Accumulation set of critical points of the multipliers in the quadratic family

Igors Gorbovickis

Jacobs University Bremen

August 24, 2020
Multipliers as functions of the parameter

- Quadratic family: \(\{ f_c(z) = z^2 + c \mid c \in \mathbb{C} \} \).
- \(\mathcal{O} = \langle z_0, z_1, \ldots, z_{k-1} \rangle \) is a periodic orbit of period \(k \) for \(f_{c_0} \).
- **Notation:** \(|\mathcal{O}| := k \) – the period of \(\mathcal{O} \).
- Multiplier map: \(\rho_{\mathcal{O}}(c) = f'_c(z_0)f'_c(z_1) \cdots f'_c(z_{k-1}) \)

- \(\rho_{\mathcal{O}} \) is a locally analytic function around \(c_0 \), whenever \(\mathcal{O} \) is not a primitive parabolic orbit of \(f_{c_0} \).
- \(\rho_{\mathcal{O}} \) extends to a multiple-valued algebraic function on \(\mathbb{C} \).
Multipliers as functions of the parameter

- Quadratic family: \(\{ f_c(z) = z^2 + c \mid c \in \mathbb{C} \} \).
- \(\mathcal{O} = \langle z_0, z_1, \ldots, z_{k-1} \rangle \) is a periodic orbit of period \(k \) for \(f_{c_0} \).
- Notation: \(|\mathcal{O}| := k \) – the period of \(\mathcal{O} \).
- Multiplier map: \(\rho_\mathcal{O}(c) = f'_c(z_0)f'_c(z_1)\ldots f'_c(z_{k-1}) \)

- \(\rho_\mathcal{O} \) is a locally analytic function around \(c_0 \), whenever \(\mathcal{O} \) is not a primitive parabolic orbit of \(f_{c_0} \).
- \(\rho_\mathcal{O} \) extends to a multiple-valued algebraic function on \(\mathbb{C} \).

Question: What can we say about critical points and critical values of the multiplier maps (i.e., when \(\rho'_\mathcal{O}(c) = 0 \))?

Theorem (Sullivan, Douady-Hubbard): The multiplier \(\rho_\mathcal{O} \) of an attracting periodic orbit is a Riemann mapping of the corresponding hyperbolic component.

\[\rho^{-1}_\mathcal{O}: \mathbb{D} \to H \] is a conformal isomorphism.
Critical values of the multipliers

\[\rho^{-1}_O : \mathbb{D} \to H \] is a conformal isomorphism.

Observation: If \(\rho^{-1}_O \) can be extended univalently to a fixed neighborhood \(U \ni \mathbb{D} \), then Koebe Distortion Theorem provides bounds on the shape of \(H \).
Critical values of the multipliers

\[\rho^{-1}_O : \mathbb{D} \to H \] is a conformal isomorphism.

Observation: If \(\rho^{-1}_O \) can be extended univalently to a fixed neighborhood \(U \supset \mathbb{D} \), then Koebe Distortion Theorem provides bounds on the shape of \(H \).

Critical values of \(\rho_O \) are the only obstacles for an analytic extension of \(\rho^{-1}_O \) beyond \(\mathbb{D} \).
$\rho^{-1}_O : \mathbb{D} \to H$ is a conformal isomorphism.

Observation: If ρ^{-1}_O can be extended univalently to a fixed neighborhood $U \ni \mathbb{D}$, then Koebe Distortion Theorem provides bounds on the shape of H.

Critical values of ρ_O are the only obstacles for an analytic extension of ρ^{-1}_O beyond \mathbb{D}.

Problem: Does there exist a neighborhood $U \ni \mathbb{D}$, such that ρ^{-1}_O is univalent in U, for any periodic orbit O?

Theorem (Levin 2009, Dezotti 2011): ρ^{-1}_O is univalent in $U_k \ni \mathbb{D}$, where $\partial U_k \cap \partial \mathbb{D} = \{1\}$, and U_k depends on $k = |O|$.

Critical points of the multiplier maps $\rho_\mathcal{O}$, $|\mathcal{O}| = 3$

Number of critical points $= 2$
Critical points of the multiplier maps $\rho_\mathcal{O}$, $|\mathcal{O}| = 4$

Number of critical points $= 6$
Critical points of the multiplier maps $\rho_\mathcal{O}$, $|\mathcal{O}| = 5$

Number of critical points $= 20$
Critical points of the multiplier maps $\rho_\mathcal{O}$, $|\mathcal{O}| = 6$

Number of critical points $= 38$
Critical points of the multiplier maps $\rho_\mathcal{O}$, $|\mathcal{O}| = 7$

Number of critical points $= 102$
Critical points of the multiplier maps $\rho_\mathcal{O}, \quad |\mathcal{O}| = 8$

Number of critical points $= 198$
Minimal critical values of the multiplier maps ρ_0
Equidistribution of critical points of the multipliers

For any $s \in \mathbb{C}$ and any $k \in \mathbb{N}$,

$X_{s,k} := \{ c \in \mathbb{C} \mid \rho'_{\mathcal{O}}(c) = s, \text{ for some periodic orbit } \mathcal{O} \}.$

(Points in $X_{s,k}$ are counted with multiplicity.)

$\nu_{s,k} := \frac{1}{\# X_{s,k}} \sum_{c \in X_{s,k}} \delta_c.$

Equidistribution Theorem (Firsova, G. 2019): For every sequence of complex numbers $\{s_k\}_{k \in \mathbb{N}}$, such that

$$\limsup_{k \to +\infty} \frac{1}{k} \log |s_k| \leq \log 2,$$

the sequence of measures $\{\nu_{s_k,k}\}_{k \in \mathbb{N}}$ converges to μ_{bif} in the weak sense of measures on \mathbb{C}, as $k \to \infty$.
Theorem (Levin 1989, Bassanelli-Berteloot 2011, Buff-Gauthier 2015): For any $\rho_0 \in \mathbb{C}$, the set of parameters c (counted with multiplicity), such that $\rho_0(c) = \rho_0$, for some \mathcal{O} of period k, equidistributes on the boundary of \mathbb{M}, as $k \to \infty$.

Accumulation set: For an infinite collection of points $A \subset \mathbb{C}$ (counted with multiplicities), its accumulation set consists of all points $z \in \mathbb{C}$, whose arbitrary neighborhood contains infinitely many points from A.
Theorem (Levin 1989, Bassanelli-Berteloot 2011, Buff-Gauthier 2015): For any \(\rho_0 \in \mathbb{C} \), the set of parameters \(c \) (counted with multiplicity), such that \(\rho_0(\mathcal{O}(c)) = \rho_0 \), for some \(\mathcal{O} \) of period \(k \), equidistributes on the boundary of \(\mathbb{M} \), as \(k \to \infty \).

Accumulation set: For an infinite collection of points \(A \subset \mathbb{C} \) (counted with multiplicities), its accumulation set consists of all points \(z \in \mathbb{C} \), whose arbitrary neighborhood contains infinitely many points from \(A \).

\(X \subset \mathbb{C} \) is the accumulation set of critical points of the multipliers.

Theorem (Firsova, G. 2020): The accumulation set \(X \) is bounded, path connected and contains the Mandelbrot set \(\mathbb{M} \). Furthermore, the set \(X \setminus \mathbb{M} \) is nonempty and has a nonempty interior, and every critical point of any multiplier is in \(X \).
The accumulation set \mathcal{X}
Roots of the multipliers and Lyapunov exponents

The root of the multiplier of a periodic orbit \(\mathcal{O} \):

\[
g_{\mathcal{O}}(c) := \left[\rho_{\mathcal{O}}(c) \right]^{1/|\mathcal{O}|}
\]

The Lyapunov exponent of an arbitrary orbit \(z_0, z_1, z_2, \ldots \):

\[
\lambda_c(z_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log |f'_c(z_j)|
\]

For a periodic orbit \(\mathcal{O} = \langle z_0, \ldots, z_{k-1} \rangle \),

\[
\lambda_c(z_0) = \log |g_{\mathcal{O}}(c)|
\]
Roots of the multipliers and Lyapunov exponents

The root of the multiplier of a periodic orbit \mathcal{O}:

$$g_{\mathcal{O}}(c) := [\rho_{\mathcal{O}}(c)]^{1/|\mathcal{O}|}$$

The Lyapunov exponent of an arbitrary orbit z_0, z_1, z_2, \ldots:

$$\lambda_c(z_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log |f'_c(z_j)|$$

For a periodic orbit $\mathcal{O} = \langle z_0, \ldots, z_{k-1} \rangle$,

$$\lambda_c(z_0) = \log |g_{\mathcal{O}}(c)|$$

Ergodic Theorem: There exists a function $L : \mathbb{C} \to \mathbb{R}$, such that $\lambda_c(z_0) = L(c)$, for a.e. $z_0 \in J_c$ with respect to the harmonic measure on J_c.

Przytycki’s formula: $L(c) = \log 2 + \frac{1}{2} G_M(c)$.
Roots of the multiplier maps in $\mathbb{C} \setminus \mathcal{M}$

- Ω_c^k is the set of all period k cycles of f_c, for $c \in \mathbb{C}$.

Lemma: For any $\delta > 0$ and a compact subset $K \subset \mathbb{C} \setminus \mathcal{M}$, the following holds:

$$\lim_{k \to \infty} \frac{\# \{ \mathcal{O} \in \Omega_c^k : \| \log |g_\mathcal{O}| - L \|_K < \delta \} \# \Omega_c^k}{\# \Omega_c^k} = 1$$

Igors Gorbovickis

Critical points of the multiplier map
\(\Omega^k_c \) is the set of all period \(k \) cycles of \(f_c \), for \(c \in \mathbb{C} \).

Lemma: For any \(\delta > 0 \) and a compact subset \(K \subset \mathbb{C} \setminus M \), the following holds:

\[
\lim_{k \to \infty} \frac{\# \{ \mathcal{O} \in \Omega^k_c : \| \log |g_{\mathcal{O}}| - L \|_K < \delta \}}{\# \Omega^k_c} = 1
\]

or equivalently,

\[
\lim_{k \to \infty} \frac{\# \{ \mathcal{O} \in \Omega^k_c : \| g_{\mathcal{O}} - 2 \sqrt{\phi_M} \|_K < \delta \}}{\# \Omega^k_c} = 1,
\]

where

\[\phi_M : \mathbb{C} \setminus M \to \mathbb{C} \setminus \overline{D} \] is a conformal diffeomorphism.
The sets \mathcal{Y}_c

- Ω_c is the set of all repelling periodic orbits of f_c.
- For every $\mathcal{O} \in \Omega_{c_0}$, the function
 \[\nu_{\mathcal{O}}(c) := \frac{\rho'_{\mathcal{O}}(c)}{|\mathcal{O}| \rho_\mathcal{O}(c)} = \left[\log g_{\mathcal{O}}(c)\right]' \]
 is defined and analytic around $c = c_0$.
- For each $c \in \mathbb{C}$, we consider the set $\mathcal{Y}_c \subset \mathbb{C}$, defined by
 \[\mathcal{Y}_c := \{ \nu_{\mathcal{O}}(c) \mid \mathcal{O} \in \Omega_c \} \]
The sets \mathcal{Y}_c

- Ω_c is the set of all repelling periodic orbits of f_c.
- For every $O \in \Omega_{c_0}$, the function
 \[
 \nu_O(c) := \frac{\rho'_O(c)}{|O| \rho_O(c)} = [\log g_O(c)]'
 \]
 is defined and analytic around $c = c_0$.
- For each $c \in \mathbb{C}$, we consider the set $\mathcal{Y}_c \subset \mathbb{C}$, defined by
 \[
 \mathcal{Y}_c := \{ \nu_O(c) \mid O \in \Omega_c \}.
 \]

Theorem (Firsova, G. 2020): The following two properties hold:

(i) For every parameter $c \in \mathbb{C} \setminus \{-2\}$, the set \mathcal{Y}_c is convex; for $c = -2$, the set \mathcal{Y}_{-2} is the union of a convex set and the point $-\frac{1}{6}$.

(ii) For every parameter $c \in \mathbb{C} \setminus \mathcal{M}$, the set \mathcal{Y}_c is bounded. A parameter $c \in \mathbb{C} \setminus \mathcal{M}$ belongs to \mathcal{X}, if and only if $0 \in \mathcal{Y}_c$.
Critical points of the Hausdorff dimension function

Hausdorff dimension function: \(\delta(c) := \dim_H(J_c) \)

Theorem (Bowen): The function \(\delta \) is real-analytic in each hyperbolic component (including the complement of \(\mathbb{M} \)).

Theorem (Y. M. He, H. Nie 2020): (Version for the quadratic family) If \(c \in \mathbb{C} \) is a hyperbolic parameter and \(0 \notin \mathcal{V}_c \), then \(c \) is not a critical point of the function \(\delta \).

Corollary: The Hausdorff dimension function \(\delta \) has no critical points in \(\mathbb{C} \setminus \mathcal{X} \).
Proof of (i): Averaging Lemma

Averaging Lemma: Let $\mathcal{O}_1, \mathcal{O}_2$ be two distinct non-exceptional repelling periodic orbits of f_c. Then for any $t \in [0, 1]$, there exists a sequence of periodic orbits $\mathcal{O}_3, \mathcal{O}_4, \ldots$ of f_c, such that

$$g_{\mathcal{O}_j} \to g_{\mathcal{O}_1}^t g_{\mathcal{O}_2}^{1-t}, \quad \text{and} \quad \nu_{\mathcal{O}_j} \to t\nu_{\mathcal{O}_1} + (1-t)\nu_{\mathcal{O}_2}$$

uniformly on a neighborhood of c for appropriate branches of the powers.
Proof of (ii)

\[\nu_O(c) := \frac{\rho'_O(c)}{|O| \rho_O(c)} = [\log g_O(c)]' \]

Lemma: Let \(U \subset \mathbb{C} \setminus \partial M \) be an open domain and fix \(c \in U \). Then each map from the family

\[\mathcal{F}_c = \{ \nu_O \mid O \in \Omega_c \} \]

is defined in \(U \), and \(\mathcal{F}_c \) is normal in \(U \).

Corollary: For every \(c \in \mathbb{C} \setminus \partial M \), we have

\[\mathcal{Y}_c = \{ \nu(c) \mid \nu \in \overline{\mathcal{F}_c} \}. \]

Proof of (ii): \(c \in \mathcal{X} \iff \exists \) a sequence of points \(c_j \to c \) and a sequence of orbits \(O_j \in \Omega_c \), such that \(\nu_{O_j}(c_j) = 0 \), \(\implies \exists \) a map \(\nu \in \overline{\mathcal{F}_c} \), such that \(\nu(c) = 0 \iff 0 \in \mathcal{Y}_c \).

“\(\iff \)” also holds if \(\nu \not\equiv 0 \).

Lemma: If \(c \in \mathbb{C} \setminus \overline{M} \), then \(0 \notin \overline{\mathcal{F}_c} \).
\(\mathcal{X} \) is bounded and path connected

Lemma: The set \(\mathcal{X} \) is bounded.

Idea of the proof: Normality of the family \(\{g_\mathcal{O} \mid \mathcal{O} \in \Omega_c\} \) in \(\mathbb{C} \setminus \mathcal{M} \).

Lemma: The set \(\mathcal{X} \cup \mathcal{M} \) is path connected.

Idea of the proof:

- Let \(c_0 \in \mathcal{X} \setminus \mathcal{M} \) and \(\nu_\mathcal{O}(c_0) = 0 \), for some orbit \(\mathcal{O} \). Let \(\mathcal{O}' \) be another orbit, and consider

 \[
 \nu_t := (1 - t)\nu_\mathcal{O} + t\nu_{\mathcal{O}'}, \quad \text{for } t \in [0, 1].
 \]

 Then the curve

 \[
 [0, 1] \ni t \mapsto c_t \in \mathbb{C}, \quad \text{such that } \nu_t(c_t) = 0
 \]

 is contained in \(\mathcal{X} \).

- Take \(\mathcal{O}' = \mathcal{O}_2 \) – the unique periodic orbit of period 2.

- \(\rho_{\mathcal{O}_2}(c) = 4c + 4 \), \(\Rightarrow \) \(\nu_1 \) has no zeros in \(\mathbb{C} \) \(\Rightarrow \) the curve \(c_t \) leaves \(\mathcal{X} \setminus \mathcal{M} \), \(\Rightarrow \) connects \(c_0 \) with \(\partial \mathcal{M} \).
\(M \subset X \)

\[F_k(c) := f_c^{(k-1)}(c). \]

Then \(F_k(c) \) is the free term of the polynomial \(f_c^k(z) \), hence

\[
F_k(c) = 2^{-2^k} \prod_{m \in \mathbb{N}, m | k} \prod_{\mathcal{O} \in \Omega_c^m} \rho_\mathcal{O}(c),
\]

where the product is taken over all \(m \in \mathbb{N} \), such that \(m \) divides \(k \) and over all periodic orbits \(\mathcal{O} \in \Omega_c^m \).

\[
\frac{F'_k(c)}{kF_k(c)} = \sum_{m \in \mathbb{N}, m | k} \sum_{\mathcal{O} \in \Omega_c^m} \frac{m}{k} \nu_\mathcal{O}(c) \to 0,
\]

as \(k \to \infty \) over an appropriate subsequence, provided that \(c \in \text{int}(M) \) is not parabolic or critically periodic.