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1 Systems biology models

• SB - studying of ways in which interactions between the components of a bio-
logical system give rise to its function and behavior

• Computational SB - building models of complex biological pathways, then vali-
dating and analyzing those models using a variety of methods, including time-course
simulation

• CSB models represented as sets of (pseudo-)biochemical reactions: chemical
reactions network (CRN)

• Classically, this leads to continuous and deterministic models (DMs: coupled
ODE or PDE systems)

• However, stochastic models (SMs) are increasingly of interest

◦ Much intra-cellular behavior (e.g., gene expression) is intrinsically stochastic

◦ In macro models (eq. ID models) probability of disease transmission is more
natural to study

◦ Epidemic or chem. process initiation is a stochastic event (threshold thm)
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1.1 SB and stochastic models

• Law of large numbers (mean field theory) may not apply so DMs may not offer
good approximations

• Multi-scaling: some species may be present in much greater abundance than
others

• The rate constants for the reactions may vary over several orders of magnitude

• Main tool: stochastic trajectory equations and Markov jump processes theory

◦ Classical simulation techniques in chemical physics: Gillespie direct algorithm
(SSA) and its extensions

◦ Underlying assumptions: law of mass action (system in thermal equilibrium,
well stirred)

◦ CRNs offer a principled way of describing the system

• Examples: gene transcription kinetics and SIR epidemic
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Example: genetic auto-regulation (Wilkinson 2011)
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Reactions:

(1) g + P2 
 g · P2 Repression
(2) g ⇀ g + r Transcription
(3) r ⇀ r + P Translation
(4) 2P 
 P2 Dimerization
(5) r ⇀ ∅ mRNA degradation
(6) P ⇀ ∅ Protein degradation

Petri Net:

• Reaction rates needed !
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1.2 Markov jump processes

• Assume X is a continuous time Markov chain in E ⊂ Zd. The rate matrix,
Q = [qkl] for the chain gives

P{X(t+ ∆t) = l|X(t) = k} ≈ qkl∆t, k 6= l ∈ E,

and hence for f in an appropriate domain D(A)

E[f(X(t+ ∆t))− f(X(t))|HX
t ] ≈

∑
l

qX(t),l(f(l)− f(X(t))∆t ≡ Af(X(t))∆t

where HX
t is the history of the process

• Alternative notation is via intensity. Define βl(k) = qk,k+l. Then

Af(k) =
∑
l

βl(k)(f(k + l)− f(k)) for any f ∈ D(A)
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1.3 Martingale problem and master equation

• ≈ is made precise by the requirement that

Mf(t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

be a {HX
t }-martingale for all f .

• X is called a solution of the martingale problem for A.

• Defining u(x, t) = E[f(X(t))|X(0) = x], one can derive the backward equation

∂tu(t, x) = Au(t, x)

and setting νt(G) = P{X(t) ∈ G} and νtf =
∫
E fdνt, the martingale property

gives the forward equation (in weak form)

νtf = ν0f +

∫ t

0

νsAfds, f ∈ D(A).

• f = 1{k} and setting pk(t) = νt({k}), gives the master equation

ṗk(t) =
∑
l

pk−l(t)βl(k − l)− pk(t)
∑
l

βl(k)
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1.4 Rescaling into Poisson process

• Counting process N(t) (i.e., increases by 1) adapted to filtration {Ht}
• Process intensity (λ)

P (N(t+ ∆t)−N(t) > 0|Ft) = λ(t)∆t+ o(∆t)

• Let τ(t) be a stopping time such that

∫ τ(t)

0

λ(s)ds = t

• Define Y (t) = N(τ(t)) then one can show (Y (t)− t) is {Hτ(t)}-martingale

• Watanabe’s thm implies that Y (t) is a unit Poisson process

N(r) = Y (

∫ r

0

λ(s)ds)
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1.5 Time change equation (TCE)

• Consider the process evolution

X(t) = X(0) +
∑
l

lNl(t)

where Nl(t) is the number of jumps of l at or before time t. Nl is a counting process
with intensity (propensity in the chemical literature) βl(X(t)), that is,

Nl(t)−
∫ t

0

βl(X(s))ds

is a martingale. Consequently, we can write

Nl(t) = Yl(

∫ t

0

βl(X(s))ds),

where the Yl are independent, unit Poisson processes, and

X(t) = X(0) +
∑
l

lYl(

∫ t

0

βl(X(s))ds)

• Known as the Poisson time-change representation (Kurtz 1968)
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1.6 Simulation – Gillespie direct method (SSA)

1. For given state of the system X(t) = k compute βl(k) for all M possible vals
of l.

2. Simulate the reaction time as the minimum of M independent exponential
variables with means 1/βl(k) for k = 1 . . . ,M .

3. Simulate the reaction type r by drawing from M point discrete distribution
where P (r = rl) = βl(k)/β̄(k).

4. Update the system state to new k and repeat.

• Not very efficient for large systems

• Lots of work over last decade to speed up SSA

• Quasi-steady state and τ -leaping methods most popular
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2 Reaction networks

• Standard notation for chemical reactions

A+B
k
⇀ C

is interpreted as “a molecule of A combines with a molecule of B to give a
molecule of C in the presence of a catalyst k” (or at rate k).

A+B 
 C

means that the reaction can go in either direction, that is, a molecule of C can
dissociate into a molecule of A and a molecule of B

• We consider a network of reactions involving m chemical species, A1, . . . , Am.

m∑
i=1

νikAi ⇀
m∑
i=1

ν ′ikAi k = 1, 2, . . .

where the νik and ν ′ik are nonnegative integers



12/29 Grzegorz A Rempala CRNs Lecture 1

Definition 2.0.1. A chemical reaction network is a triple {S ,C ,R} where

(i) S = {S1, . . . , Sn} is the set of species,

(ii) C is the set of complexes, consisting of nonnegative linear combinations of
the species,

(iii) R = {yk → y′k : yk, y
′
k ∈ C and yk 6= y′k} is the set of reactions.

• For instance for the reaction network

S + E 
 C → S + P, E 
 ∅

S = {S,E,C, P},
C = {S + E,C, S + P,E, ∅}, and

R = {S + E → C,C → S + E,C → S + P,E → ∅, ∅ → E}



13/29 Grzegorz A Rempala CRNs Lecture 1

2.1 Markov chain models

• X(t) number of molecules of each species in the system at time t.

• νk number of molec’s of each chemical species consumed in the kth reaction.

• ν ′k number of molecules of each species created by the kth reaction.

• λk(x) rate at which the kth reaction occurs.

• If the kth reaction occurs at time t, the new state becomes

X(t) = X(t−) + ν ′k − νk.

The number of times that the kth reaction occurs by time t is given by the counting
process satisfying

Rk(t) = Yk(

∫ t

0

λk(X(s))ds),

where the Yk are independent unit Poisson processes

X(t) = X(0) +
∑
k

Rk(t)(ν
′
k − νk)

= X(0) +
∑
k

Yk(

∫ t

0

λk(X(s))ds)(ν ′k − νk) = (ν ′ − ν)R(t)
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2.2 Law of mass action (LMA)

• Rates obtained via the stochastic law of mass action

λNk (x) = κk

∏
i νik!

N |νk|−1

∏
i

(
xi
νik

)
= Nκk

∏
i νik!

N |νk|

∏
i

(
xi
νik

)
,

where |νk| =
∑

i νik and N is a scaling parameter usually taken to be the volume
of the system times Avogadro’s number

x1
κ1⇀ x2 λN1 (x) = κ1x1

x1 + x2
κ2⇀ x3 λN2 (x) = κ2x1 x2/N

• Basic assumption: the system is uniformly mixed and in thermal equilibrium.
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2.3 First scaling limit – the reaction rate equation

If x gives the number of molecules of each species present, then c = N−1x gives the
concentrations in moles per unit volume

Then
λNk (x) ≈ Nκk

∏
i

cνiki ≡ Nλ̃k(c).

The law of large numbers for the Poisson process implies N−1Y (Nu) ≈ u,

C(t) = N−1X(t) ≈ C(0) +
∑
k

∫ t

0

κk
∏
i

Ci(s)
νik(ν ′k − νk)ds,

which in the large volume limit gives the classical deterministic law of mass action
(RRE)

dC(t)

dt
=
∑
k

κk
∏
i

Ci(t)
νik(ν ′k − νk)
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2.4 Example: Speed of genetic transcription (SGT)

• Two chemical species, r (mRNA) and TP (transcription proteins) with the
following simplified reactions

TP
κ1−→ TP + r

r
κ2−→ ∅

∅ κ3−→ TP

TP
κ4−→ ∅
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Time change representation

• Denote the number of molecules of r by X1 and the number of protein molecules
(TP ) by X2.

• Let X(t) = (X1(t), X2(t)) be the state of the system at time t.

X1(t) = X1(0) + Y1

(∫ t

0

κ1X2(s)ds

)
− Y2

(∫ t

0

κ2X1(s)ds

)
X2(t) = X2(0) + Y3 (κ3t)− Y4

(∫ t

0

κ4X2(s)ds

)
where Yi for i = 1, . . . , 4 are independent unit Poisson processes.
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Reaction rate equation

Let N be system volume. Set

C1(t) = X1(t)/N and C2(t) = X2(t)/N

• When N is large, the above consideration gives us the following deterministic
approximation to the system of the stochastic Poisson equations

C1(t) = C1(0) + κ1

∫ t

0

C2(s)ds− κ2
∫ t

0

C1(s)ds

C2(t) = C2(0) + κ̃3t− κ4
∫ t

0

C2(s)ds

or in the equivalent form obtained by differentiating the above

C ′1(t) = k1C2(t)− κ2C1(t)

C ′2(t) = κ̃3 − κ4C2(t)

where κ̃3 = limN→∞ κ3/N

• The deterministic steady state is attained at t =∞



19/29 Grzegorz A Rempala CRNs Lecture 1

Stationary distribution

• The generator in SGT example has the form

Af(x1, x2) = κ1x2[f(x1 + 1, x2)− f(x1, x2)] + κ2x1[f(x1 − 1, x2)− f(x1, x2)]

+κ3[f(x1, x2 + 1)− f(x1, x2)] + κ4x2[f(x1, x2 − 1)− f(x1, x2)]

• May be used to determine the stationary distribution

• Assume that X(0) = (0, 0)

• Note: for the stationary distribution π = π(x1, x2) we need

πAf(x1, x2) = 0

• Taking for t > 0
f(x1, x2) = exp(tx2)

gives the differential equation for the marginal m.g.f.
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Laplace transforms of the stationary distribution

• ψ(t) = etX2 and set λ = κ3/κ4 then

λ(et − 1)ψ(t) = (1− exp(−t))ψ′(t)
with ψ(0) = 1 this implies

ψ(t) = exp(λ(et − 1))

• That is, the second marginal of π, say π2, is Poisson(κ3/κ4)

• More generally let φ(s, t) = EesX1etX2.

• As before, using the form A we obtain PDE for φ(s, t)

[κ1(e
s − 1) + κ4(e

−t − 1)]∂tφ+ κ2(e
−s − 1)∂sφ = κ3(1− et)φ (∗)

with boundary conditions φ(0, t) = ψ(t).

• This linear PDE may be solved numerically using the method of characteristic
curves.
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Moments of the stationary distribution

• Taking f(x1, x2) = x1 and using the form of A

EX1 = κ1EX2/κ2 =
κ1κ3
κ2κ4

Similarly, taking f(x1, x2) = x1x2 and f(x1, x2) = x21

EX1X2 =
κ1

κ3
κ4

[
1 + κ3

κ4

]
+ κ3

κ1κ3
κ2κ4

κ2 + κ4

and
2κ2EX

2
1 = 2κ1EX1X2 + κ1EX2 + κ2EX1

etc
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2.5 Stochastic SIR (McKendrick 1926)

• Three types of molecules: susceptibles (S), infectives (I), removed (R)

• Molecules combine after exponential holding time according to the current
reaction rates (Gillespie algorithm)

• Rates given by the law of mass action

S + I
λ1−→ 2I; λ1 = βSI

I
λ2−→ R; λ2 = γI

• The basic reproduction number R0 = β/γ.
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Stochastic SIR (II)

• (S(t), I(t), R(t)) state of the collection of units at time t > 0

• S(0) = n; I(0) = m; R(0) = 0;

• β overall transmission rate; γ recovery rate

S(t) = S(0)− Y1
(
β

n

∫ t

0

S(u)I(u)du

)
I(t) = I(0) + Y1

(
β

n

∫ t

0

S(u)I(u)du

)
− Y2

(
γ

∫ t

0

I(u)du

)
R(t) = Y2

(
γ

∫ t

0

I(u)du

)
• Y1 and Y2 are two independent unit Poisson processes.

• Recall basic assumption: the entire population is uniformly mixed.
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Non-Markovian Case: the Sellke Construction

• Label the initial infectives −(m− 1),−(m− 2), . . . , 0 and the initial susceptibles
1, 2, . . . , n. Let I−(m−1), I−(m−2), . . . , In be iid random variables, each distributed
according to same law I.

• Let Q1, Q2, . . . , Qn be an independent sequence of iid exponential random vari-
ables, having mean 1. These are the individual thresholds.

• For i = −(m−1),−(m−2), . . . , 0, the initial infective labelled i remains infectious
for a time Ii and is then removed.

• Let Y (t) be the number of infectives at time t, and let

A(t) =
β

n

∫ t

0

Y (u)du

be the total infection pressure exerted on a given susceptible up to time t.

• In A(t) the infectives are weighted according to their infectious periods. For
i = 1, . . . , n, the susceptible labeled i becomes infected when A(t) exceeds Qi.
The j-th susceptible infected who becomes infected (not one labeled j) remains
infectious for a time Ij and is then removed.
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2.6 Exact Results for SIR En,m(β, I)

• Derive a triangular system of equations for the distribution of Z, say P n =
(P n

0 , . . . , P
n
n ), where P n

k = P (Z = k).

• Let A = A(∞) = β
n

∫∞
0 Y (u)du be the total pressure of the epidemic. Note

Z = min{i : Q(i+1) >
β

n

i∑
j=−(m−1)

Ij},

where Q(1), . . . Q(n) are the order statistics of Q1, . . . , Qn. Additionally, note

A =
β

n

Z∑
j=−(m−1)

Ij.

Lemma 2.6.1 (Wald’s Identity). Consider the standard SIR epidemic En,m(β, I)
and let A be as above. Then

E[e−θA/φ(βθ/n)Z+m] = 1, θ ≥ 0,

where φ(θ) = E[exp(−θI)] is the Laplace transform of I.
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Proof.

(φ(βθ/n))n+m = E

exp(−βθ
n

n∑
j=−(m−1)

Ij)


= E

exp(−θ(A+
β

n

n∑
j=Z+1

Ij))


= E

[
e−θA(φ(βθ/n)n−Z

]

• Using this result and the exchangeability of susceptibles we obtain

Theorem 2.6.1. Consider standard SIR model En,m(β, I) and let P (Z = k) = P n
k .

Then ∑̀
k=0

(
n− k
`− k

)
P n
k /[φ(λ(n− `)/n)]k+m =

(
n
`

)
, 0 ≤ ` ≤ n
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• Note the bimodality; This is know as the threshold effect.
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