A spectral gap for the transfer operator on complex projective spaces

Fabrizio Bianchi
(joint work with Tien-Cuong Dinh)

CNRS and Université de Lille

August 27, 2020
Context

- $\mathbb{P}^k = \mathbb{P}^k(\mathbb{C})$, f endomorphism ($k = 1$: rational map)
- for simplicity, no critical periodic points (generic condition)

Goal

Given $\phi: \mathbb{P}^k \to \mathbb{R}$ (or \mathbb{C}), understand the Perron-Frobenius (transfer) operator

$$L_\phi(g)(y) = \sum_{f(x) = y} e^{\phi(x)} g(x) \quad \text{for} \quad g: \mathbb{P}^k \to \mathbb{R} \text{ or } \mathbb{C}$$
Context

- \(\mathbb{P}^k = \mathbb{P}^k(\mathbb{C}) \), \(f \) endomorphism (\(k = 1 \): rational map)
- for simplicity, no critical periodic points (generic condition)

Goal

Given \(\phi: \mathbb{P}^k \to \mathbb{R} \) (or \(\mathbb{C} \)), understand the **Perron-Frobenius (transfer) operator**

\[
\mathcal{L}_\phi(g)(y) = \sum_{f(x) = y} e^{\phi(x)} g(x) \quad \text{for} \quad g: \mathbb{P}^k \to \mathbb{R} \text{ or } \mathbb{C}
\]

More precise goal (A)

Find a Banach space \((E, \|\cdot\|) \) such that \(\mathcal{L}_\phi: E \to E \)

- has a **spectral gap**
- is analytic in \(\phi \) (\(t \mapsto \mathcal{L}_{\phi + t\psi} \) is analytic in \(t \), as operators \(E \to E \))
Context

- \(\mathbb{P}^k = \mathbb{P}^k(\mathbb{C}), f \) endomorphism \((k = 1: \text{rational map})\)
- for simplicity, no \textit{critical periodic points} (generic condition)

Goal

Given \(\phi: \mathbb{P}^k \to \mathbb{R} \) (or \(\mathbb{C} \)), understand the \textit{Perron-Frobenius (transfer) operator}

\[
\mathcal{L}_\phi(g)(y) = \sum_{f(x) = y} e^{\phi(x)} g(x) \quad \text{for} \quad g: \mathbb{P}^k \to \mathbb{R} \text{ or } \mathbb{C}
\]

More precise goal (A)

Find a Banach space \((E, \| \cdot \|)\) such that \(\mathcal{L}_\phi: E \to E \)

- has a \textit{spectral gap}
- is analytic in \(\phi \) \((t \mapsto \mathcal{L}_{\phi + t\psi} \text{ is analytic in } t, \text{as operators } E \to E)\)

\[
\lambda^{-n} \mathcal{L}^n(g) \to c_g \nu \text{ exponentially fast } (\sim (r/\lambda)^n)
\]
Context

- $\mathbb{P}^k = \mathbb{P}^k(\mathbb{C})$, f endomorphism ($k = 1$: rational map)
- for simplicity, no critical periodic points (generic condition)

Goal

Given $\phi: \mathbb{P}^k \to \mathbb{R}$ (or \mathbb{C}), understand the Perron-Frobenius (transfer) operator

$$\mathcal{L}_\phi(g)(y) = \sum_{f(x) = y} e^{\phi(x)}g(x) \quad \text{for} \quad g: \mathbb{P}^k \to \mathbb{R} \text{ or } \mathbb{C}$$

More precise goal (A)

Find a Banach space $(E, \|\cdot\|)$ such that $\mathcal{L}_\phi: E \to E$
- has a spectral gap
- is analytic in ϕ ($t \mapsto \mathcal{L}_{\phi+t\psi}$ is analytic in t, as operators $E \to E$)

$$\mathcal{L}_\phi^n(g)(y) = \sum_{f^n(x) = y} e^{\phi(x)+\phi(f(x))+\cdots+\phi(f^{n-1}(x))}g(x)$$
(One) motivation

Problem

Describe orbits of points (in the Julia set)

Deterministic point of view: essentially impossible!

Probabilistic point of view

Given a measure ν, study the sequence of random variables

$$u, u \circ f, u \circ f^2, \ldots$$

for $u: \mathbb{P}^k \to \mathbb{R}$ (observable) of some regularity
(One) motivation

Problem

Describe orbits of points (in the Julia set)

Deterministic point of view: essentially impossible!

Probabilistic point of view

Given a measure ν, study the sequence of random variables

$$u, u \circ f, u \circ f^2, \ldots$$

for $u: \mathbb{P}^k \to \mathbb{R}$ (observable) of some regularity

- ν invariant $\iff U_i := u \circ f^i$ are identically distributed
- The U_i’s are not independent, but how close are they to a sequence of independent random variables?

Goal

Prove that U_i’s are essentially independent for many natural invariant measures: central limit theorem, deviation theorems...
The equilibrium measure $\mu (\phi = 0; \mathcal{L} = f_*)$

Lyubich, Freire-Lopes-Mañé ’83 for $k = 1$, Fornaess-Sibony ’94, Briend-Duval ’00

\exists! measure μ of maximal entropy, and μ is such that $f^*\mu = d^k\mu$

Statistical properties for u Hölder continuous

Exponential mixing/decay of correlation, Central Limit Theorem (Dinh-Sibony ’02–’10)
Almost Sure Invariant Principle, law of Iterated Logarithms, ASCLT (Dupont ’10)
Local CLT for $k = 1$, Large Deviation Theorem (Dinh-Nguyen-Sibony ’06, ’10)
...
The equilibrium measure $\mu (\phi = 0; L = f_*)$

Lyubich, Freire-Lopes-Mañé ’83 for $k = 1$, Fornaess-Sibony ’94, Briend-Duval ’00

$\exists!$ measure μ of maximal entropy, and μ is such that $f^* \mu = d^k \mu$

Statistical properties for u Hölder continuous

Exponential mixing/decay of correlation, Central Limit Theorem (Dinh-Sibony ’02-’10)
Almost Sure Invariant Principle, law of Iterated Logarithms, ASCLT (Dupont ’10)
Local CLT for $k = 1$, Large Deviation Theorem (Dinh-Nguyen-Sibony ’06, ’10)
...

Essentially ad hoc proofs for the statistical properties

More precise goal (B)

- Obtain these (and other) properties for more general measures, and
- Obtain this by a single approach
Goals

(B)
- Statistical properties for more general measures than μ
- Unified approach
Goals

(B)
- Statistical properties for more general measures than μ
- Unified approach

Statistical properties of a random variable X with respect to an invariant measure ν \iff $t \mapsto \Bbb E(e^{tX})$ with respect to ν, i.e., $t \mapsto \langle e^{tX}, \nu \rangle$
Goals

(B)
- Statistical properties for more general measures than μ
- Unified approach

Statistical properties of a random variable X with respect to an invariant measure ν

$$X = S_n(u) = \sum_{j=1}^{n-1} u \circ f^j$$

\iff

$t \mapsto \mathbb{E}(e^{tX})$ with respect to ν, i.e., $t \mapsto \langle e^{tX}, \nu \rangle$

Nagaev, Guivarc'h, Gouëzel, Liverani...

Statistical properties of X are encoded in the coefficients of the Taylor expansion of $t \mapsto \mathbb{E}(e^{tX})$
(B)

- Statistical properties for more general measures than μ
- Unified approach

Statistical properties of a random variable X with respect to an invariant measure ν

\[X = S_n(u) = \sum_{j=1}^{n-1} u \circ f^j \]

$t \mapsto \mathbb{E}(e^{tX})$ with respect to ν, i.e., $t \mapsto \langle e^{tX}, \nu \rangle$

Nagaev, Guivarc'h, Gouëzel, Liverani...

Statistical properties of X are encoded in the coefficients of the Taylor expansion of $t \mapsto \mathbb{E}(e^{tX})$

\[e^{tX} = e^{tu + tu \circ f + \cdots + tu \circ f^{n-1}} \sim \mathcal{L}^n_{0+tu} \]
Goals

(B)
- Statistical properties for more general measures than μ
- Unified approach

Statistical properties of a random variable X with respect to an invariant measure ν

\[X = S_n(u) = \sum_{j=1}^{n-1} u \circ f^j \]

\Rightarrow \[t \mapsto \mathbb{E}(e^{tX}) \text{ with respect to } \nu, \text{ i.e., } t \mapsto \langle e^{tX}, \nu \rangle \]

Nagaev, Guivarc'h, Gouëzel, Liverani...

Statistical properties of X are encoded in the coefficients of the Taylor expansion of $t \mapsto \mathbb{E}(e^{tX})$

\[e^{tX} = e^{tu + tu \circ f + \cdots + tu \circ f^{n-1}} \sim \mathcal{L}_{0+tu}^n \]
\[\langle e^{tS_n(u)}, \mu \rangle = \langle \frac{f^* e^{tS_n(u)}}{d^{kn}}, \mu \rangle = \langle \mathcal{L}_{0+tu}^n \frac{1}{d^{kn}}, \mu \rangle \]
(B) Statistical properties for more general measures than μ
- Unified approach

(A) Find a Banach space $(E, \| \cdot \|)$ such that $\mathcal{L}_\phi : E \to E$
- has a spectral gap
- is analytic in ϕ

Statistical properties of a random variable X with respect to an invariant measure ν

$X = S_n(u) = \sum_{j=1}^{n-1} u \circ f^j$

Nagaev, Guivarc'h, Gouëzel, Liverani...

Statistical properties of X are encoded in the coefficients of the Taylor expansion of $t \mapsto \mathbb{E}(e^{tX})$

$e^{tX} = e^{tu + tu \circ f + \cdots + tu \circ f^{n-1}} \sim \mathcal{L}_{0+tu}^n$

$\langle e^{tS_n(u)}, \mu \rangle = \left\langle \frac{f^n_* e^{tS_n(u)}}{d^{kn}}, \mu \right\rangle = \left\langle \mathcal{L}_{0+tu}^n(1), \mu \right\rangle$
A larger class of invariant measures

\[\phi = 0 : \quad f^* \mu = d^k \mu \quad \Rightarrow \quad f_\ast \mu = \mu \]
A larger class of invariant measures

\(\phi = 0 : \quad f^* \mu = d^k \mu \quad \Rightarrow \quad f_* \mu = \mu \)

\(\phi : \mathbb{P}^k \rightarrow \mathbb{R} \)

Conformal measure(s)

\(m_\phi \) is a \textit{conformal measure} if it is an eigenvalue for \(\mathcal{L}^* \): \(\exists \lambda \) such that \(\mathcal{L}^* m_\phi = \lambda m_\phi \)

\[
\exists \lambda \in \mathbb{R}, \rho : \mathbb{P}^k \rightarrow \mathbb{R} : \forall g \in \mathcal{C}^0 : \frac{\mathcal{L}^n g(y)}{\lambda^n} \rightarrow c_g \rho \iff \forall \nu : \frac{\mathcal{L}^n \nu}{\lambda^n} \rightarrow m_\phi
\]

Then

- \(m_\phi \) is a conformal measure, \(c_g = \langle m_\phi, g \rangle \), and \(\mathcal{L}(\rho) = \lambda \rho \)
- \(\mu_\phi := \rho m_\phi \) is an invariant measure.
A larger class of invariant measures

\[\phi = 0 : \quad f^* \mu = d^k \mu \quad \Rightarrow \quad f_* \mu = \mu \]

\[\phi : \mathbb{P}^k \to \mathbb{R} \]

Conformal measure(s)

\[m_\phi \text{ is a conformal measure if it is an eigenvalue for } L^* : \exists \lambda \text{ such that } L^* m_\phi = \lambda m_\phi \]

\[\exists \lambda \in \mathbb{R}, \rho : \mathbb{P}^k \to \mathbb{R} : \forall g \in C^0 : \frac{L^n g (y)}{\lambda^n} \to c_g \rho \iff \forall \nu : \frac{L^n \nu}{\lambda^n} \to m_\phi \]

Then
- \(m_\phi \) is a conformal measure, \(c_g = \langle m_\phi, g \rangle \), and \(L(\rho) = \lambda \rho \)
- \(\mu_\phi := \rho m_\phi \) is an invariant measure. More precisely, an equilibrium state

Equilibrium state(s)

- Pressure \(P(\phi) = \max_\nu \{ h_\nu + \int \phi \nu \} \), where \(h_\nu \) is the metric entropy of the invariant measure \(\nu \).
- \(\mu_\phi \) is an equilibrium state for \(\phi \) if \(P(\phi) = h_{\mu_\phi} + \int \phi \mu_\phi \).
Statistical properties for equilibrium states

\[
\langle e^{tS_n(u)} h, \mu_\phi \rangle = \langle e^{tS_n(u)} h, \rho m_\phi \rangle = \langle \lambda^{-n} \mathcal{L}_\phi^n (\rho e^{tS_n(u)} h), m_\phi \rangle
\]

\[
= \langle \rho \lambda^{-n} \mathcal{L}_{\phi+tu}^n(h), m_\phi \rangle = \langle \lambda^{-n} \mathcal{L}_{\phi+tu}^n(h), \rho m_\phi \rangle = \langle \lambda^{-n} \mathcal{L}_{\phi+tu}^n(h), \mu_\phi \rangle
\]

Statistical properties of a random variable \(u \) with respect to the invariant measure \(\mu_\phi \) (when this exists...)

\[\Leftrightarrow\]

Taylor coefficients of \(t \mapsto \langle \lambda^{-n} \mathcal{L}_{\phi+tu}^n h, \mu_\phi \rangle \) (if they exist...)

\[\Leftrightarrow\]

\(t \mapsto \mathcal{L}_{\phi+tu} \) analytic and has a spectral gap on some \((E, \|\cdot\|)\)
Statistical properties for equilibrium states

\[\langle e^{tS_n(u)} h, \mu_\phi \rangle = \langle e^{tS_n(u)} h, \rho m_\phi \rangle = \langle \lambda^{-n} L^n_\phi (\rho e^{tS_n(u)} h), m_\phi \rangle = \langle \rho \lambda^{-n} L^n_{\phi+tu}(h), m_\phi \rangle = \langle \lambda^{-n} L^n_{\phi+tu}(h), \rho m_\phi \rangle = \langle \lambda^{-n} L^n_{\phi+tu}(h), \mu_\phi \rangle \]

Statistical properties of a random variable \(u \) with respect to the invariant measure \(\mu_\phi \) (when this exists...)

\[\Leftrightarrow \]

Taylor coefficients of \(t \mapsto \langle \lambda^{-n} L^n_{\phi+tu} h, \mu_\phi \rangle \) (if they exist...)

\[\Leftrightarrow \]

\(t \mapsto L_{\phi+tu} \) analytic and has a spectral gap on some \((E, \|\cdot\|)\)

- what is \(\lambda \)? What is the regularity of \(\rho \)?
- How do they depend on \(\phi \)?
- \(\|\lambda^{-n} L^n g - c_g \rho\| \to 0 \)
- \(\lambda^{-1} L \) contraction for \(\|\cdot\| \)??
Theorem 1 (B.-Dinh)

\(\phi: \mathbb{P}^k \to \mathbb{R}, \log^p\text{-continuous for some } p > 2, \Omega(\phi) < \log d. \exists \lambda \in \mathbb{R}, \rho: \mathbb{P}^k \to \mathbb{R} \) such that

\[
\frac{\mathcal{L}_\phi^n g}{\lambda^n} \to c g \rho \quad \forall g: \mathbb{P}^k \to \mathbb{R}
\]

In particular, \(\exists! \) conformal measure \(m_\phi = \lambda^{-1} \mathcal{L}^* m_\phi \), equilibrium state \(\mu_\phi = \rho m_\phi \)

- \(\phi \) Holder: Denker-Urbanski, Przytycki ’90–’91 \((k = 1) \), Urbanski-Zdunik ’13 \((k \geq 1) \)
- \(\phi \log^q\text{-continuous } \Leftrightarrow \Omega(\phi, r) \lesssim |\log r|^{-q} \)
Theorem 1 (B.-Dinh)

\[\phi : \mathbb{P}^k \to \mathbb{R}, \text{log}^p\text{-continuous for some } p > 2, \Omega(\phi) < \log d. \exists \lambda \in \mathbb{R}, \rho : \mathbb{P}^k \to \mathbb{R} \text{ such that} \]

\[\frac{\mathcal{L}_\phi^n g}{\lambda^n} \to c_g \rho \quad \forall g : \mathbb{P}^k \to \mathbb{R} \]

In particular, \(\exists! \) conformal measure \(m_\phi = \lambda^{-1} \mathcal{L}^* m_\phi \), equilibrium state \(\mu_\phi = \rho m_\phi \)

- \(\phi \) Holder: Denker-Urbanski, Przytycki '90-'91 \((k = 1)\), Urbanski-Zdunik '13 \((k \geq 1)\)
- \(\phi \log^q\text{-continuous} \iff \Omega(\phi, r) \lesssim |\log r|^{-q} \)

Classical method

- find \(\lambda \) as an eigenvalue of \(\mathcal{L}^* \) (Schauder-Tikhonov Theorem)
- study the sequence \(\mathcal{L}^n / \lambda^n \) and prove almost periodicity
- converging subsequences \(\Rightarrow \rho \Rightarrow m_\phi, \mu_\phi \)

Here

- We want to find \(\lambda \) intrinsically, as part of our method
- More flexible approach: replace all distortion estimates by a unique, global estimate

Fabrizio Bianchi (CNRS & Lille) A spectral gap for the transfer operator August 27, 2020 8 / 24
Theorem 2 (B.-Dinh) - New for all \(k \geq 1 \), even for \(\phi \) smooth

For all \(q > 0 \), \(\gamma \leq 2 \) there exist norms \(\| \cdot \|_\infty + \| \cdot \|_{\log q} \leq \| \cdot \|_1 \leq \| \cdot \|_2 \leq \| \cdot \|_{C \gamma} \) depending on \(f \) such that when \(\| \phi \|_2 < \infty \)

1. there exists \(\beta = \beta(\| \phi \|_2) < 1 \) such that:

\[
\| \lambda^{-1} \mathcal{L}_\phi g - \langle m_\phi, g \rangle \rho \|_1 \leq \beta \| g - \langle m_\phi, g \rangle \rho \|_1
\]

2. \(t \mapsto \mathcal{L}_f + t\psi \) is analytic in \(t \)
Theorem 2 (B.-Dinh) - New for all $k \geq 1$, even for ϕ smooth

For all $q > 0$, $\gamma \leq 2$ there exist norms $\| \cdot \|_{\infty} + \| \cdot \|_{\log q} \leq \| \cdot \|_{\diamond 1} \approx \| \cdot \|_{\diamond 2} \leq \| \cdot \|_{C^\gamma}$ depending on f such that when $\| \phi \|_{\diamond 2} < \infty$

- there exists $\beta = \beta(\| \phi \|_{\diamond 2}) < 1$ such that:

$$\| \lambda^{-1} \mathcal{L}_\phi g - \langle m_\phi, g \rangle \rho \|_{\diamond 1} \leq \beta \| g - \langle m_\phi, g \rangle \rho \|_{\diamond 1}$$

- $t \mapsto \mathcal{L}_{\phi + t\psi}$ is analytic in t

Consequence (A \Rightarrow B)

When $\| \phi \|, \| u \|_{\diamond 2} < \infty$, the sequence $u \circ f^n$ is almost like iid random variables on (\mathbb{P}^k, μ_ϕ): strong ergodic properties (exponential mixing, mixing of all orders, K-mixing), Central Limit Theorem, Berry-Esseen Theorem, local Central Limit Theorem, Almost Sure Central Limit Theorem, Large Deviation Theorem and Principle, Almost Sure Invariant Principle, Law of iterated logarithms.

- Related results: Denker-Przytycki-Urbanski, Haydn, Smirnov, Makarov, Ruelle... ($k = 1$); Fornaess-Sibony, Dinh-Nguyen-Sibony, Szostakiewicz-Urbanski-Zdunik... ($k \geq 1$)

- Almost all statistical properties new for $k > 1$, many already for $k = 1$ and/or $\phi = 0$. All new for all $k \geq 1$ for non-Hölder continuous u or ϕ.
Theorem 1

\(\phi: \mathbb{P}^k \to \mathbb{R}, \log^p\text{-continuous for some } p > 2, \Omega(\phi) < \log d\).

\(\exists \lambda \in \mathbb{R}, \rho: \mathbb{P}^k \to \mathbb{R}\) such that

\[
\frac{\mathcal{L}_{\phi}^n g}{\lambda^n} \to c g \rho \quad \forall g: \mathbb{P}^k \to \mathbb{R}
\]

In particular, \(\exists!\) conformal measure \(m_\phi = \lambda^{-1} \mathcal{L}^* m_\phi\), equilibrium state \(\mu_\phi = \rho m_\phi\)

Theorem 2

For all \(q > 0, \gamma \leq 2\) there exist norms \(\|\cdot\|_\infty + \|\cdot\|_{\log^q} \leq \|\cdot\|_\diamond \leq \|\cdot\|_2 \leq \|\cdot\|_{C_{\gamma}}\) depending on \(f\) such that when \(\|\phi\|_\diamond < \infty\)

1 there exists \(\beta = \beta(\|\phi\|_\diamond) < 1\) such that:

\[
\|\lambda^{-1} \mathcal{L}_{\phi} g - \langle m_\phi, g \rangle \rho\|_\diamond \leq \beta \|g - \langle m_\phi, g \rangle \rho\|_\diamond
\]

2 \(t \mapsto \mathcal{L}_{\phi+t\psi}\) is analytic in \(t\)
Hölder and \log^q-continuous functions

$$\phi \in C^\gamma \iff \Omega(\phi, r) \lesssim r^\gamma$$
$$\phi \in \log^q \iff \Omega(\phi, r) \lesssim |\log r|^{-q}$$

Viewpoint from interpolation theory:

$$\phi = \phi_1^1 + \phi_2^2, \quad \|\phi_2^2\|_\infty < \epsilon, \quad \|\phi_1^1\|_{C^2} < ??$$

$$\phi \in C^\gamma \iff \|\phi_1^1\|_{C^2} \lesssim (1/\epsilon)^{2/\gamma}$$
$$\phi \in \log^q \iff \|\phi_1^1\|_{C^2} \lesssim e^{(1/\epsilon)^{1/q}}$$

We will need summable errors $\Rightarrow \epsilon = 1/j^2$

$\Rightarrow q > 2$: ϕ can be approximated with functions $\phi_j := \phi_1^{1/j}$ whose C^2 norms diverge sub-exponentially in j
Idea of the method

Classical

- find λ as an eigenvalue of L^* (Schauder-Tikhonov Theorem)
- study the sequence L^n/λ^n and prove \textit{almost periodicity}
- converging subsequences $\Rightarrow \rho \Rightarrow m_\phi, \mu_\phi$

Here

- We want to find λ \textit{intrinsically}, as part of our method
- We just normalize (for g positive) by $\int L^n g \text{ Leb}$, or $\min L^n g$, and we will see the exponential behaviour later.

For simplicity: $\phi \in C^2, g = 1$. Denote $1_n := L^n 1$ and $1_n^* = 1_n / \min 1_n$.

Idea

We prove that $\max 1_n^* = \max 1_n / \min 1_n$ is bounded
Method: finding λ

Idea

We prove that $\max 1^*_n = \max 1_n / \min 1_n$ is bounded

Then:

$$
\begin{align*}
\max 1_{n+m} &\leq \max 1_n \cdot \max 1_m \\
\min 1_{n+m} &\geq \min 1_n \cdot \min 1_m \\
\max 1_n / \min 1_n &\leq C
\end{align*}
$$

\Rightarrow

$\lambda := \inf_n (\max 1_n)^{1/n} := \sup_n (\min 1_n)^{1/n}$

To bound \max / \min, we bound $\Omega / \min = (\max - \min) / \min$

We need to bound $\Omega(1^*_n)$
Bounding the oscillation ($k = 1$ for simplicity)

Bound on $dd^c \Rightarrow$ bound on oscillation

Lemma (Heuristic version)

$dd^c g \leq dd^c h$ then $\Omega(g, r) \lesssim \Omega(h, r)$.

if $dd^c g \leq R$ with continuous potentials, then the family g_n is equicontinuous.

Here we want $dd^c 1^n \leq R$ for some uniform R, for which we control the regularity of the potential.
Bounding the oscillation ($k = 1$ for simplicity)

Bound on $dd^c \Rightarrow$ bound on oscillation

Lemma (Heuristic version)

$dd^c g \leq dd^c h$ then $\Omega(g, r) \lesssim \Omega(h, r)$.

Lemma (More precise version)

- $\Omega(g, r) \lesssim \Omega(h, \sqrt{r}) + A\sqrt{r}$.
- If $dd^c g_n \leq R$ with continuous potentials, then the family g_n is equicontinuous.

Here we want

$dd^c 1_n^* \leq R$

for some uniform R, for which we control the regularity of the potential.
Bounding the oscillation of $\mathbb{1}_n^*$

Development of $\mathbb{1}_n$

$$dd^c \mathbb{1}_n = dd^c \left(\sum_{f^n(x) = y} e^\phi + \phi(f(x)) + \ldots + \phi(f^{n-1}(x)) \mathbb{1} \right)$$
Bounding the oscillation of 1_n^*

Development of 1_n

$$dd^c 1_n = dd^c \left(\sum_{f^n(x) = y} e^{\Phi + \Phi(f(x)) + \ldots + \Phi(f^{n-1}(x))} \right)$$

$$= \sum_{f^n(x) = y} e^{\Phi + \Phi(f(x)) + \ldots + \Phi(f^{n-1}(x))} \left(\sum_{j=0}^{n-1} dd^c \phi(f^j(x)) + \sum_{j,l=0}^{n-1} \partial \phi(f^j(x)) \wedge \bar{\partial} \phi(f^l(x)) \right)$$
Bounding the oscillation of 1_n^*

Development of 1_n

\[
dd^c 1_n = dd^c \left(\sum_{f^n(x) = y} e^{\Phi + \Phi(f(x)) + \ldots + \Phi(f^{n-1}(x))} 1 \right)
\]

\[
= \sum_{f^n(x) = y} e^{\Phi + \Phi(f(x)) + \ldots + \Phi(f^{n-1}(x))} \left(\sum_{j=0}^{n-1} dd^c \phi(f^j(x)) + \sum_{j,l=0}^{n-1} \partial \phi(f^j(x)) \land \overline{\partial} \phi(f^l(x)) \right)
\]

\[\vdots\]

(more complicated with g, ϕ less regular)

\[
dd^c 1_n^* \lesssim \sum_{j=0}^{n} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \Omega(1_{n-j}) \| \phi \|_{C^2} f^{j-1}_* \text{Leb}
\]

\[
\lesssim \sum_{j=0}^{\infty} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j f^{j-1}_* \text{Leb}
\]

Ok for mass. We still need to estimate the oscillation of the potential of the RHS. But what is this potential?
(Dynamical) potentials

$$\text{Leb} = \mu + dd^c u_0 \quad f_*^j \text{Leb} = \mu + dd^c u_j$$

- u_0 is the Green function, which is γ-Hölder.
- Up to a Hölder continuous function, the potential of

$$\sum_{j=0}^{\infty} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j f_*^{j-1} \text{Leb} \quad \text{is given by} \quad \sum_{j=0}^{n} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j u_j$$
(Dynamical) potentials

\[\text{Leb} = \mu + dd^c u_0 \quad f^j \text{Leb} = \mu + dd^c u_j \]

- \(u_0 \) is the Green function, which is \(\gamma \)-Hölder.
- Up to a Hölder continuous function, the potential of

\[
\sum_{j=0}^{\infty} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j f^{j-1} \text{Leb} \quad \text{is given by} \quad \sum_{j=0}^{n} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j u_j
\]

Lemma

1. \(u_j \) is \(\gamma/2^j \) Hölder.
2. \(\|u_j\|_\infty \lesssim d^n/\delta^n \) for all \(\delta < d \).

\[
\Rightarrow \sum_{j=0}^{\infty} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j u_j \in \log^p \quad \forall p
\]

\[
\Rightarrow \|1_n^*\|_{\log^p} < C_p \quad \forall n, p
\]
When ϕ is not C^2

$$\phi \in \log^q \Rightarrow \begin{cases}
\phi = \phi^1_j + \phi^2_j \\
\|\phi^2_j\|_\infty \leq 1/j^2 \\
\|\phi^1_j\|_{C^2} \leq e^{j^2/q} \end{cases} \text{← sub-exponential}$$

$$dd^c 1^*_n \lesssim \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \Omega(1^*_n) \|\phi^1_j\|_{C^2} f^{j-1} Leb$$

\Rightarrow Existence and uniqueness of equilibrium state and conformal measure for all ϕ with $\|\phi\|_{\log^q} < \infty$ for some $q > 2$ (Theorem 1)
When ϕ is not C^2

$$\phi \in \log^q \Rightarrow \begin{cases} \phi = \phi_j^1 + \phi_j^2 \\ \|\phi_j^2\|_\infty \leq 1/j^2 \\ \|\phi_j^1\|_{C^2} \leq e^{j^2/q} \leq \text{sub-exponential} \end{cases}$$

$$dd^c 1_n^* \lesssim \sum_{j=1}^{n} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \Omega(1_{n-j}) \|\phi_j^1\|_{C^2} f_j^{*-1} \text{Leb}$$

\Rightarrow Existence and uniqueness of equilibrium state and conformal measure for all ϕ with $\|\phi\|_{\log^q} < \infty$ for some $q > 2$ (Theorem 1)

Second (and main) goal: find a norm so that this convergence becomes a contraction in a suitable space of functions.
Norm and spectral gap

First consider the case $\phi = 0$

DSH norm (Dinh-Sibony)

$$\|g\|_{DSH} = \min \|R^+\|$$, where $dd^c g = R^+ - R^-$, R^\pm positive measures

Then

$$\left\| \frac{f_* g}{d} \right\|_{DSH} \leq \frac{1}{d} \left\| f_* R^+ - f_* R^- \right\| = \frac{1}{d} \|g\|_{DSH}$$
Norm and spectral gap

First consider the case $\phi = 0$

DSH norm (Dinh-Sibony)
\[\|g\|_{DSH} = \min \|R^+\|, \text{ where } dd^c g = R^+ - R^-, \ R^\pm \text{ positive measures} \]

Then
\[\left\| \frac{f^* g}{d} \right\|_{DSH} \leq \frac{1}{d} \|f^* R^+ - f^* R^-\| = \frac{1}{d} \|g\|_{DSH} \]

Here, if we try to do the same
\[
 dd^c \mathcal{L}_\phi(g) \sim \sum_{f(x) = y} e^{\phi(x)} \, dd^c g + g dd^c \phi \, e^\phi + e^\phi \partial g \overline{\partial} \phi + e^\phi \partial^2 \phi \overline{\partial} g
\]
\[
 dd^c \mathcal{L}^n_\phi(g) \sim \ldots
\]
\[dd^c \mathcal{L}_\phi(g) \sim \sum_{f(x) = y} e^{\Phi(x)} dd^c g + \overline{d} \Phi \overline{\partial} \bar{\Phi} + \overline{\Phi} \partial \bar{\Phi} \overline{\partial} g \]

- The operator \(dd^c \) is complex (commutes with \(f^* \)). Here non complex perturbation \((f^*(e^{\Phi} \cdot)) \). No way to keep complex norm like \(DSH \) even if \(\phi \) is smooth.
- Serious problem for norm is given by mixed terms.
- \(f^* \) does not work well with Hölder, so need weaker.

Idea 0

Use a norm with bound on \(dd^c \) + regularity; then obtain spectral gap on "real" norm by interpolation. We use pluripotential theory to study the norm with \(dd^c \).

Idea 1

Use something like \(\| \cdot \|_{p} \approx \| \cdot \|_{DSH} + \| \cdot \|_{\log p} \approx \| \nu \|_{p} + \| u \nu \|_{\log p} \) for measures.)
The operator dd^c is complex (commutes with f_*). Here non complex perturbation $(f_*(e^\Phi \cdot))$. No way to keep complex norm like DSH even if ϕ is smooth.

- Serious problem for norm is given by mixed terms.
- f_* does not work well with Hölder, so need weaker.

Idea 0

Use a norm with bound on $dd^c +$ regularity; then obtain spectral gap on "real" norm by interpolation. We use pluripotential theory to study the norm with dd^c.
\[dd^c L_\phi(g) \sim \sum_{f(x)=y} e^{\Phi(x)} dd^c g + g dd^c \phi e^\phi + e^\phi \partial g \overline{\partial} \phi + e^\phi \partial \phi \overline{\partial} g \]

- The operator \(dd^c \) is complex (commutes with \(f^* \)). Here non complex perturbation \((f^*(e^\phi \cdot)) \). No way to keep complex norm like \(DSH \) even if \(\phi \) is smooth.
- Serious problem for norm is given by mixed terms.
- \(f^* \) does not work well with Hölder, so need weaker.

Idea 0

Use a norm with bound on \(dd^c \) + regularity; then obtain spectral gap on "real" norm by interpolation. We use pluripotential theory to study the norm with \(dd^c \).

Idea 1

Use something like \(\| \cdot \|_{p} \cong \| \cdot \|_{DSH} + \| \cdot \|_{\log^p} (\| \nu \|_{p} \cong \| \nu \|_{*} + \| u_{\nu} \|_{\log^p} \) for measures)
\[\| \cdot \|_p \cong \| \cdot \|_{DSH} + \| \cdot \|_{\log^p} \]

Lemma

\[\| \partial g \wedge \overline{\partial} h \|_p \leq \| g \|_p \| h \|_p \]
\[\| \cdot \|_p \trianglerighteq \| \cdot \|_{DSH} + \| \cdot \|_{\log p} \]

Lemma

\[\| \partial g \wedge \overline{\partial} h \|_p \leq \| g \|_p \| h \|_p \]

... but other problems: loss of regularity!

\[
\frac{dd^c 1_n}{\lambda^n} \lesssim \left(\frac{e^{\Omega(\phi)}}{d} \right)^n f_*^n dd^c g + \sum_{j=1}^{n} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \| \mathcal{L}^{n-j} g \|_\infty f_{j-1}^{-1} dd^c \phi + \ldots
\]

The potential of the RHS is

\[
\left(\frac{e^{\Omega(\phi)}}{d} \right)^n f_*^n g + \sum_{j=1}^{n} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \| \mathcal{L}^{n-j} g \|_\infty f_{j-1}^{-1} \phi + \ldots \in ???
\]
\[\| \cdot \|_p \cong \| \cdot \|_{DSH} + \| \cdot \|_{\log p} \]

Lemma
\[\| \partial g \wedge \overline{\partial} h \|_p \leq \| g \|_p \| h \|_p \]

... but other problems: loss of regularity!

\[\frac{dd^c 1_n}{\lambda^n} \lesssim \left(\frac{e^{\Omega(\phi)}}{d} \right)^n f^*_n dd^c g + \sum_{j=1}^{n} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \left\| \mathcal{L}^{n-j} \frac{g}{\lambda^{n-j}} \right\|_{\infty} f^{j-1} dd^c \phi + \ldots \]

The potential of the RHS is
\[\left(\frac{e^{\Omega(\phi)}}{d} \right)^n f^*_n g + \sum_{j=1}^{n} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \left\| \mathcal{L}^{n-j} \frac{g}{\lambda^{n-j}} \right\|_{\infty} f^{j-1} \phi + \ldots \in ??? \]

Lemma
\[\| d^{-j} f^*_j \phi \|_{\log p} \leq c_p(A) A^n \| \phi \|_{\log p} \]
for all \(A > 1 \)

Theorem
\[\| \phi \|_p < \infty \text{ then } \| f^*_j \phi / d^j \|_{\infty} \to 0 \]
exponentially (precise bounds).

\[\Rightarrow \left(\frac{e^{\Omega(\phi)}}{d} \right)^n f^*_n g + \sum_{j=1}^{n} \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \left\| \mathcal{L}^{n-j} \frac{g}{\lambda^{n-j}} \right\|_{\infty} f^{j} \phi \in \log^q \text{ for some explicit } q < p \]

\[\Rightarrow \text{convergence } \| \lambda^{-n} \mathcal{L}_\phi^n g \|_q \to 0, \text{ uniform in } g, \text{ but no spectral gap yet!} \]
Idea 2: a dynamical norm

Definition

\[\| R \|_{\alpha, p} := \min c : R \leq c \sum_j \alpha^j f_j^* S \text{ for some } \| S \|_p \leq 1. \]

By definition: \(\| f_\ast R \|_{\alpha, p} \leq \frac{1}{\alpha} \| R \|_{\alpha, p} \)

\[
\Rightarrow \left\| \left(\frac{e^{\Omega(\Phi)}}{d} \right)^n f_\ast^n dd^c g + \sum_{j=1}^n \left(\frac{e^{\Omega(\Phi)}}{d} \right)^j \left\| \frac{L^{n-j}g}{\lambda^{n-j}} \right\|_\infty f_j^{-1} dd^c \phi \right\|_{\alpha, p} \\
\leq \left(\frac{e^{\Omega(\Phi)}}{\alpha d} \right)^n \| dd^c g \|_{\alpha, p} + \sum_{j=1}^n \left(\frac{e^{\Omega(\Phi)}}{\alpha d} \right)^j \left\| \frac{L^{n-j}g}{\lambda^{n-j}} \right\|_\infty \| dd^c \phi \|_{\alpha, p} \\
\leq c_n \| dd^c g \|_{\alpha, p} \rightarrow 0!
\]
Idea 2: a dynamical norm

Definition

\[\| R \|_{\alpha,p} := \min c : R \leq c \sum_j \alpha^j f_j^* S \text{ for some } \| S \|_p \leq 1. \]

By definition: \[\| f_* R \|_{\alpha,p} \leq \frac{1}{\alpha} \| R \|_{\alpha,p} \]

\[
\Rightarrow \left\| \left(\frac{e^{\Omega(\phi)}}{d} \right)^n f_* dd^c g + \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \left\| \frac{L^{n-j} g}{\lambda^{n-j}} \right\|_{\infty} f_j^{-1} dd^c \phi \right\|_{\alpha,p} \\
\leq \left(\frac{e^{\Omega(\phi)}}{\alpha d} \right)^n \| dd^c g \|_{\alpha,p} + \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{\alpha d} \right)^j \left\| \frac{L^{n-j} g}{\lambda^{n-j}} \right\|_{\infty} \| dd^c \phi \|_{\alpha,p} \\
\leq c_n \| dd^c g \|_{\alpha,p} \rightarrow 0!
\]

Where is the problem?
Idea 2: a dynamical norm

Definition

\[\|R\|_{\alpha,p} := \min c : R \leq c \sum_{j} \alpha^j f_j^* S \text{ for some } \|S\|_p \leq 1. \]

By definition: \(\|f_* R\|_{\alpha,p} \leq \frac{1}{\alpha} \|R\|_{\alpha,p} \)

\[
\Rightarrow \left\| \left(\frac{e^{\Omega(\phi)}}{d} \right)^n f_*^{dd^c} g + \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \| \frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}} \|_\infty f_j^{-1}^{dd^c} \phi \right\|_{\alpha,p}
\]

\[
\leq \left(\frac{e^{\Omega(\phi)}}{\alpha d} \right)^n \| dd^c g \|_{\alpha,p} + \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{\alpha d} \right)^j \| \frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}} \|_\infty \| dd^c \phi \|_{\alpha,p}
\]

\[
\leq c_n \| dd^c g \|_{\alpha,p} \rightarrow 0!
\]

Where is the problem? We did not consider the mixed terms!
The problem of the mixed terms

Definition

\[\| g \|_{\alpha,p} := \| d d^c g \| := \min c : d d^c g \leq c \sum_j \alpha^j f^j S \text{ for some } \| S \|_p \leq 1. \]

Then we have

\[d d^c (g h) = g d d^c h + h d d^c g + i \partial g \wedge \bar{\partial} h + i \partial h \wedge \bar{\partial} g \]

\[\| d d^c g h \|_{\alpha,p} \leq \| g \|_\infty \| d d^c h \|_{\alpha,p} + \| h \|_\infty \| d d^c g \|_{\alpha,p} + \| i \partial g \wedge \bar{\partial} h + i \partial h \wedge \bar{\partial} g \|_{\alpha,p} \]
The problem of the mixed terms

Definition

\[\|g\|_{\alpha,p} := \|dd^c g\| := \min c : dd^c g \leq c \sum_j \alpha^j f^j S \text{ for some } \|S\|_p \leq 1. \]

Then we have

\[dd^c(gh) = gdd^c h + hdd^c g + i\partial g \wedge \overline{\partial} h + i\partial h \wedge \overline{\partial} g \]

\[\|dd^c gh\|_{\alpha,p} \leq \|g\|_{\infty} \|dd^c h\|_{\alpha,p} + \|h\|_{\infty} \|dd^c g\|_{\alpha,p} + \|i\partial g \wedge \overline{\partial} h + i\partial h \wedge \overline{\partial} g\|_{\alpha,p} \]

Modified definition

\[\|g\|^2_{\alpha,p} := \|i\partial g \wedge \overline{\partial} g\| := \min c : i\partial g \wedge \overline{\partial} g \leq c \sum_j \alpha^j f^j S, \|S\|_p \leq 1. \]
\[\|g\|_{\alpha,p}^2 := \|i\partial g \wedge \bar{\partial} g\| := \min c: i\partial g \wedge \bar{\partial} g \leq c \sum_j \alpha^j f^j S \text{ for some } \|S\|_p \leq 1. \]

- ok for mixed terms
- still good shifting property (less direct)
- spectral gap
\[\|g\|_{\alpha, p}^2 := \|i\partial g \wedge \bar{\partial}g\| := \min c: i\partial g \wedge \bar{\partial}g \leq c \sum_{j} \alpha^j f^j S \text{ for some } \|S\|_p \leq 1. \]

- ok for mixed terms
- still good shifting property (less direct)
- spectral gap?

Main issue... all the method was based on the

Lemma

\[dd^c g \leq dd^c h \Rightarrow \Omega(g, r) \lesssim \Omega(h, r) \]

We need

Lemma

\[\partial g \wedge \bar{\partial}g \leq dd^c h \Rightarrow \Omega(g, r) \lesssim \Omega(h, r) \]
\[\|g\|_{\alpha,p}^2 := \|i \partial g \wedge \bar{\partial} g\| := \min c: i \partial g \wedge \bar{\partial} g \leq c \sum_j \alpha^j f^*_j S \text{ for some } \|S\|_p \leq 1. \]

- ok for mixed terms
- still good shifting property (less direct)
- spectral gap? YES!

Main issue... all the method was based on the

Lemma

\[dd^c g \leq dd^c h \Rightarrow \Omega(g, r) \lesssim \Omega(h, r) \]

We need

Lemma

\[\partial g \wedge \bar{\partial} g \leq dd^c h \Rightarrow \Omega(g, r) \lesssim \Omega(h, r) \]

Much more involved but true!
Spectral gap(s) by interpolation

We have a spectral gap for the norm $\|g\|_{\alpha,p}^2 := \| \partial g \wedge \overline{\partial g} \|_{\alpha,p}$.

⇒ We build a γ-Hölder-like norm from $\| \cdot \|_{\alpha,p}$:

Definition

$$\|g\|_{\alpha,p,\gamma} := \min c : \forall 0 < \epsilon < 1 : \begin{cases} g = g_\epsilon^1 + g_\epsilon^2 \\ \|g_\epsilon^2\|_\infty \leq c\epsilon \\ \|g_\epsilon^1\|_{\alpha,p} \leq c(1/\epsilon)^{1/\gamma} \end{cases}$$

- $\log^q \leq \| \cdot \|_{\alpha,p,\gamma} \leq \| \cdot \|_{\epsilon\gamma}$
- Interpolation techniques (all the method is stable under "sub-exponential perturbations"):

Spectral gap for $\| \cdot \|_{\alpha,p,\gamma} \lesssim C^\gamma$