJQCl(t)
Cé(t) = 1%3 — l€402(t)

where /%3 = limN_mo I<J3/N

e The deterministic steady state is attained at ¢t = oo
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Stationary distribution

e The generator in SGT example has the form

Af(l‘l,l‘g) = Iilﬂj'g[f(xl +1, :13‘2) — f(ZL‘l,ZUQ)] -+ lﬁ:gfL‘l[f(ZL’l — 1,33‘2) — f(:El, 332)]
+rglf(wr, w2 + 1) = [, x2)] + Raa[f (21, 22 — 1) — f(21, 22)]

May be used to determine the stationary distribution
Assume that X (0) = (0,0)

Note: for the stationary distribution m = 7(x1, z2) we need

TAf(z1,22) =0

Taking for ¢ > 0
f(x1, x9) = exp(txs)

gives the differential equation for the marginal m.g.f.
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Laplace transforms of the stationary distribution
o 1)(t) = ™2 and set A\ = k3/k4 then
Ale" = 1)(t) = (1 — exp(—1))'(t)
with ¢(0) = 1 this implies
h(t) = exp(Ale’ — 1))
e That is, the second marginal of 7, say m, is Poisson(k3/k4)

e More generally let ¢(s,t) = Ee*X1etX2,
e As before, using the form A we obtain PDE for ¢(s,t)

[ki(e® — 1) + ky(e™" — 1)]0p + ra(e™® — 1)0s0 = K3(1 — €')¢ (%)

with boundary conditions ¢(0,t) = ¥(t).

e This linear PDE may be solved numerically using the method of characteristic
CUTvES.
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Moments of the stationary distribution

e Taking f(z1,x2) = x; and using the form of A

R1K3

EX1 = lilEXQ/lig =
R9oKk4

Similarly, taking f(z1,22) = x129 and f(xy, 29) = 23

Fop [1 + :—ﬂ + Ky

R4 Raky

EX1 Xy =

K9 + Ky

and
269 EX? = 251 EX 1 X0 + k1 EXy + ko EXy

etc
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2.5 Stochastic SIR (McKendrick 1926)

e Three types of molecules: susceptibles (S), infectives (I), removed (R)

e Molecules combine after exponential holding time according to the current
reaction rates (Gillespie algorithm)

e Rates given by the law of mass action

S+1 2 o A\ =BSI

I 2% R A=~

e The basic reproduction number Ry = /7.
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Stochastic SIR (II)
o (S(t),1(t), R(t)) state of the collection of units at time ¢t > 0

e S(0) =n; I(0) =m; R(0) = 0;

e [ overall transmission rate; v recovery rate

S(t) = S(0) - Vi (5 / t S(u)](u)du)

=103 (2 [ stortm) s+ [ 60a)

R(t) =Ys <7 /0 I(u)du>

e Y; and Y5 are two independent unit Poisson processes.

e Recall basic assumption: the entire population is uniformly mized.
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Non-Markovian Case: the Sellke Construction

e Label the initial infectives —(m — 1), —(m —2),...,0 and the initial susceptibles
L2,...,n. Let Z_(,_1y,Z_(m-2),-..,Z, be iid random variables, each distributed
according to same law Z.

e Let Q1,(Qo,...,Q, be an independent sequence of iid exponential random vari-
ables, having mean 1. These are the individual thresholds.

e Fori=—(m—1),—(m—2),...,0, the initial infective labelled i remains infectious
for a time Z; and is then removed.

e Let Y () be the number of infectives at time ¢, and let

A(t) = g/o Y (u)du

be the total infection pressure exerted on a given susceptible up to time t.

e In A(t) the infectives are weighted according to their infectious periods. For
i = 1,...,n, the susceptible labeled i becomes infected when A(t) exceeds Q;.
The j-th susceptible infected who becomes infected (not one labeled j) remains
infectious for a time Z; and is then removed.
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Figure 2.1: A typical realisation of the total infection pressure with m = 1 initially
infectious individual. Note that the infection pressure never reaches ()(4) so the epi-
demic stops and the final size is Z = 3.
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2.6 Exact Results for SIR E, ,,(8,7)

e Derive a triangular system of equations for the distribution of 7, say P" =
(B, ..., P"), where P’ = P(Z = k).

o Let A= A(c0) = =5 fo u)du be the total pressure of the epidemic. Note

i

. 5
= P > — j
Z = min{i : Q1) - E T;},

j=—(m-1)
where (1), ... Q) are the order statistics of @1, ...,Q,. Additionally, note
z
5
A=~— 3
S22 L
j=—(m-1)

Lemma 2.6.1 (Wald’s Identity). Consider the standard SIR epidemic E,, ,,,(3,T)
and let A be as above. Then

Ele™"/o(86/n)**™ =1, >0,

where ¢(0) = Elexp(—0T)] is the Laplace transform of T.
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Proof.

O30/ = E o5 Y 1)

—E exp(—e(A+§ > 1)

j=Z+1

= B [e7"(o(80/n)" 7]
e Using this result and the exchangeability of susceptibles we obtain

Theorem 2.6.1. Consider standard SIR model E,, ,,,(8,Z) and let P(Z = k) = P}'.

Then ,
> ( oy ) P8\ — 0)/n)]+m = (2) C0<r<n
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Figure 2.2: The exact distributionof Z+mform=1,n=50,A=15and I =1,
i.e. the infectious period is constant and equal to 1.

e Note the bimodality; This is know as the threshold effect.
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