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Outline

Introduce basic concepts of total positivity. Three parts:

1. Total positivity and Markov structures.
Total positivity in Markov structures (with S. Fallat, S. Lauritzen, K. Sadeghi,

C. Uhler, N. Wermuth), Ann. Stat., 2017.

2. Gaussian graphical models.
Maximum likelihood estimation in Gaussian models under total positivity (with

S. Lauritzen, C. Uhler), Ann. Stat., 2019.

3. Binary models and beyond.
Total positivity in structured binary distributions (with S. Lauritzen, C. Uhler),

arXiv:1905.00516.
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Lecture 1



Basics



Definition

• X = (X1, . . . ,Xm), X =
∏m

i=1Xi ⊂ Rm, density p.

• A function p is MTP2 if:

p(x) p(y) ≤ p(x ∧ y) p(x ∨ y) for all x , y ∈ X .

I e.g. p(1, 1, 0)p(0, 0, 1) ≤ p(0, 0, 0)p(1, 1, 1)

• If p > 0 the condition simplifies.

I e.g. p(1, 1, 0)p(0, 1, 1) ≤ p(0, 1, 0)p(1, 1, 1)
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Original motivation

• X = (X1, . . . ,Xm) is positively associated if for any two
non-decreasing functions φ, ψ : Rm → R

corr{φ(X ), ψ(X )} ≥ 0.

Theorem[FKG inequality]
MTP2 =⇒ positively associated.

Proof: Discrete case by Fortuin et al. (1971). General case by Sarkar (1969).
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Basic properties

If X = (X1, . . . ,Xm) is MTP2, then

(i) any marginal distribution is MTP2;

(ii) any conditional distribution is MTP2,

for details see (Karlin and Rinott, 1980).
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Our motivation

• Useful concept in data modelling.

• Some popular models are implicitly MTP2.

• Leads to sparsity, applies in high-dimensions.
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Elementary examples



Some classical examples

Mostly from Karlin and Rinott (1980):

• Eigenvalues of a Wishart matrix W , or of W1W
−1
2 , or

W1(W1 + W2)−1, where W1⊥⊥W2 (Dykstra and Hewett, 1978);

• Ferromagnetic (attractive) Ising models (Lebowitz, 1972);

• Bivariate logistic density (Gumbel, 1961);

• Gaussian free fields (random height landscapes) (Dynkin, 1980);

• Many other examples. . .
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Example 1: Three binary variables

Example: X = (X1,X2,X3) ∈ {0, 1}3

p001p110 ≤ p000p111 p010p101 ≤ p000p111 p100p011 ≤ p000p111

p011p101 ≤ p001p111 p011p110 ≤ p010p111 p101p110 ≤ p100p111

p001p010 ≤ p000p011 p001p100 ≤ p000p101 p010p100 ≤ p000p110

Note: If p > 0 then the first row is implied by the other two:

(p011p101)(p001p010) ≤ (p001p111)(p000p011)

Boundary points satisfy context specific independence:

p011p101 = p001p111 ⇐⇒ X1⊥⊥X2|{X3 = 1}
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There are various useful reformulations:
All conditional covariances are nonnegative:

p01kp10k ≤ p00kp11k ⇐⇒ cov(X1,X2|{X3 = k}) ≥ 0.

Equivalently all conditional log-odds ratios are nonnegative:

p01kp10k ≤ p00kp11k ⇐⇒ log
(

p00kp11k

p01kp10k

)
≥ 0.

Equivalently, X1⊥⊥X2⊥⊥X3|H , H binary, cov(Xi ,H) ≥ 0.
For details see Zwiernik (2015).
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Example 2: Gaussian distribution

PDm = symmetric m ×m positive definite matrices

Gaussian distribution with mean µ ∈ Rm and covariance Σ ∈ PDm

concentration matrix K := Σ−1

p(x ;K ) = 1
(2π)m/2 (detK )1/2 exp{−1

2
(x − µ)TK (x − µ)}

Gaussian X is MTP2 if and only if Kij ≤ 0 for all i 6= j .

• Equivalently, K is an M-matrix (aka Stieltjes matrix).

See Bølviken (1982) and Karlin and Rinott (1983).
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Recall: The partial correlations satisfy

ρij |V \{i ,j} = − Kij√
KiiKjj

≥ 0.

For Gaussians partial and conditional correlations are equal.

Closure of the MTP2 property under marginalization gives:

cov(Xi ,Xj |XC ) ≥ 0 for every C ⊆ V \ {i , j}.

The set of M-matrices is convex (in K ). Its boundary is given by some
Kij = 0 (or equivalently Xi ⊥⊥Xj |XV \{i ,j}).
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Binary Ising model

The p.m.f. for x ∈ X = {−1, 1}m satisfies

log p(x ; h, J) = hTx + 1
2
xTJ x − A(h, J),

with h ∈ Rm and J ∈ Rm×m symmetric with zeros on the diagonal.

(a log-linear model with only second order interactions)

Binary Ising model is MTP2 if and only if Jij ≥ 0 for all i 6= j .

Similar to the Gaussian case, the hypothesis is convex (in J) and:

Jij = 0 ⇐⇒ Xi ⊥⊥Xj |XV \{i ,j}.
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Modelling



A restrictive condition?

• MTP2 contraints appear to be restrictive:
I 3-dim Gaussian: about 5% of distributions are MTP2,
I 4-dim Gaussian: about 0.09% of distributions are MTP2.

• Less restrictive under additional Markov structure.

• In the 3-dim case
I if 1⊥⊥ 2|3 then 25% are MTP2

I if, in addition, 1⊥⊥ 3|2 then 50% are MTP2

I if 1⊥⊥ 2⊥⊥ 3 then everything is MTP2

Informally: In sparse structures MTP2 is more likely.

(*) It is more likely to see MTP2 distribution in sparse structures especially in settings where total positivity is expected.
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Example 1: EPH-gestosis

• Dataset collected 45 years ago in a study on “Pregnancy and Child
Development”

• EPH-gestosis (pre-eclampsia): disease syndrome for pregnant women; three
symptoms (high body water retention, high amounts of urinary proteins,
elevated blood pressure)

• A syndrome is a set of medical signs and symptoms that are correlated with
each other and, often, with a particular disease or disorder.

The sample distribution[
p̂000 p̂010 p̂001 p̂011

p̂100 p̂110 p̂101 p̂111

]
= 1

4649

[
3299 107 1012 58

78 11 65 19

]
is already MTP2. Equivalently, X1⊥⊥X2⊥⊥X3|H for a latent binary H.
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Example 2: Financial time series.

Monthly correlations of global stock markets

S =



Nasdaq Canada Europe UK Australia

Nasdaq 1.000 0.606 0.731 0.618 0.613
Canada 0.606 1.000 0.550 0.661 0.598
Europe 0.731 0.550 1.000 0.644 0.569
UK 0.618 0.661 0.644 1.000 0.615
Australia 0.613 0.598 0.569 0.615 1.000



S−1 =



Nasdaq Canada Europe UK Australia

Nasdaq 2.629 −0.480 −1.249 −0.202 −0.490
Canada −0.480 2.109 −0.039 −0.790 −0.459
Europe −1.249 −0.039 2.491 −0.675 −0.213
UK −0.202 −0.790 −0.675 2.378 −0.482
Australia −0.490 −0.459 −0.213 −0.482 1.992


Sampled uniformly this happens with prob. < 10−6!
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Example 3: Math grades

Data: grades of 88 students in Mechanics, Vectors, Algebra,
Analysis, Statistics (data(math) in package gRbase)

S =



mechanics vectors algebra analysis statistics

mechanics 305.7680 127.2226 101.5794 106.2727 117.4049
vectors 127.2226 172.8422 85.1573 94.6729 99.0120
algebra 101.5794 85.1573 112.8860 112.1134 121.8706
analysis 106.2727 94.6729 112.1134 220.3804 155.5355
statistics 117.4049 99.0120 121.8706 155.5355 297.7554



S−1 =



mechanics vectors algebra analysis statistics

mechanics 1 −0.329 −0.230 0.002 −0.025
vectors −0.329 1 −0.281 −0.078 −0.020
algebra −0.230 −0.281 1 −0.432 −0.357
analysis 0.002 −0.078 −0.432 1 −0.253
statistics −0.025 −0.020 −0.357 −0.253 1
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MTP2 constraints are often explicit

X is MTP2 in:

• ferromagnetic Ising models

• Markov chains with TP2 transitions

• order statistics of iid variables

• Brownian motion tree model

|X | is MTP2 in (c.f. (Zwiernik, 2015)):

• Gaussian/binary tree models

• Gaussian/binary latent tree models

• binary latent class models

• single factor analysis
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Signed MTP2 distributions

Definition: A Gaussian/discrete r.v. X = (X1, . . . ,Xm) has a signed
MTP2 distribution if and only if:

• (Gaussian) there exists a diagonal matrix D ∈ {−1,+1}m such
that DX has an MTP2 distribution.

• (discrete) the distribution of X is MTP2 up to a permutation of
values in each Xi

• Every binary/Gaussian pairwise interaction model on a tree is
signed MTP2.

• Signed MTP2 property is preserved under taking margins:
I single factor analysis models, Gaussian latent tree models, binary

latent class models, and binary latent tree models are all signed
MTP2
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Sparsity with no extra parameters

Correlation network MTP2 Ising model
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Independence structure



Marginal independence

Proposition: If X is positively associated then

XA⊥⊥XB ⇐⇒ cov(Xu,Xv ) = 0 for all u ∈ A, v ∈ B .

Proof: Shown in Lebowitz (1972).

Such a result is usually special for the Gaussian distribution.

Proposition Fallat et al. (2017): X can be split into independent
blocks and within each block all covariances are strictly positive.
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Abstract conditional independence

An independence model ⊥ is a ternary relation over subsets of V .

It is semi-graphoid if for disjoint subsets A, B , C , D:

(S1) if A ⊥ B |C then B ⊥ A|C (symmetry);

(S2) if A ⊥ (B ∪ D)|C then A ⊥ B |C and A ⊥ D|C (decomposition);

(S3) if A ⊥ (B ∪ C )|D then A ⊥ B |(C ∪ D) (weak union);

(S4) if A ⊥ B |C and A ⊥ D|(B ∪ C ), then A ⊥ (B ∪ D)|C
(contraction).

(Any probabilistic independence model ⊥⊥ is a semi-graphoid)

It is a graphoid if (S1)–(S4) holds and

(S5) if A ⊥ B |(C ∪ D) and A ⊥ C |(B ∪ D) then A ⊥ (B ∪ C )|D
(intersection).

(If X has a density f > 0 its independence model ⊥⊥ is a graphoid.)
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Conditional independence and total positivity

Proposition (Fallat et al., 2017): If X is MTP2, its independence
model ⊥⊥ satisfies

(S6) (A⊥⊥B |C ) ∧ (A⊥⊥D|C ) ⇒ A⊥⊥ (B ∪ D)|C (composition);

(S7) (u⊥⊥ v |C ) ∧ (u⊥⊥ v |(C ∪ w)) ⇒ (u⊥⊥w |C ) ∨ (v ⊥⊥w |C )
(singleton transitivity)

(S8) (A⊥⊥B |C ) ⇒ A⊥⊥B |(C ∪ D) (upward stability).

These are all fulfilled for separation ⊥G in graphs, but not necessarily for any

probabilistic independence model ⊥⊥ .

Upward stability is a strong property; see (Sadeghi, 2017) for a follow-up.
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Independence graph and Markov properties

Let P be a probability distribution on X . The pairwise independence
graph G(P) = (V ,E ) is defined through the relation

uv 6∈ E ⇐⇒ u⊥⊥ v |V \ {u, v}.

We say that P is globally Markov w.r.t. a graph G if

A ⊥G B |S =⇒ A⊥⊥B |S

where ⊥G is separation in G . (c.f. Hammersley-Clifford theorem)

Further, we say that P is faithful to G if

A ⊥G B |S ⇐⇒ A⊥⊥B |S

i.e. if the independence models ⊥⊥ and ⊥G are identical.
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A main result

Theorem (Fallat et al., 2017): Assume the distribution P of X is
MTP2 with strictly positive density f > 0. Then P is faithful to G(P).

In other words, for MTP2 distributions, the pairwise independence
graph yields a complete ‘picture’ of the independence relations in P .
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Lecture 2



Gaussian graphical models

see e.g. (Lauritzen, 1996; Højsgaard et al., 2012)



Factorization

G = an undirected graph with nodes {1, . . . ,m} and cliques C1, . . . ,Ck .
We say that density f (x) factorizes according to G if for all x ∈ X

f (x) = φC1(xC1) · · ·φCk
(xCk

),

where φC (xC ) ≥ 0. (a notion of simplicity)

For example

1 2

34

f (x) = φ123(x1, x2, x3)φ134(x1, x3, x4).

This gives an alternative characterisation of X2⊥⊥X4|(X1,X2).
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Hammersley-Clifford theorem

Let f > 0 be a density function for X = (X1, . . . ,Xm). Then the
following are equivalent:

(F) f factorizes according to G = (V ,E ).

(P) Xi ⊥⊥Xj |XV \{i ,j} if ij /∈ E .

(G) XA⊥⊥XB |XC whenever C separates A and B in G .

If f > 0 then P is globally Markov to its pairwise independence graph.

M(G ) = all distributions that factorize according to G .
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The Gaussian case

For a Gaussian distribution in M(G ):
The non-edges correspond to conditional independences
Xi ⊥⊥Xj |XV \{i ,j} or equivalently Kij = 0.

• Indeed, ρij |V \{i ,j} = − Kij√
KiiKjj

.

Two main estimation problems (Lauritzen, 1996):
Consider an iid sample X 1, . . . ,X n from M(G ).

The partial correlation of the sample will have no zeros.

(i) Estimate Σ for a fixed graph G .

(ii) Estimate the graph in a statistically meaningful way.
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The Gaussian likelihood function

The sample covariance matrix of the sample X 1, . . . ,X n is

S =
1

n

n∑
i=1

(X i − X̄ )(X i − X̄ )T .

The log-likelihood is

log L(µ,K ) = n
2

log detK − n
2

tr(KS)− n
2

(X̄ − µ)TK (X̄ − µ).

For fixed K we get µ̂ = X̄ giving the profile likelihood

log L(µ̂,K ) = n
2

log detK − n
2

tr(KS).
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Maximum likelihood over M(G )

Fix a graph G = (V ,E ) and the Gaussian model

M(G ) = {K ∈ PDm : Kij = 0 for all ij /∈ E}.

The function log L(µ̂,K ) = n
2

log detK − n
2

tr(SK ) is a concave function
over the convex set M(G ).

The MLE (if exists) is the unique point K̂ = Σ̂−1 ∈ PDm such that:

(i) Σ̂ij = Sij for all ij ∈ E ,

(ii) K̂ij = 0 for all ij /∈ E .

The MLE exists (with probability one) if n ≥ maxC |C |.

A block-coordinate descent approach is typically used, e.g. ggmfit in R.
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Model selection methods

Main methods for learning the graph:

• Stepwise methods,

• Convex optimization,

• Thresholding,

• Simultaneous p-values.

Stepwise backward model selection
The stepwise function in gRim performs stepwise model selection
based on a variety of criteria (AIC, BIC, etc)

sat.carc <- cmod(~.^.,data=carcass)

test.carc <- stepwise(sat.carc,details=1,"test")

plot(test.carc,"neatto")

29/72



Learning the graph in high-dimension

Graphical lasso (Friedman et al., 2008)
If p is large then the number of possible models is too high.

If n < p the likelihood is unbounded.

Following the same idea as in the lasso regression we maximize

Lpen(K , µ̂) = log det(K )− tr(SK )− λ‖K‖1.

See the package glasso and EBICglasso (finds an optimal λ).
Conveniently implemented in the package qgraph.

# S sample correlation

qgraph::qgraph(S,graph="glasso")

Sparsistency: if minij∈E∗ |Kij | ≥ C
√

log(p)
n

for some C > 0.
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Gaussian totally positive
distributions



MLE for Gaussian models

Convex problem: maximize{log detK − tr(SK )} over K ∈ MTP2.

Theorem: The MLE exists if and only if there exists Σ � 0 with
Σ ≥ S . It is then equal to the unique element K̂ = Σ̂−1 ∈ PDm that
satisfies the following system of equations and inequalities

• Primal feasibility: K̂uv ≤ 0 ∀u 6= v ,

• Dual feasibility: Σ̂vv − Svv = 0 ∀v , Σ̂uv − Suv ≥ 0 ∀u 6= v

• Complimentary slackness: (Σ̂uv − Suv ) K̂uv = 0 ∀u 6= v .

There are three different algorithms to find the MLE see Slawski and
Hein (2015); Lauritzen et al. (2019b).
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Existence of the MLE

Learning sparse structures in high dimensions was the main motivation
of (Slawski and Hein, 2015): Estimation of positive definite M-matrices and

structure learning for attractive Gaussian Markov random fields.

Theorem (Slawski and Hein, 2015): The MLE exists with
probability one whenever n ≥ 2.

• our proof gives an explicit point that is both primal and dual
feasible, it establishes links to Brownian motion tree models,
single-linkage clustering, and ultrametrics.

The fact that a unique MLE exists for small samples suggests that the MTP2

property adds considerable regularization for covariance matrix estimation.
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Single-linkage matrix

Let S be the sample correlation matrix. Assume Sij ≥ 0 for all i 6= j .

Given the weighted graph of S , the single-linkage matrix Z is

Zij = max
P∈P(i ,j)

min
uv∈P

Suv for i 6= j .

Z is both primarly and dually feasible.

The fact that Z ≥ S (dual feasibility) is easy to establish.

The fact that Z−1 is an M-matrix (primal feasibility) uses the
connection to ultrametric matrices (Dellacherie et al., 2014):

If Sij < 1 for all i 6= j , then Z is non-singular and Z−1 is an M-matrix.
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Example

Suppose that

S =


1 −0.5 0.5 0.6
−0.5 1 0.4 −0.1
0.5 0.4 1 0.2
0.6 −0.1 0.2 1


Then Z is given by

1

2

3

4

0.6

0.5

0.4 0.2
Z =


1 0.4 0.5 0.6

0.4 1 0.4 0.4
0.5 0.4 1 0.5
0.6 0.4 0.5 1

 .

The maximum cost spanning tree of S plays an important role here.
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Upper bound on the sparsity pattern

Compute the maximum cost spanning tree of S .

• Kruskal’s algorithm takes O(m2 logm) time.

ij = the path between i and j in this tree.

Theorem (Lauritzen et al., 2019b):

Sij <
∏
uv∈ij

Suv =⇒ K̂ij = 0.

• This allows to identify many non-edges of the ML-graph.

• Estimation procedure becomes more efficient.
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Example: Carcass data

• data: thickness of meat and fat layers at different locations on the
back of a slaughter pig on each of 344 carcasses

• available in the package gRbase as data(carcass)

S =

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13



1 0.04 0.84 0.08 0.82 −0.03 Fat11

· 1 0.04 0.87 0.13 0.86 Meat11

· · 1 0.01 0.83 −0.03 Fat12

· · · 1 0.11 0.90 Meat12
· · · · 1 0.02 Fat13
· · · · · 1 Meat13
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Example: Carcass data (2)

Fat11

Meat11Fat12

Meat12

Fat13 Meat13

MTP2 constraint

• Only one non-edge satisfies Sij ≥
∏

uv∈ij Suv .
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Sparsistency

Does such a procedure lead to a consistent estimation of the underlying
graph? Of course not.

e.g. if the true graph has no edges, the estimated graph is not even sparse.

For regularized approaches see (Slawski and Hein, 2015; Egilmez et al.,
2016; Pavez et al., 2018)

Proposition (Lauritzen et al., 2019b): The set of M-matrices is
closed under thresholding.
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Sparsistency without regularization

See (Wang et al., 2019) for details.

The basic observation is that, under MTP2, if Kij < 0 then

ρij |C > 0 for all C ⊆ V \ {i , j}.

The inequality is preserved in the sample distribution (for large n).

On the other hand:

• If ρij |A = 0 then ρij |B = 0 for all B ⊇ A (upward stability).

• If true G is sparse such minimal A is small and so there are many
B ’s satisfying B ⊇ A.

• Probability that all corresponding ρ̂ij |B are nonnegative is very low.
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Application in Portfolio Selection

See (Agrawal et al., 2019).



Optimal Markowitz Portfolio

Global minimum variance portfolio:

minimize wTΣ∗tw subject to wT1 = 1.

Replacing the unknown true covariance matrix of returns Σ∗t by some
estimator Σ̂t yields the following analytical solution

ŵ = Σ̂t1
1T Σ̂t1

In this setting, estimating Σ∗t becomes the main problem.
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Covariance matrix estimators

Sample covariance is typically a bad estimator of Σ∗t .

Structural assumptions give lower variance (higher bias).

• Dynamic factor models: Returns for day t are given by a linear
combination of a (small) collection of latent factors.

• Static factor models: As above but Σt does not depend on t.

• Shrinkage of eigenvalues: see e.g. (Ledoit and Wolf, 2004, 2012).

• Regularization of the precision matrix: graphical lasso (Friedman
et al., 2008; Ravikumar et al., 2011), CLIME (Liu et al., 2012).
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Exploiting total positivity

MTP2 constraint gives a natural regularizer.

Particularly so when applied to finance:

• capital asset pricing model (CAPM) (one factor model with
positive loadings) is MTP2.

• latent tree models used for unsupervised learning tasks (e.g.
clustering similar stocks).

Data analysis suggests that MTP2 regularization performs well where
CAPM underfits. It outperforms other methods (Agrawal et al., 2019).
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Extensions to heavy-tailed distributions

Typically the stocks data are log-transformed.

The log-transformed data may still be heavy-tailed.

With small modifications, similar approach works for elliptical
distributions, or more generally, for for trans-elliptical distributions.
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Lecture 3



Beyond the Gaussian case and
beyond MTP2



Transelliptical distributions

X = (X1, . . . ,Xm) has an elliptical distribution if its density function
can be expressed as

g((x − µ)TΣ−1(x − µ)).

X has transelliptical distribution if (f1(X1), . . . , fm(Xm)) has elliptical
distribution for some monotone functions f1, . . . , fm : R→ R:

X ∼ TE (Σf ; f1, . . . , fm).

Theorem (Agrawal et al., 2019): If X is MTP2 and transelliptical
(so that f (X ) is elliptical) then Σ−1

f is an M-matrix.

The other direction not true, e.g. no t-distribution is MTP2.
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M-matrix relaxation

Assuming Σ−1
f is an M-matrix we relax the MTP2 assumption.

• Compute Kendall’s tau coefficients

τ̂ij = 1

(n
2)

∑
1≤t≤t′≤n

sign(Xit − Xit′)sign(Xjt − Xjt′)

• Use the relation between the Kendall’s tau and the correlation
coefficient (c.f. (Lindskog et al., 2003)): (Sτ )ij = sin(π

2
τ̂ij).

• Follow a similar procedure as before with Sτ replacing S .

• This results in a consistent estimator an a relatively small efficiency
loss (Liu et al., 2012; Barber and Kolar, 2018).
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Exponential families



MTP2 exponential families

• p(x ; θ) = g(x) exp(〈θ,T (x)〉 − A(θ)), θ ∈ K ⊆ Rd , x ∈ X .

I (sufficient statistics) T : X → Rd

I (canonical parameters) K = {θ :
∫

exp(〈θ,T (x)〉)ν(dx) <∞}

• K is convex and A(θ) is strictly convex in K

Theorem: The set of all θ ∈ K such that p(x ; θ) is MTP2 is an
intersection of K with a closed convex set C.
(In many interesting cases C is a polyhedral cone)

Proof: Define ∆x,y (θ) = log
(

p(x∨y ;θ)p(x∧y ;θ)
p(x ;θ)p(y ;θ)

)
, then

∆x,y (θ) = 〈θ,T (x ∨ y) + T (x ∧ y)− T (x)− T (y)〉+ const.

So ∆x,y (θ) ≥ 0 for all x , y defines a convex subset of K.
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Dependence on g(x)

Proposition (Lauritzen et al., 2019a): The MTP2 property does not
depend on the base measure. The counting/Lebesgue measure can be
replaced by any other product measure.

Remark: If the exponential family contains a product distribution then
it can be chosen to be the base measure.

• θ ∈ K is MTP2 if and only if F (x) = −〈θ,T (x)〉 is submodular.

• also C is a cone.

If F is twice differenciable then equivalently:〈
θ, ∂2T

∂xi∂xj

〉
≥ 0 and all i 6= j , x ∈ X .

47/72



Maximum likelihood estimation

log p(x ; θ) = 〈θ,T (x)〉 − A(θ), θ ∈ K ⊆ Rd , x ∈ X

x (1), . . . , x (n) ∈ X independent sample; T̄ := 1
n

∑
i T (x (i))

the log-likelihood function: `(θ) = n〈θ, T̄ 〉 − nA(θ)

` strictly concave in K and so the MLE is unique (if exists)

• Hence, MTP2 distributions also admit a unique maximizer.

• The MLE usually exists under much weaker conditions on n.
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Geometry of the MLE

• Let S denote the interior of conv(T (X )).

• The MLE exists in the EF if and only if T̄ ∈ S.

• Let K2 = K ∩ C and define S2 = S + C∨, where

C∨ = {σ : 〈θ, σ〉 ≥ 0 for all θ ∈ C}.

Theorem (Lauritzen et al., 2019a): The MLE of θ based on T̄
exists in the MTP2 model if and only if T̄ ∈ S2. It is then equal to the
unique element θ̂ = ∇A(σ̂) that satisfies

(a) Primal feasibility: θ̂ ∈ K2

(b) Dual feasibility: σ̂ ∈ S with T̄ − σ̂ ∈ C∨,
(c) Complimentary slackness: 〈T̄ − σ̂, θ̂〉 = 0.
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Binary distributions∗



Support of MTP2 distributions

State space: X = {−1, 1}d .

P2 = the set of all MTP2 binary distributions.

Note: If p ∈ P2 then supp(p) is a sublattice of X .

Proof: If x , y ∈ supp(p) then

0 < p(x)p(y) ≤ p(x ∧ y)p(x ∨ y).
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Existence and uniqueness of the MLE

Sample U = {x1, . . . , xn}, likelihood L(p) =
∏n

i=1 p(xi).

Theorem (Lauritzen et al., 2019a):

(i) There exists a unique maximum p̂ of L over P2.

(ii) supp(p̂) is equal to the lattice generated by U .

Proof of (i): Continuity and compactness gives existence.

If p, q ∈ P2 then c−1√pq ∈ P2 (geometric convexity)

By Cauchy-Schwarz c =
∑

x

√
p(x)q(x) ≤ 1 (ineq. strict if p 6= q)

If p 6= q both maximize L then

L(c−1√pq) = c−n
√
L(p)L(q) = c−nL(p) > L(p) (contradiction)
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Binary exponential families

Sufficient statistics: T : X → {0, 1}X (x 7→ Tx).
Tx(y) = 1 if x = y and Tx(y) = 0 otherwise.

Canonical parameter: θ ∈ RX .
θ(x) = log p(x)− log p(−1) (formally ignore θ(−1))

Inner product: 〈θ,T 〉 =
∑

y∈X T (y)θ(y).

Then we get
log p(x) = 〈θ,Tx〉 − A(θ)

with A(θ) = log
(∑

y∈X exp(θ(y))
)

.
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Uniqueness and existence of the MLE

The binary exponential family is no longer compact.

Theorem: The MLE over this set exists if and only if the lattice
generated by the sample U is equal to X .

The MTP2 distributions: for all x , y ∈ X

θ(x ∨ y) + θ(x ∧ y)− θ(x)− θ(y) ≥ 0.

(convex condition!)
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Reformulation of the MTP2 condition

S semi-elementary imsets: for x , y ∈ X

ux ,y = Tx∧y + Tx∨y − Tx − Ty .

E elementary imsets: x , y differ in two entries

e.g. x = (1, 1,−1,−1), y = (1,−1, 1,−1)

denote uij|A where A indicates 1’s in both x and y e.g. u23|1

p(·; θ) is MTP2 if and only if

〈θ, v〉 ≥ 0 ∀v ∈ E .
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Optimality conditions

mean parameter: σ = EθTX .

sample statistics: T̄ = 1
n

∑n
i=1 Txi .

(θ̂,σ̂) is optimal if and only if:

primal feasibility: 〈θ̂, v〉 ≥ 0 for all v ∈ E .

dual feasibility:

(i) σ̂(x) > 0 for all x ∈ X , and

(ii) σ̂ − T̄ lies in the cone generated by E .

complementary slackness: 〈θ̂, σ̂ − T̄ 〉 = 0.
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Example: d = 3

T̄ = 1
13
·

{1,2,3}

1

{1,2}

2

{1,3}

0

{2,3}

4

{1}

1

{2}

0

{3}

3

∅

2

σ̂ = 1
182
·

{1,2,3}

30

{1,2}

12

{1,3}

7

{2,3}

40

{1}

7

{2}

16

{3}

35

∅

35

.

{1}, {2} : 12 · 35− 7 · 16 > 0 {1, 3}, {2, 3} : 30 · 35− 7 · 40 > 0
{1}, {3} : 7 · 35− 7 · 35 = 0 {1, 2}, {2, 3} : 30 · 16− 12 · 40 = 0
{2}, {3} : 40 · 35− 16 · 35 > 0 {1, 2}, {1, 3} : 30 · 7− 12 · 7 > 0

,

which assures primal feasibility.
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σ̂ > 0 and the vector σ̂ − T̄ can be written as

16
182
·

{1,2,3}

1

{1,2}

−1

{1,3}

0

{2,3}

−1

{1}

0

{2}

1

{3}

0

∅

0

+ 7
182
·

{1,2,3}

0

{1,2}

0

{1,3}

1

{2,3}

0

{1}

−1

{2}

0

{3}

−1

∅

1

proving dual feasibility.

Complementary slackness follows by direct calculations.
(note two generators and two equalities)
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Moussouris’ example, d = 4

σ̂ = 1
128
·

{1,2,3,4}

27

{1,2,3}

9

{1,2,4}

3

{1,3,4}

3

{2,3,4}

9

{1,2}

9

{1,3}

1

{1,4}

3

{2,3}

3

{2,4}

1

{3,4}

9

{1}

9

{2}

3

{3}

3

{4}

9

∅

27
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Primal feasibility:

{1}, {2} : 9 · 27− 9 · 3 > 0 {1, 3}, {2, 3} : 9 · 3− 1 · 3 > 0
{1, 4}, {2, 4} : 3 · 9− 3 · 1 > 0 {1, 3, 4}, {2, 3, 4} : 27 · 9− 3 · 9 > 0
{1}, {3} : 1 · 27− 9 · 3 = 0 {1, 2}, {2, 3} : 9 · 3− 9 · 3 = 0
{1, 4}, {3, 4} : 3 · 9− 3 · 9 = 0 {1, 2, 4}, {2, 3, 4} : 27 · 1− 3 · 9 = 0
{1}, {4} : 3 · 27− 9 · 9 = 0 {1, 2}, {2, 4} : 3 · 3− 9 · 1 = 0
{1, 3}, {3, 4} : 3 · 3− 1 · 9 = 0 {1, 2, 3}, {2, 3, 4} : 27 · 3− 9 · 9 = 0
{2}, {3} : 3 · 27− 3 · 3 > 0 {1, 2}, {1, 3} : 9 · 9− 9 · 1 > 0
{2, 4}, {3, 4} : 9 · 9− 1 · 9 > 0 {1, 2, 4}, {1, 3, 4} : 27 · 3− 3 · 3 > 0
{2}, {4} : 1 · 27− 3 · 9 = 0 {1, 2}, {1, 4} : 3 · 9− 9 · 3 = 0
{2, 3}, {3, 4} : 9 · 3− 3 · 9 = 0 {1, 2, 3}, {1, 3, 4} : 27 · 1− 9 · 3 = 0
{3}, {4} : 9 · 27− 3 · 9 > 0 {1, 3}, {1, 4} : 3 · 9− 1 · 3 > 0
{2, 3}, {2, 4} : 9 · 3− 3 · 1 > 0 {1, 2, 3}, {1, 2, 4} : 27 · 9− 9 · 3 > 0

(the MLE still Markov to the four-cycle)
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Dual feasibility:

σ̂ − T̄ = 3
128 · u1,3|∅ + 1

128 · u1,3|2 + 1
128 · u1,3|4 + 3

128 · u1,3|2,4 +

+ 3
128 · u2,4|∅ + 1

128 · u2,4|1 + 1
128 · u2,4|3 + 3

128 · u2,4|1,3 +

+ 5
128 · u1,4|∅ + 5

128 · u1,4|2 + 5
128 · u1,4|3 + 5

128 · u1,4|2,3.

Complementary slackness can again be checked by hand.

Note that σ̂ − T̄ is a positive combination of bold-faced rows from the
previous slide.
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Binary Ising model



The binary Ising model

The p.m.f. for x ∈ X = {−1, 1}m satisfies

log p(x ; h, J) = hTx + 1
2
xTJx − A(h, J),

with h ∈ Rm and J symmetric with zeros on the diagonal.

This is a special subclass of:

• exponential families,

• pairwise interaction models, and

• graphical models.

The binary Ising model has dimension
(
m+1

2

)
<< 2m − 1.
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Conditional odds-ratios

Fix i , j . If x , y ∈ X satisfy xij = (−1, 1), yij = (1,−1) and are equal
otherwise then

log

(
p(x ∨ y)p(x ∧ y)

p(x)p(y)

)
= 4Jij .

Some remarks:

• p is MTP2 if and only if Jij ≥ 0.

• Conditional odds ratio does not depend on the condition.

• No direct link to M-matrices.
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IPS algorithm for the MLE

Fix a graph G = (V ,E ).

• Standard IPS algorithm for computing the MLE:

cycles through all pairs ij ∈ E and optimizes the likelihood function with

respect to hi , hj , Jij keeping other parameters fixed.

• We initialize at any point. The update is:

p(x) ← p(x)
eij (xi ,xj )

pij (xi ,xj )
.

This affects only Jij , hi , hj .

• If Jij updates to a negative number set Jij ← 0 and (hi , hj) to match
sample means.

63/72



Application in psychology



Two psychological disorders

About the study, see e.g. (Borsboom and Cramer, 2013):

National Comorbidity Survey Replication (NCS-R data)

9282 observations of 18 binary variables such as:
depr (Depressed mood), inte (Loss of interest), etc

These are symptoms related to two disorders:
major depression and generalized anxiety disorder.

Bridge variables: sleep problems, fatigue, and concentration problems.
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Two psychological disorders, continued

About the data:

Sparse contingency table: 872/65536 nonzero cells.

5667 out of 9282 respondents recorded no symptoms.

Positive sample correlations but not MTP2.

Two variables perfectly correlated with each other and other seven
variables (the MLE does not exist).
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Two psychological disorders, continued

The sample correlation:

depr

inte

weig

mSle

moto

mFat

repr

mCon
suic

ctrl

edgegFat

irri

gConmusc
gSle

.
This network was reported by (Borsboom and Cramer, 2013).
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Two psychological disorders, continued

The Ĵ matrix:

depr

inte

weig

mSle

moto

mFat

repr

mCon
suic

ctrl

edgegFat

irri

gConmusc
gSle

(Borsboom and Cramer, 2013) report a similar picture obtained after asking 12

Dutch clinicians for causal relationships!
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Some research directions



Relaxations useful for statistical modelling
M-matrices offer a convenient relaxation for transelliptical distributions.

What about asymetric distributions, like skew normal?

Testing total positivity
In the Gaussian case, how can we test total positivity? Can we improve
on (Bartolucci and Forcina, 2000) in the binary case?

Total positivity and hidden variables
In the Gaussian setting (Chandrasekaran et al., 2012) proposed a
computationally efficient model selection technique for large sparse
Gaussian graphical models with hidden variables. Would be interesting
to see this in connection with the MTP2 constraint.

Total positivity for noneuclidean spaces
Can we for example define a useful version of total positivity for Wishart
matrices or for the Dirichlet distribution?
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Thank you!
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