The Permutable Mystery Tour
For transcendental meromorphic functions

Gustavo R. Ferreira

School of Mathematics and Statistics
The Open University

3 July 2020
Outline

The Problem of Commuting Functions
Transcendental Functions and Escaping Points

Permutable TMFs
Revisiting $A(f)$
Finally, Permutable TMFs
Ping-pong Orbits
The Problem of Commuting Functions

The Problem

Given two analytic functions f and g, is it true that

$$f \circ g = g \circ f \Leftrightarrow J(f) = J(g)$$?
The Problem of Commuting Functions

The Answer

- **Polynomials**
 - \(\Rightarrow \) Fatou, 1920; Julia, 1922; Beardon, 1990
 - \(\Leftarrow \) Beardon, 1990; Schmidt & Steinmetz, 1995

* Terms and conditions apply
The Problem of Commuting Functions

The Answer

▶ Polynomials

⇒ Fatou, 1920; Julia, 1922; Beardon, 1990
⇐ Beardon, 1990; Schmidt & Steinmetz, 1995
* Terms and conditions apply

▶ Rational functions

⇒ Fatou, 1920; Julia, 1922; F, 2019
⇐ Levin & Przytycki, 1997; Ye, 2015
* Terms and conditions apply
The Problem of Commuting Functions

The Answer

- **Polynomials**
 - \Rightarrow Fatou, 1920; Julia, 1922; Beardon, 1990
 - \Leftarrow Beardon, 1990; Schmidt & Steinmetz, 1995
 - * Terms and conditions apply

- **Rational functions**
 - \Rightarrow Fatou, 1920; Julia, 1922; F, 2019
 - \Leftarrow Levin & Przytycki, 1997; Ye, 2015
 - * Terms and conditions apply

- **Transcendental entire functions**
 - \Rightarrow Baker, 1984; Bergweiler & Hinkkanen, 1999; Benini, Rippon & Stallard, 2016
The Problem of Commuting Functions

The Answer

- Polynomials
 - \Rightarrow Fatou, 1920; Julia, 1922; Beardon, 1990
 - \Leftarrow Beardon, 1990; Schmidt & Steinmetz, 1995
 * Terms and conditions apply

- Rational functions
 - \Rightarrow Fatou, 1920; Julia, 1922; F, 2019
 - \Leftarrow Levin & Przytycki, 1997; Ye, 2015
 * Terms and conditions apply

- Transcendental entire functions
 - \Rightarrow Baker, 1984; Bergweiler & Hinkkanen, 1999; Benini, Rippon & Stallard, 2016

- Transcendental meromorphic functions
 - \Rightarrow Tsantaris, 2019; F, 2020
The Permutable Mystery Tour

Gustavo R. Ferreira

The Problem of Commuting Functions
Transcendental Functions and Escaping Points

Permutable TMFs
Revisiting $A(f)$
Finally, Permutable TMFs
Ping-pong Orbits
Notation

\[f, g \quad \text{Transcendental (entire or meromorphic) functions} \]
Notation

\begin{itemize}
 \item \(f, g \) \quad \text{Transcendental (entire or meromorphic) functions}
 \item \(M(r, f) \) \quad \text{The maximum modulus function}
 \item \(M(r, f) := \max\{|f(z)| : |z| = r\} \)
\end{itemize}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f, g</td>
<td>Transcendental (entire or meromorphic) functions</td>
</tr>
<tr>
<td>$M(r, f)$</td>
<td>The maximum modulus function</td>
</tr>
<tr>
<td>TEF</td>
<td>Transcendental entire function</td>
</tr>
<tr>
<td>TMF</td>
<td>Transcendental meromorphic (non-entire) function</td>
</tr>
</tbody>
</table>
The problem with escaping points

The escaping set (Eremenko, 1989; Domínguez, 1998):

\[I(f) := \{ z \in \mathbb{C} : f^n(z) \to \infty \text{ as } n \to +\infty \} \]
The problem with escaping points

The escaping set (Eremenko, 1989; Domínguez, 1998):

\[I(f) := \{ z \in \mathbb{C} : f^n(z) \to \infty \text{ as } n \to +\infty \} \]

- \(f \) is transcendental \(\Rightarrow \) infinity is an essential singularity
The problem with escaping points

- The escaping set (Eremenko, 1989; Domínguez, 1998):
 \[I(f) := \{ z \in \mathbb{C} : f^n(z) \to \infty \text{ as } n \to +\infty \} \]

- \(f \) is transcendental \(\Rightarrow \) infinity is an essential singularity
 \(\Rightarrow \) points in \(I(f) \) escape at very different rates
The problem with escaping points

- The escaping set (Eremenko, 1989; Domínguez, 1998):

\[I(f) := \{ z \in \mathbb{C} : f^n(z) \to \infty \text{ as } n \to +\infty \} \]

- \(f \) is transcendental \(\Rightarrow \) infinity is an essential singularity
 \(\Rightarrow \) points in \(I(f) \) escape at very different rates
- \(I(f) \) is never empty, and is dense in the Julia set
Progress for Transcendental Entire Functions
Baker, 1958 & 1984

1958: If \(f \circ g = g \circ f \), then \(g(J(f)) \subset J(f) \)
Progress for Transcendental Entire Functions
Baker, 1958 & 1984

1958: If \(f \circ g = g \circ f \), then \(g(J(f)) \subset J(f) \)

! It suffices to show that \(f \circ g = g \circ f \Rightarrow g(F(f)) \subset F(f) \)
Progress for Transcendental Entire Functions
Baker, 1958 & 1984

1958: If $f \circ g = g \circ f$, then $g \left(J(f) \right) \subset J(f)$

It suffices to show that $f \circ g = g \circ f \Rightarrow g \left(F(f) \right) \subset F(f)$

1984: If $f \circ g = g \circ f$ and U is a non-escaping Fatou component of f, then $g(U) \subset F(f)$
Progress for Transcendental Entire Functions
Baker, 1958 & 1984

1958: If $f \circ g = g \circ f$, then $g(J(f)) \subset J(f)$

! It suffices to show that $f \circ g = g \circ f \Rightarrow g(F(f)) \subset F(f)$

1984: If $f \circ g = g \circ f$ and U is a non-escaping Fatou component of f, then $g(U) \subset F(f)$

Baker, 1984
Let f and g be commuting TEFs without escaping Fatou components. Then, $J(f) = J(g)$.
Define the **fast escaping set** as

\[
A(f) := \{z : \exists \ell \in \mathbb{N} \text{ s.t. } |f^{n+\ell}(z)| \geq M^n(r, f) \text{ for all } n \in \mathbb{N}\}.
\]
Define the fast escaping set as

\[A(f) := \{ z : \exists \ell \in \mathbb{N} \text{ s.t. } |f^{n+\ell}(z)| \geq M^n(r, f) \text{ for all } n \in \mathbb{N} \}. \]

Then,

► \(A(f) \subset I(f) \)
Define the **fast escaping set** as

\[A(f) := \{ z : \exists \ell \in \mathbb{N} \text{ s.t. } |f^{n+\ell}(z)| \geq M^n(r, f) \text{ for all } n \in \mathbb{N} \}. \]

Then,

- \(A(f) \subset I(f) \)
- \(A(f) \) is dense in \(J(f) \)
Define the fast escaping set as

\[A(f) := \{ z : \exists \ell \in \mathbb{N} \text{ s.t. } |f^{n+\ell}(z)| \geq M^n(r, f) \text{ for all } n \in \mathbb{N} \}. \]

Then,

- \(A(f) \subset I(f) \)
- \(A(f) \) is dense in \(J(f) \)
- Every Fatou component in \(A(f) \) is a wandering domain
Progress for Transcendental Entire Functions
Bergweiler & Hinkkanen, 1999

Define the **fast escaping set** as

$$A(f) := \{ z : \exists \ell \in \mathbb{N} \text{ s.t. } |f^{n+\ell}(z)| \geq M^n(r, f) \text{ for all } n \in \mathbb{N} \}.$$

Then,

- $A(f) \subset I(f)$
- $A(f)$ is dense in $J(f)$
- Every Fatou component in $A(f)$ is a wandering domain
- If $f \circ g = g \circ f$, then $g^{-1}(A(f)) \subset A(f)$
Define the fast escaping set as

\[A(f) := \{ z : \exists \ell \in \mathbb{N} \text{ s.t. } |f^{n+\ell}(z)| \geq M^n(r, f) \text{ for all } n \in \mathbb{N} \}. \]

Then,

\[A(f) \subset I(f) \]
\[A(f) \text{ is dense in } J(f) \]
\[\text{Every Fatou component in } A(f) \text{ is a wandering domain} \]
\[\text{If } f \circ g = g \circ f, \text{ then } g^{-1}(A(f)) \subset A(f) \]

Bergweiler & Hinkkanen, 1999

Let \(f \) and \(g \) be commuting TEFs without fast escaping wandering domains. Then, \(J(f) = J(g) \).
BRS, 2016

If U is a multiply connected wandering domain of f and $f \circ g = g \circ f$, then $g(U)$ is also a multiply connected wandering domain of f.
If U is a multiply connected wandering domain of f and $f \circ g = g \circ f$, then $g(U)$ is also a multiply connected wandering domain of f.

So, where are we now?

Let f and g be commuting transcendental entire functions without simply connected fast escaping wandering domains. Then, $J(f) = J(g)$.

The Permutable Mystery Tour

Gustavo R. Ferreira

The Problem of Commuting Functions
Transcendental Functions and Escaping Points

Permutable TMFs
Revisiting $A(f)$
Finally, Permutable TMFs
Ping-pong Orbits
Let f be a transcendental meromorphic function with finitely many poles.
Let f be a transcendental meromorphic function with finitely many poles.

- Let γ be a Jordan curve. Its outer set is defined as its unbounded complementary component.
Outer Sequences
Rippon & Stallard, 2005

Let f be a transcendental meromorphic function with finitely many poles.

- Let γ be a Jordan curve. Its outer set is defined as its unbounded complementary component.
- Outer sequence for f: Jordan curves γ_n with outer sets E_n s.t.
Let f be a transcendental meromorphic function with finitely many poles.

- Let γ be a Jordan curve. Its outer set is defined as its unbounded complementary component.
- **Outer sequence for f:** Jordan curves γ_n with outer sets E_n s.t.
 - Every γ_n surrounds all the poles of f
Let f be a transcendental meromorphic function with finitely many poles.

- Let γ be a Jordan curve. Its outer set is defined as its unbounded complementary component.
- Outer sequence for f: Jordan curves γ_n with outer sets E_n s.t.
 - Every γ_n surrounds all the poles of f
 - $\gamma_n \to \infty$ as $n \to +\infty$
Let f be a transcendental meromorphic function with finitely many poles.

- Let γ be a Jordan curve. Its outer set is defined as its unbounded complementary component
- **Outer sequence for f:** Jordan curves γ_n with outer sets E_n s.t.
 - Every γ_n surrounds all the poles of f
 - $\gamma_n \to \infty$ as $n \to +\infty$
 - $\gamma_{n+1} \subset f(\gamma_n)$
Let f be a transcendental meromorphic function with finitely many poles.

- Let γ be a Jordan curve. Its outer set is defined as its unbounded complementary component.
- **Outer sequence for f:** Jordan curves γ_n with outer sets E_n s.t.
 - Every γ_n surrounds all the poles of f
 - $\gamma_n \to \infty$ as $n \to +\infty$
 - $\gamma_{n+1} \subset f(\gamma_n)$
 - Every component of $f^{-1}(E_{n+1})$ either lies in E_n or is surrounded by γ_1
Let \(f \) be a TMF with finitely many poles, and \(E_n \) an outer sequence for \(f \). Then,

\[
A(f) := \{ z : \exists \ell \in \mathbb{N} \text{ s.t. } f^{n+\ell}(z) \in E_n \text{ for all } n \in \mathbb{N} \}.
\]
Let f be a TMF with finitely many poles, and E_n an outer sequence for f. Then,

$$A(f) := \{ z : \exists \ell \in \mathbb{N} \text{ s.t. } f^{n+\ell}(z) \in E_n \text{ for all } n \in \mathbb{N} \}.$$

$A(f)$ is independent of the choice of outer sequence.
A(f) Via Outer Sequences
Rippon & Stallard, 2005

Let \(f \) be a TMF with finitely many poles, and \(E_n \) an outer sequence for \(f \). Then,

\[
A(f) := \{ z : \exists \ell \in \mathbb{N} \text{ s.t. } f^{n+\ell}(z) \in E_n \text{ for all } n \in \mathbb{N} \}.
\]

▶ \(A(f) \) is independent of the choice of outer sequence
▶ If \(f \) is entire, this definition agrees with the previous one
Let f be a TMF with finitely many poles, and E_n an outer sequence for f. Then,

$$A(f) := \{ z : \exists \ell \in \mathbb{N} \text{ s.t. } f^{n+\ell}(z) \in E_n \text{ for all } n \in \mathbb{N} \}.$$

- $A(f)$ is independent of the choice of outer sequence
- If f is entire, this definition agrees with the previous one
- $A(f)$ is dense in the Julia set
The Permutable Mystery Tour

Gustavo R. Ferreira

Outline

The Problem of Commuting Functions
Transcendental Functions and Escaping Points

Permutable TMFs
Revisiting $A(f)$
Finally, Permutable TMFs
Ping-pong Orbits
Hold Our Horses
Osborne & Sixsmith, 2016

- TMFs f and g commute iff, for every $z \in \mathbb{C}$, either $f(g(z)) = g(f(z))$ or neither side is defined.
TMFs f and g commute iff, for every $z \in \mathbb{C}$, either $f(g(z)) = g(f(z))$ or neither side is defined.

⇒ If f and g commute, they have the same poles.
Hold Our Horses
Osborne & Sixsmith, 2016

- TMFs f and g commute iff, for every $z \in \mathbb{C}$, either $f(g(z)) = g(f(z))$ or neither side is defined.
 - \Rightarrow If f and g commute, they have the same poles
- A TMF f commutes with at most countably many other TMFs
Hold Our Horses
Osborne & Sixsmith, 2016

- TMFs f and g commute iff, for every $z \in \mathbb{C}$, either $f(g(z)) = g(f(z))$ or neither side is defined.
 \[\Rightarrow \] If f and g commute, they have the same poles
- A TMF f commutes with at most countably many other TMFs
- If a TMF commutes with a rational function R, then R is a Möbius transformation
The Plan

We need meromorphic versions of the following results:

Baker, 1984
Let f and g be permutable TEFs. If U is a non-escaping Fatou component of f, then $g(U) \subset F(f)$.
The Plan

We need meromorphic versions of the following results:

Baker, 1984
Let f and g be permutable TEFs. If U is a non-escaping Fatou component of f, then $g(U) \subset F(f)$.

Bergweiler & Hinkkanen, 1999
Let f and g be permutable TEFs. If $z \in \mathbb{C} \setminus A(f)$, then $g(z) \notin A(f)$.
Let f and g be permutable TMFs. If U is a non-escaping Fatou component of f, then $g(U) \subset F(f)$.

F, 2020
The Outcome

F, 2020

Let f and g be permutable TMFs. If U is a non-escaping Fatou component of f, then $g(U) \subset F(f)$.

F, 2020

Let f and g be permutable TMFs with finitely many poles. If $z \in l(f) \setminus A(f)$, then $g(z) \notin A(f)$.
The Outcome

F, 2020

Let f and g be permutable TMFs. If U is a non-escaping Fatou component of f, then $g(U) \subset F(f)$.

F, 2020

Let f and g be permutable TMFs with finitely many poles. If $z \in I(f) \setminus A(f)$, then $g(z) \not\in A(f)$.

F, 2020

Let f and g be TMFs with finitely many poles s.t. $A(f) \subset J(f)$ and $A(g) \subset J(g)$. Then, $f \circ g = g \circ f \Rightarrow J(f) = J(g)$.
Tsantaris, 2019

Let f and g be permutable TMFs not in class \mathcal{P}. Then, $J(f) = J(g)$.

Tsantaris, 2019

Let f and g be permutable TMFs not in class \mathcal{P}. Then, $J(f) = J(g)$.

\[
\begin{align*}
\left(\text{Class } \mathcal{P}: f(z) &= z_0 + \frac{e^{g(z)}}{(z - z_0)^m} \right)
\end{align*}
\]
All Together Now

Tsantaris, 2019

Let f and g be permutable TMFs not in class \mathcal{P}. Then, $J(f) = J(g)$.

\[
\left(\text{Class } \mathcal{P}: f(z) = z_0 + \frac{e^{g(z)}}{(z - z_0)^m}\right)
\]

So, where are we now?

Let f and g be permutable TMFs. Then, $J(f) = J(g)$ except possibly when f and g are in class \mathcal{P} and have simply connected fast escaping wandering domains.
Outline

The Problem of Commuting Functions
Transcendental Functions and Escaping Points

Permutable TMFs
Revisiting $A(f)$
Finally, Permutable TMFs
Ping-pong Orbits
The Problem With Poles

Let f and g be permutable TEFs
The Problem With Poles

- Let f and g be permutable TEFs
 - Then, if $z \notin I(f)$, we have $g(z) \notin I(f)$
The Problem With Poles

- Let f and g be permutable TEFs
 - Then, if $z \notin I(f)$, we have $g(z) \notin I(f)$
- What about permutable TMFs?
The Problem With Poles

- Let f and g be permutable TEFs.
 - Then, if $z \notin I(f)$, we have $g(z) \notin I(f)$.
- What about permutable TMFs?
 - If z is s.t. $f^{nk}(z) \to p$, then it is possible that $g(z) \in I(f)$.
The Problem With Poles
Ping-pong Orbits

Definition

We say that $z \in \mathbb{C}$ has a ping-pong orbit if there exist a pole p of f, subsequences $(f^{m_k})_{k \geq 1}$ and $(f^{n_k})_{k \geq 1}$ and a natural number $M \geq 1$ s.t.
Ping-pong Orbits

Definition

We say that $z \in \mathbb{C}$ has a ping-pong orbit if there exist a pole p of f, subsequences $(f^{m_k})_{k \geq 1}$ and $(f^{n_k})_{k \geq 1}$ and a natural number $M \geq 1$ s.t.

(i) $f^{m_k}(z) \to p$ and $f^{n_k}(z) \to \infty$;
Ping-pong Orbits

Definition

We say that $z \in \mathbb{C}$ has a ping-pong orbit if there exist a pole p of f, subsequences $(f^{m_k})_{k \geq 1}$ and $(f^{n_k})_{k \geq 1}$ and a natural number $M \geq 1$ s.t.

(i) $f^{m_k}(z) \to p$ and $f^{n_k}(z) \to \infty$;

(ii) $|m_k - n_k| \leq M$ and $|n_k - m_{k+1}| \leq M$.
Ping-pong Orbits

Definition

We say that \(z \in \mathbb{C} \) has a ping-pong orbit if there exist a pole \(p \) of \(f \), subsequences \((f^{m_k})_{k \geq 1} \) and \((f^{n_k})_{k \geq 1} \) and a natural number \(M \geq 1 \) s.t.

1. \(f^{m_k}(z) \to p \) and \(f^{n_k}(z) \to \infty \);
2. \(|m_k - n_k| \leq M \) and \(|n_k - m_{k+1}| \leq M \).

The set of all points with a ping-pong orbit is denoted by \(BU_P(f) \).
Ping-pong Orbits
And where to find them

F, 2020
Let f be a TMF with finitely many poles. Then, $BUP(f)$ is dense in $J(f)$. Furthermore, if $f \notin \mathcal{P}$, then points in $BUP(f)$ can “escape” arbitrarily fast.
Ping-pong Orbits
And where to find them

F, 2020

Let f be a TMF with finitely many poles. Then, $BuP(f)$ is dense in $J(f)$. Furthermore, if $f \notin \mathcal{P}$, then points in $BuP(f)$ can “escape” arbitrarily fast.

F, 2020

There exist TMFs with a single pole, both in class \mathcal{P} and outside of it, with ping-pong wandering domains.

* This theorem was brought to you by David Martí-Pete
References I

I.N. Baker
Wandering domains in the iteration of entire functions.

A.F. Beardon
Symmetries of Julia sets.

W. Bergweiler and A. Hinkkanen
On semiconjugation of entire functions.

A.M. Benini, P.J. Rippon and G.M. Stallard
Permutable entire functions and multiply connected wandering domains.
G.R. Ferreira
Escaping points of commuting meromorphic functions with finitely many poles.