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1 Introduction

e We want to draw inferences on the transmission parameter \(#) and the distri-
bution of the infectious period I by means of Maximum Likelihood (ML) theory.

e Consider a vector of counting processes N = (Ny, ..., Ni), where each component
N;(t) is (NHPP) counting the number of times a specific event has occurred up to
time t.

e The probability that such an event occurs in (¢,t + h] given the history of the
whole vector process up until ¢, denoted H; satisfies
P(N;i(t+h) — N;(t) = 1|Hs) = hA;(t) +o(h), j=1,... k,
P(N(t+h) — N(t) =0|H:) =1 — hXo(t) + o(h).
where \g(t) = >, Ai(t). Assume \;(t) = A\;(6;;2(t)) and let 0 = (04, ..., 6).
o Let x ={x(t);0 <t < T} be an observed trajectory of N(¢);0 <t <T.
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Complete data likelihood

e The likelihood corresponding to the i-th event (say of type 1;) is just the joint
density of the time and type of that event.

l/z(evzax( i-1))

Yo(0; (i) exp{=do(0: 2(ti-0)lts = tima]} x S EES

= exp{—Xo(0; z(ti-1))[ti — tim1]} A, (003 2(Ei1).

e The full likelihood is the product of these terms, together with a final term

reflecting no event in the final interval (¢,, 7] giving the combined likelihood

L(6;x) = A1/,(91/1;33(751- 1) exp{=Ao(0; x(ti1))[ti = tia]} exp{=Ao(6; x(tn))[T" — tul}

ﬁ (6,5 2(ti 1)) exp{— Z/ i(05; (t))dt}
= exp {zk: (/OT log(Ai(0;, x(t—)))dNi(t) — /OT/\ (0; 2(t ))dt>}

1=1

:j:
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Score equations and martinagles

e Here and elsewhere dN;(t) is a random variable equal to one at the jump of N;(t)
and zero otherwise.

e We denote ¢7(0) = log(L(0;x)) and also write z(t—) and A(t—) for the left limit
of the data and intensity processes, resp.

e Maximum likelihood estimates may be obtained by differentiating the loglikeli-
hood and solving the score equations for £k =1,2...

0 /00 = 0162(6) = 3 / (2L aio) - anos -y ) = 0

e It follows that the log-likelihood (score) process {£,(6y);u > 0}, evaluated at the
true parameter value 6, is a zero mean martingale. Note: since {y(fy) = 0 then
E(l,(6y)) = 0 for all u > 0.
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Micro: Stochastic SIR (McKendrick 1926)

The classical biochemical reaction model at the level of unit (molecule)
e Three types of molecules: susceptibles (S), infectives (I), removed (R)

e Molecules combine after exponential holding time according to the current
reaction rates (Gillespie algorithm)

Rates given by the law of mass action

S+1 X% oI, A\ =BSI

I 2% R, =+l

e The basic reproductive number Ry = /7.

Let’s look at this model more closely!
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Micro: Stochastic SIR (II)
o (S(t),1(t), R(t)) state of the collection of units at time ¢t > 0
e S(0) =n; I(0) =m; R(0) = 0;
e [ overall transmission rate; v recovery rate

Trajectory Equation

S(t) = S(0) - Vi (5 / t S(u)[(u)du)

=10 (2 [ stortnm) s+ [ 60a)

R(t) =Ys <7 /0 ](u)du>

e Y; and Y5 are two independent unit Poisson processes.

e basic assumption: the population is uniformly mixed.



7/26 Greg Rempala CRNs Lecture 3

Micro: Stochastic SIR (I1I)

e Under our assumptions the micro SIR system is Markovian
e One may simulate its trajectory using the Gillespie algorithm

e adapted from stochastic biochemical networks literature

Gillespie Algorithm
1. Initiate at (S(0), 1(0), R(0))
2. Assume you have the process value (S(t), I(t), R(t)) at t > 0
3. Calculate rates A(t) = 8S(t)I(t)/n and Ao(t) = v (t)

4. Set next transition time At as Fxp(A(t) + \a(t))

5. Set transition type (1 or 2) as Ber (#@2@)

6. Update (S(t'), I(t"), R(t")) at ' =t 4+ At and go to 2
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Micro: Sellke Construction (I)

Another way of looking at stoch. SIR model from the perspective of an individual
unit (Sellke 1983):

e Initial infectives are —(m — 1), —(m — 2),...,0 and initial susceptibles are
1,2,...,n.

o Let Z (1), Z_(m—-2) - - - Ln ~ Exp(7y) be independent removal times

o Let Q1,Q,,...,9, be ~ Exp(1l) be individual independent infection thresh-
olds

e Let I(t) be the number of infectives at time ¢, and set

A(t) = g/o I(u)du

to be the cumulative infection pressure or hazard exerted on a given suscep-
tible up to time ¢.
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Micro: Sellke Construction (IT)

e The susceptible labeled i becomes infected when A(t) exceeds Q;.

e The j-th infected susceptible remains infectious for a time Fxp(7y) and is then

removed.

Q) -
Q) -

QA

________________
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Micro: Sellke Construction (IIT)

o Let Q ~ Exp(1) be the threshold for random individual (unit)
e Let 17 be its failure (infection) time
e If H; is history of the infections/recoveries up to ¢ then

P(Q > A(t)|H) = P(Q > A(D)|A(t)) = e U = P(Ty > t|A(t))

Hence for a random unit failure time (conditionally on A(t)) is

P(T; < t|A(t)) =1 — e AW

Note: SC simply samples failure (infection) time 77 from the survival distribution
with the cumulative hazard A(t).
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Macro: Kermack and Mc-Kendrick SIR (1927)

According to our LLN, as n — oo, assuming that
P
the stochastic vector

sup [(S(t),1(t), R(t))/n — (st,tt,7¢)| 5o

o<t<T

where (¢, tt,7¢) is the solution of

St = —[BSil
iv = BSit — Yl
e = Yk

so=1; to=p>0; 7o =0;
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Mic Discrete vs Mac Continuous

S+T 2% 2 A\ =8SI (8=0.5)

I 2% R, M=~ (y=03)

Ro=p/y>1 P(major outbreak)> 0
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Macro: Continuous SIR (I)

In different notation (CSIR(#)) 0 = (5,, p, )

St = —B11S;
I = BISy — 1
Ry = ’th

So = 1;1Ip = p; Ry = 0;

Denote p := Ry and observe

Sy = Exp| 5/ Isds] = Exp[—pio Ry

_pe -t __ /Seytu
Rt— /[SdS
0

So = 1; 1y = p; Ry = 0;
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Macro: CSIR (II)

e Mass (probability) transfer model from S to R compartment
_Ead Bad

The state of a random unit u at ¢ is uy € {S,I, R} with ug =S

Sy = Exp|—poRy] is an improper survival function with Soo =1 —7 >0

T = Ry — p > 0 satisfies the final size equation

1 — 7 = Exp[—uo(T + p)]

Here 7 is the probability of transfer out of state S (ever)

woRy = B fot I,ds is the cumulative hazard function

B1; is the hazard function !
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Micro CSIR (I)

e Let 77 be the exposure (infection) time of random w. By the law of total
probability

P(T]>t):St:T»§t+1—T

e S;= (S, — 1+ 7)/7 is the proper conditional survival function
e Conditioned on u getting exposed (or failing, i.e. transferring out of S)

e According to CSIR equation the density for S; is

f-(t) = gItSt = gItExp[—MoRtL t>0
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Micro CSIR: Distribution of Transfer Times

e Let T be the recovery time of random u with exposure time 77.
e Consider joint distribution of (77,7x). Note that for s < ¢t CSIR equation

implies )
P(T; < s,Tg > tlunit fails) = L,e 7% /7

with fs =1, — pe 7*
e Differentiating, we get

2(s,t) = ye ) £ ()1 [s < t]

e That implies 77 and Tx — 17 are independent and T — 17 ~ Exp(7y)

e This allows us to simulate a random u from CSIR !



time
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Micro CSIR: Empirical Trajectories
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Left: sample of n = 100 histories of the units transferring from S to R

Right: Macro CSIR vs empirical trajectories based on n = 500 unit histories

Itineraries in the symbolic dynamics theory (e.g., Hao and Bailin 1989)
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Micro CSIR: Inference

e We have n sentinels monitored up to time t,,,, of which k failed at times
0 < t; <...<t of which [ recovered after dtq, ..., dt;.

e Since failure times and recovery times are all independent, the joint likelihood
is then

k l k
‘C(tla cee 7tk’7 5t17 RIS 5tlu tmax) == /Yl H fq—(tz> H 677&74 S;lm;lj H 677(tm”’m7tj)
i=1 j=1 j=l+1

where

f-(t) = Br etk

St = eiuoRt
and 7 = R, — p satisfies the equation

1—7 = €—M0(7+P)

e MCMC: 2000 iterations with n = 500; all params within 5% error range.
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1.1

Example: HIN1 Epidemic

In practice we would often impute recovery times, population size and/or use a
continuous likelihood instead.

Hybrid Gibbs Sampler

1.

2.

Initiate 6 = (8,7, p, K, u) from the prior distribution and set n = k.

Perform M-H step for the target conditional distribution of (f|n) using the
SDS likelihood

Calculate 7 based on the current value of
Sample the conditional distribution of (n|f) by drawing n ~ NegBinom(k, 7).
Return to step 2.

Repeat until convergence.
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Binomial Random Measure

e Let (E,&) be measurable sp. with a collection {X;} of iid rvs (stones) with
law v and

e Let K be a non-negative integer-valued, finite mean rv that is independent

e In all applications below we take K ~ binomial(7,n)

e Consider a random measure N associated with the pair (K, v)

K(w)
No(A) = N(w,4) =) T[4 (X;(w)) forweQ, A€E.

e On any test function f € &, N, f = ZiK(w) f(X;(w)).
e We write NV f, so that N'(A) = N [A].
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SDS as BRM

e Consider the collection of n independent individuals (U;) surveyed for symp-
toms of infectious disease as BRM N = (K, v x Q) on the space (E, ) where
E={(z,y):0 <z <y;

() = (o) = 2 and Q(r, ) = Hu(y) ~ Bap() T [{z < y}] ()

e Each individual U; = (T 1, T; r) is described by a pair of infection and recovery
times

e Assume that at time ¢ > 0 the collection of labels L;(U;) € {S,I, R} for
1 =1,...,n is observed

e Notice that the law of BRM N is equal to the law of n independent trajectories
simulated according to SDS model
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CRM Partition

e Assume we have two observation points t; and t, with 0 < t; < to

e The pair induces the partition of the state space:
Ess ={(r,y) | ti<ta <z <y}, Ei:= Az |x<t;<ty<uy},
Esr={(z,y) | ti<zx<y<t}, Emr:= {(xy|r<ti<y<ty},
Esp:={(z,y) |ti<x <ty <y}, Epr:= {(z,y)|x<y<ty <t}

E.g., the observed labels of an individual in the partition Egg are S at times
t1 and to, etc

Define

§t = (St — 1+T)/T
iy = Iy — pexp{—t}



23/26 Greg Rempala CRNs Lecture 3

CRM Likelihood

o Setting k = kss+ksr+ksr+kir+kir+krr, we can write the CRM likelihood
as follows

P (N(ESS) = kss, e ,N(ERR) = kRR)

n! L e .
— 1 — n B SS
kSS! e kRR!(n _ k’)'T ( T) (8t18t2 t1)

X (81 0ty—t)" (51, (1 = Bryty — Gyt )"

e —(ta—t1 ) (Ztl(l _ 6_7(t2—t1))>k1R

X (1 — Stl — Ztl)

X

e We can marginalize out the unobservable counts retaining the multinomial
likelihood form
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Example: 2009 H1N1 at WSU
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Figure 1: Daily new infections counts from WSU HIN1 outbreak.

Parameter MAP  90% Credibility

n 7051 (6602, 7581)
B 0.1887  (0.185, 0.196)
p 0.0423  (0.04, 0.045)

Ro 1.06 (1.04, 1.09)
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Example: H1N1 Analysis Results
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Figure 2: Top panel: fitted vs observed s, curve and the posterior sample of the effective population size (n). Bottom
panel: Posterior distributions of the basic reproduction number Ry and the final epidemic size. The latest distribution
may be used to validate the model against actually observed data. The vertical line is drown at the actually observed
epidemic size of 2276.
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