Stochastic CRNs

Lecture 2
Asymptotic Reductions

Grzegorz Rempala
The Ohio State University

Statystyka Matematyczna XLV
Bedlewo (POL)
Dec 5th 2019



2/27 Grzegorz A Rempala CRNs Lecture 2

1 Asymptotics for CRNs

e X (¢) number of molecules of each species in the system at time ¢

v, number of molec’s of each chemical species consumed in the kth reaction

v, number of molecules of each species created by the kth reaction

the rate \Y is

Hi Vik! xT;
W (@) =m [T )

= \Vik
i

where |v;| = >, vir and N is a scaling parameter
¢
X(0) = X(©0)+ Vil [ VX)) - )
- 0

Y}’s are independent unit PPs
e N is often (but not always) the volume of the system times Avogadro’s number

e Previous lecture: deterministic approximation given by RRE (mean-field approx-
imation, LLN)
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1.1 Diffusion approximation

An appropriately renormalized Poisson process can be approximated by a standard

Brownian motion
Y(Nu) — Nu

VN

Setting C™(t) = X(t)/N and replacing Y;(Nu) by vV NWi(u) + Nu we obtain the
Langevin equation

~ W(w),

cN(t) = +ZN m/Ak (XN (s))ds) (v, — )

~ OV0)+ 3 N2 / (O (5))ds) (v, — )

0

+ [ R s

where F(c) = 3, M(e) (V) — ).
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1.2 Equivalent form — It6 formulation

The diffusion approximation is given by the equation
CN(t) = CN(0) + Z N=Y2w, (/Ot S\k(éN(s))ds> (v, — ) + /Ot F(CN(s))ds,
k
which is distributionally equivalent to the Ito equation
O = OO+ N [ AN ) 0~ )
k
t

<N
-l—/o F(C%(s))ds

_ AN ~1/2 tUNNS T ' AN (Vs
= C"(0)+ N /0 (C ())dW—I—/OF(C’ (s))ds,

where o(c) is the matrix with columns 1/ Ax(c)(v) — 1),
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1.3

Multiple Scales: Cellular Systems
The number of molecules involved, at least for some of the species, may be
small
Law of large numbers may not apply

The deterministic model may does not provide a good representation of the
behavior of the system

Some species may be present in much greater abundance than others.
The rate constants ki may vary over several orders of magnitude.
Idea: use kj as guidance for the scaling NV;

NOTE: in what follows N is no longer volume ..
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Multiple Scales (cont)

e Take N to be of the order of magnitude of the abundance of the most abundant
species in the system.

e For each species 7, 0 < a; <1 and
Zi(t) = N~ X;(t).
«; should be selected so that Z; = O(1).

e Express the reaction rates in terms of Z rather than X and also take into
account large variation in the reaction rates.

e Select 3 so that the reaction rates can be written as N\ (z), where \y(2) =
O(1) for all relevant values of z.

e The model becomes

Zit) = Z0) + 3NV [ N (Z(6)ds) 0~ )
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2 Multi-scaling Approximation for Transcription
and Translation

DNA

ORI

Transcription

Translation

Ribosome

]
{rRNA/protein complex) Cell membrane
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Transcription and translation (cont)
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TF1-G+TF?2
RNAP+TF2-TF1-G
RNAP-TF2-TF1-G

TF1-G (frame opening initiated)
TF2-TF1-G (length negotiated)
RNAP-TF2-TF1-G (gene unlocking)
RNAP-TF2-TF1-G(1) (transcr. starts)
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RNAP-TF2-TF1-G(k) RNAP+TF2-TF1-G+ R (transcr. ends)
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2.1  Prokaryotic Model: Simplified TT Process

Consider prokaryotic-type simplified system

Interested in the amount of protein P instead of transcript R

Averaging over multiple mol’s of polymerase and rybosome ..

Will used delay to skip over multiple production steps..

Unlocking is on faster time scale then the rest of the system..

G P+ @ protein production (with delay, fast k1 = Nkq)
P+G BC gene frame locking, slow k9 = ko

C BP+aG gene frame unlocking (fast k3 = Nk3)

P Ny protein deletion, slow k4 = ky

Here C'= P - G is a PG complex.
o Let X(t) = (Xp, Xg, Xo)(t) with {X¢(0), X5(0)} = {0, 1} then

Xe(t) + Xa(t) =1
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TT process equations

e Define X¢g(t) =0 fort <0, Xg(0) =1, X¢(0) =0

e Then for ¢t > 0
xn(t) = Xo0) + i ([ miXats)as) < va ([ maxets) )
Y, ( /0 aXpXo(s) ds) -y, ( /O X o(s) ds)
Xe(t) = Xa(0) — Y, ( /O XX (s) ds> Y, ( /O s Xo(s) ds)
Xo(t) = Xo(0) + Vs ( /0 t ko X pX(s) ds> v ( /0 t ks X (s) ds)

where Y7, Y5, Y3 and Y, are independent unit Poisson processes.

e Last equation simply states that X¢(t) =1 — X¢(¢) for ¢t > 0.
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Multiscale equations

e Recall k1 = Nky, ko = ko, k3 = Nk3, ky = ky
e Set Zp(t) = Xp(t)/N fort >0

e Assume Zp(0) — zp(0) as N — oo

Zp(t) = Zp(0) + N~ <N /O o k1 Xa(s) ds> + Nys (N /0 t ks Xc(s) ds)
— N, <N /O ﬁ ko Zp(s)Xa(s) ds) —~ Ny, <N /0 t ksZp(s) ds)
NXelt) = N X6(0) = N Ve (N [z Xo(s) s

t
+ N1y, (N / ks Xc(s) ds> — 0
0

(Since N"'X4(t) — 0 as N — oo for any t > 0.)
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Multiscale equations (cont)

e From the last equation it follows that as N — oo
t t
/ koZp(s)Xa(s)ds — / ksXc(s)ds — 0 for any ¢ > 0
0 0

e So Zp(t) must be uniformly bounded on any finite interval [0, 7]

It follows that Zp(t) has a convergent subsequence with limit zp(t) and along

that subsequence
t t
k3
Xa(s)ds — ds
/0 G( ) /0 /ﬁ?g‘FkQZp(S)

e Here we used the fact that X¢(t) =1 — Xg(t)

Will now return to the first equation, considering separately cases t < 7 and
t>T7
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ODE Approximation

e Applying PLLN to the first equation along the same subsequence:
—ForO<t<r .
zp(t) = zp(0) — /0 kyzp(s)ds
— Fort>r

kiks
]{73 + kQZP(S)

zP(t)::ZP(O)%—jgbq- dSA—-jgtk42p(s)ds

e Uniqueness of the above solution gives the existence of the limit

Proposition 2.1 (Multiscale ODE approximation to TT process). As N — oo, the
relative amt of protein in the system Xp/N converges UIP on bounded intervals to
the deterministic function zp which satisfies the delay differential equation

B ks
a ]433—|—]€22’p(t—’7')

Zp(t)

T[t > 7] — kazp(t)

ZP(O) >0



14/27 Grzegorz A Rempala CRNs Lecture 2

Effect of delay

Lot
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BD approximation

o Let X(t) = (Xq(t), Xp(t), Xc(t)) be the original TT process

e Then Xp may be approximated by BD process Xp

Kolt) = Xr(0)+ 1 ( [ o Z;P (S>d$> 72 (e t Ko(s)is)

where 571 and 372 are independent of X

e We can show that as N — oo

sup N7 Xp(t) — Xp(t)] L2 0

0<t<T
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X(t) ~ X(t) for large N (1 =0)
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2.2 TT Model: Fast Switching

e Locking/Unlocking is on faster time scale then the rest of the system..
e Interested in the total amount of protein P

e For the sake of simplicity: no delay (could handle delay as before)

G P+ G protein production ( SLOW k1 = ky)

P+G ®BC gene frame locking, FAST ko = Nks
C BP+aG gene frame unlocking (fast k3 = Nk3)
P Ny protein deletion, slow k4 = ky

Here as before C' = P - G is a PG complex as we assume as before

Xe(0) + Xg(0) =1
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F'S process equations

e For t > 0 as before

Xr(t) = Xp(0) + Vi ( /0 t k1 Xa(s) ds) +Ys < /O t ks Xc(s) ds)

v ( /O o XpXls) ds) —v, ( /0 i Xp(s) ds)

Xo(t) = Xe(0) + Y5 ( /0 XX (5) ds) v, ( /0 aXe(s) ds>
Xelt) = Xe(0) - 2 ( [ o XpXels) i) +vi i Xe(s) i)
e Define X7(t) = Xp(t) + Xc(t), then

Xr(0) = Xr(0) 4 ([ e Xea(s) i) -vi( [ i Xp(s) i)
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Multiscale equations

e Recall k1 = k1, k9 = Nko, k3 = Nk3, k4 = k4 and
o Xr(t)=Xp(t)+ Xc(t) fort >0

Xa(t) = X0(0)+ Vi [ Xts)ds) = ([ RoXrts) = Xl s
N'Xq(t) = N1 Xg(0) = N, <N /O t ko X p(s)Xa(s) ds>

t
+N7'Yy <N / k3 Xc(s) ds> — 0
0

By PLLN, since X7(s)Xa(s) = Xp(s)Xa(s),
t t
/ ko X1 (s)Xa(s)ds —/ ksXc(s)ds — 0
0 0

and consequently (at least UIP on finite intervals)

t t
k3
Xa(s)ds — / ds — 0
/0 a(s) o ks + ko Xp(s)
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Stochastic Approximation for FS

e Since X¢ =1 — X then UIP

t t
/{IQXT(S)
X, ds — ds — 0
/0 ols)ds /o k3 + ko X7(s) ’

and

/Ot(Xt(s) ~ Xo(s))ds — /Ot Xp(s) (1 - :;XT(SQ ds — 0

Proposition 2.2 (Multiscale approximation for F'S process). As N — oo, the amt
of total protein in the system Xp converges UIP on bounded intervals to the process
Zr which satisfies the stochastic equation

Zet) = Zr(0) + 11 </ot k3 +k/€12k§T($) dS) BRE </0t Zrs) (1 kst :;ZT(S)) ds)
Zr(0) >0

where Y1,Ys are independent unit PP.
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3 Virus kinetics (Ball, Popovic, Kurtz, R 2006)

The model includes four time-varying species:
e the viral genome (G),

e the viral structural protein (S),

e the viral template (T), and

e the secreted virus itself (V).

The model has six reactions

1000
_\

Ri:TA2T+G, Ry: GY2%7 Ry: T T+8S

R4IT%®, R515i@, R6G+SM
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Trajectory simulation (Anderson & Kurtz 2015)
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Model equations

Denote the species G, S, T,V by 1, 2, 3, and 4, respectively, and let X;(¢) denote the
number of molecules of species i at time t.

Xi(t) = X4(0) + Y3 ( /O t Xg(s)d$> Y, (0.025 /0 t Xl(s)ds>
—Ys <7.5 x 1070 /0 t Xl(S)XQ(S)ds>

Xalt) = X0) + i (1000 [ Xatsyis) =35 (2 [ Ko )
v, (7.5 < 1078 /0 t XI(S)XQ(S)dS)

Xy (t) = X3(0) + V5 <0.025 /0 t Xl(s)ds) v, (0.25 /0 t Xg(S)dS)

X4(t) = X4(0) + Yp <7.5 x 1070 /Ot Xl(s)Xg(s)ds>

Focus on the first three equations.
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Rescaling
Taking N = 1000, we scale the rate constants so that

K1 1 1

ky  0.025 2.5N2/3
k3 1000 N

K4 0.25 0.25
K5 2 2

kg 7.5 x 1076 0.75N5/3

that is, we take fy = B4, = 85 = 0,02 = —2/3, 83 = 1, and g = —5/3. Scaling the
species numbers, we take oy = 2/3, as = 1, and a3 = 0.

ZN(t) = ZN(0) + N3y ( / t zy (s)ds) — N2y, (2.5 / t zN (s)ds)

0 0

— N72Byj (0.75 / t ZN(s)ZY (s)ds)

0

Z3(t) = Z3(0) + N3 (N /0 t 7y (s)ds> ~ N'y; <N2 /O t zy (s)ds)
_ Ny, (0.75 / N9 2 (s)ds)

0
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Hybryd model

Assuming (Z{¥(0), Z37(0), Z¥(0)) — (Z1(0), Z5(0), Z3(0)), we have
Z)(t) = Z:(0)

Z3(t) = Z(0) + /t Z3(s)ds — Q/t Z3(s)ds

0 0

Z3(t) = Z3(0) + Ys <2.5 /Ot Z?(s)ds) —Y], (0.25 /Ot Zg(s)ds)

e This system is an example of a piecewise deterministic or hybrid model,
e one component (Z3) is discrete and stochastic (here: BD process)

e the other (Z3) is an ordinary differential equation with coefficients depending on
the stochastic component

e As it turns out Z; operates on a different time scale (N?/3t).
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Summary

e Reaction networks LLN and CLT

e General method for multiscale approximation

e Multiscale: both in physical and temporal scales

e We only discussed the physical one here

e Example: prokaryotic transcription-transl. (TT/FS) model
e For TT ODE and BD approximation

e Delay introduces initial perturbation only

e For F'S approximation is available as switching rate increases

e Example: Virus infection (hybryd model)
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