THE CUBIC CONNECTEDNESS LOCUS: LEMON LIMBS

Carsten Lunde Petersen, IMFUFA at INM Roskilde University
joint work with Saeed Zakeri CUNY

On the Geometric Complexity of Julia Sets - II
On-line Conference August 2020 hosted by
The Stefan Banach International Mathematical Center
GUIDING QUESTION.

- Limb decomposition has proven to be a very effective way to analyse the Mandelbrot set.
- Is there a fruitfull similar divide and conquer approach to understanding the cubic connectedness locus C?
- Does the cubic connectedness locus also have a tangible limb structure?
We will be working with cubic polynomials in the normal form

\[P_{a,b} : z \mapsto z^3 + 3az^2 + b \quad a, b \in \mathbb{C} \quad (1) \]

with marked critical points at 0, \(-2a\). More precisely, we have

<table>
<thead>
<tr>
<th>critical points</th>
<th>0</th>
<th>(-2a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical values</td>
<td>(b)</td>
<td>(4a^3 + b)</td>
</tr>
<tr>
<td>co-critical points</td>
<td>(-3a)</td>
<td>(a)</td>
</tr>
</tbody>
</table>
Basic notation I.

- We will think of 0 and $-2a$ as the “first” and “second” critical points, respectively.
- The space $\mathcal{P}(3)$ of all such critically marked cubics is isomorphic to \mathbb{C}^2 with coordinates (a, b).
- Two distinct cubics $P_{a,b}$ and $P_{a',b'}$ are conjugate by an affine map preserving the marking if and only if $a' = -a$, $b' = -b$. The unique such conjugacy is $\tau(z) = -z$.
- Thus, the space of all affine conjugacy classes (the so-called “moduli space”) of marked cubics is also isomorphic to \mathbb{C}^2 with coordinates (a^2, b^2).
- Note however that conjugacy by τ changes the labelling of external rays, i.e it shifts all arguments by $\frac{1}{2}$ mod 1.
Basic notation II.

- $Q_c : z \mapsto z^2 + c$, with Julia set and filled Julia set J_c and K_c, Böttcher coordinate ϕ_c, external rays $R_c(\theta)$

- M: the Mandelbrot set, with external rays $R_M(\theta)$

- $P_{a,b}(z) = z^3 + 3az^2 + b$, with marked critical points at 0 and $-2a$, filled Julia set and Julia set $K_{a,b}$ and $J_{a,b}$, Böttcher coordinate $\phi_{a,b}$, external rays $R_P(\theta)$

- $P(3) \cong \mathbb{C}^2, C(3), \mathcal{E}(3)$: The cubic parameter space, connected locus and escape locus

- H: The principal hyperbolic component in $C(3)$ containing $P_{0,0} : z \mapsto z^3$.
The Lemon family – The starting point –.

- We call the one complex dimensional family
 \[P_a(z) = P_{a,0} = z^3 + 3az^2, \quad a \in \mathbb{C} \]
 the Lemon Family.

- The point 0 is a persistent super attracting fixed point in the Lemon family. We denote by \(\Lambda_a \) the immediate basin of 0 for \(P_a \).

- The central hyperbolic component \(\mathcal{H}_0 \) of the Lemon family is
 \[\mathcal{H}_0 := \{ a \mid -2a \in \Lambda_a \} \]

- By the Faught-Roesch theorem
 1. the immediate basin \(\Lambda_a \) is a Jordan domain, when \(a \notin \mathcal{H}_0 \).
 2. \(\mathcal{H}_0 \) is a Jordan domain and \(P_a \) has a quadratic-like restriction hybridly equivalent to \(Q_0 \) and with filled-in Julia set \(\overline{\Lambda}_a \) if and only if \(a \notin \overline{\mathcal{H}}_0 \).
The Lemon \mathcal{H}_0 and some of its limbs.
We say that $P = P_{a,b} \in \mathcal{P}(3)$ is **centrally renormalizable** if P has a quadratic-like restriction $P : U \to U'$ with $0 \in U$ and with connected filled Julia set. Thus $P^n(0) \in U$ for all n while $-2a \notin U$.
The central renormalization curves

Definition
Let $c \in \mathcal{M}$ and define $\mathcal{X}_c \subset \mathcal{P}(3)$ as the set of all centrally renormalizable $P_{a,b}$, whose quadratic-like restriction around 0 is hybrid equivalent to Q_c.

- By definition, the sets \mathcal{X}_c for distinct c are disjoint.
- $\mathcal{X}_0 = \mathbb{C} \setminus \overline{\mathcal{H}_0}$

Lemma
\mathcal{X}_c is a one-dimensional complex analytic set for every $c \in \mathcal{M}$, that is, every point in \mathcal{X}_c has an open neighborhood $U \subset \mathcal{P}(3)$ such that $\mathcal{X}_c \cap U$ is biholomorphic to the disk \mathbb{D}.
The escape region and \mathcal{X}_c.

Definition

We denote by \mathcal{E}_c the set of parameters in \mathcal{X}_c for which the second critical point $-2a$ escapes to ∞

$$\mathcal{E}_c = \mathcal{X}_c \cap \mathcal{E}(3).$$

Theorem (Branner-Hubbard)

The set \mathcal{E}_c is isomorphic to the punctured disk $\mathbb{C} \setminus \overline{D}$.

\mathcal{E}_c will henceforth be denoted the escape region in \mathcal{X}_c.

All cubics in \mathcal{E}_c are quasiconformally conjugate.

Question

Is \mathcal{X}_c connected? Is it embedded in $\mathcal{P}(3)$? Is $\pi_1(\mathcal{X}_c)$ infinite cyclic generated by the loop around the puncture in \mathcal{E}_c?
Examples of \mathcal{E}_c.

Name: cubicsuperper2.so
XLeft: -1.29844
XRight: 1.54219
Iteration: 100
ColorMap: default.map
No parameters

Name: cubicsuperper3torusray.so
XLeft: 0.0726171
XRight: 1.51977
Iteration: 100
ColorMap: default.map
No parameters

Name: cubicsuperper3torusray.so
XLeft: 1.29762
XRight: 2.09246
Iteration: 100
ColorMap: default.map
No parameters

Name: cubicsuperper3torusray.so
XLeft: 1.29762
XRight: 2.09246
Iteration: 100
ColorMap: default.map
No parameters
Combinatorics of periodic orbits.

- Let \(f : \mathbb{T} \to \mathbb{T} := \mathbb{R}/\mathbb{Z} \) be a degree \(k \geq 2 \) covering map.

- Example: the multiplication-by-\(k \) map \(m_k : t \mapsto kt \pmod{\mathbb{Z}} \).

- Let \(\mathcal{O} = \{t_1, \ldots, t_q\} \) with \(0 \leq t_1 < \cdots < t_q < 1 \) be a \(q \)-periodic orbit for \(f \).

- Example \(f = m_2 \) and \(\mathcal{O} = \{1/5, 2/5, 3/5, 4/5\} \) with \(k = 2 \) and \(q = 4 \).

- By the **combinatorics** of \(\mathcal{O} \) under \(f \) we mean the cyclic permutation \(\sigma \) of \(\{1, \ldots, q\} \) defined by

\[
 f(t_j) = t_{\sigma(j)} \quad \text{for all } 1 \leq j \leq q.
\]

- in the example above \(\sigma = (1, 2, 4, 3) \).
Illustrations.
Theorem

A given combinatorics σ is realised at most once by m_2.

Theorem

Every q-periodic combinatorics σ realised by m_2 is realised precisely $q + 1$ times under m_3 by orbits O_0, \ldots, O_q. For $q > 1$ these orbits are uniquely determined by the deployment condition

$$#(O_j \cap [0, 1/2]) = j \quad 0 \leq j \leq q.$$
Orbit interlacing and simulating orbits

Theorem

Let \(\{ t_1, \ldots, t_q \} \) be an \(m_2 \) orbit of period \(q \geq 2 \) and combinatorics \(\sigma \). For each \(1 \leq k \leq q \), the neighboring orbits \(O_{k-1}, O_k \) interlace. More precisely, if \(O_k = \{ x_1, \ldots, x_q \} \) and \(O_{k-1} = \{ y_1, \ldots, y_q \} \), then

\[
0 < x_1 < y_1 < \cdots < x_k < \frac{1}{2} < y_k < \cdots < x_q < y_q < 1. \quad (3)
\]

Definition

We call the pair

\[
O^-(t) := O_k \quad \text{and} \quad O^+(t) := O_{k-1}
\]

the **simulating orbits** for the periodic point \(t = t_k \).

We extend the above definitions to the fixed point \(t = 0 \) by setting

\[
O^-(0) := \{ 0 \} \quad \text{and} \quad O^+(0) := \{ 1/2 \}.
\]
Simulating orbits.

- We call the pair points

\[x_k \in \mathcal{O}^-(t) \quad y_k \in \mathcal{O}^+(t) \]

the **critical angles** associated with \(t \) and

- \(m_3(x_k) = x_{\sigma(k)} \quad m_3(y_k) = y_{\sigma(k)} \)

the **critical value angles** associated with \(t \).

- An easy computation shows that

\[y_k - x_k = \frac{3q - 1}{3q - 1} \quad \text{and} \quad y_{\sigma(k)} - x_{\sigma(k)} = \frac{1}{3q - 1}. \]
rabbit

\[\theta^+ = \frac{15}{26} \]

\[\theta^- = \frac{6}{26}, \frac{5}{26} \]

\[\mathcal{O}_1 \cup \mathcal{O}_2 \]

\[\theta^+ = \frac{14}{26} \]

\[\theta^- = \frac{5}{26} \]

\[\mathcal{O}_0 \cup \mathcal{O}_1 \]

\[t_1 = \frac{1}{7} \]

\[t_2 = \frac{2}{7} \]

\[t_3 = \frac{4}{7} \]

\[\sigma = (1, 2, 3) \]
Cocapelli

\[
\begin{align*}
\theta^- &= \frac{24}{80}, \quad \theta^+ = \frac{51}{80} \\
\theta^- &= \frac{17}{80}, \quad \theta^+ = \frac{56}{80} \\
\theta^- &= \frac{8}{80}, \quad \theta^+ = \frac{73}{80} \\
\theta^- &= \frac{1}{80}, \quad \theta^+ = \frac{21}{80} \\
\theta^- &= \frac{2}{80}, \quad \theta^+ = \frac{24}{80} \\
\theta^- &= \frac{21}{80}, \quad \theta^+ = \frac{56}{80} \\
\theta^- &= \frac{7}{80}, \quad \theta^+ = \frac{63}{80} \\
\theta^- &= \frac{4}{80}, \quad \theta^+ = \frac{68}{80} \\
\theta^- &= \frac{36}{80}, \quad \theta^+ = \frac{72}{80} \\
\theta^- &= \frac{28}{80}, \quad \theta^+ = \frac{21}{80} \\
\theta^- &= \frac{12}{80}, \quad \theta^+ = \frac{36}{80} \\
\theta^- &= \frac{7}{80}, \quad \theta^+ = \frac{28}{80} \\
\theta^- &= \frac{4}{80}, \quad \theta^+ = \frac{7}{80} \\
\theta^- &= \frac{1}{80}, \quad \theta^+ = \frac{1}{80}
\end{align*}
\]

\[\sigma = (1, 2, 4, 3)\]
Lemon Limbs and Wakes I.

Definition

Let \(t = t_k \) be the \(k \)-th point in a \(q \)-cycle for \(m_2 \) as above and let \(O_{k-1} = \{x_1, \ldots, x_q\} \) and \(O_k = \{y_1, \ldots, y_q\} \) be the associated simulating cycles for \(m_3 \). We define the \(t \)-wake \(\mathcal{W}(t) \subset \mathcal{P}(3) \) as

\[
\mathcal{W}(t) := \{ P \in \mathcal{P}(3) : R_P(x_j) \text{ and } R_P(y_j) \text{ co-land for } j = 1, \ldots q \}
\]

and the corresponding "Lemon" \(t \)-limb

\[
\mathcal{L}(t) = C(3) \cap \mathcal{W}(t)
\]

Note that the points \(z_j(P) = \overline{R_P(x_j)} \cap \overline{R_P(y_j)} \) form a periodic orbit whose period is a divisor of \(q \) and that either this orbit is repelling or \((P^q)'(z_j(P)) = 1\). Also note that wakes are neither open nor closed.
The involution $\theta \mapsto \theta^* := \theta + \frac{1}{2}$ is an automorphism of \mathfrak{m}_3 exchanging the fixed points 0 and $\frac{1}{2}$ for \mathfrak{m}_3. We define

$$\mathcal{W}^*(t) := \{ P \in \mathcal{P}(3) : R_P(x^*_j) \text{ and } R_P(y^*_j) \text{ co-land for } j = 1, \ldots, q\}$$

and

$$\mathcal{L}^*(t) = \mathcal{C}(3) \cap \mathcal{W}^*(t_k)$$

Then P belongs to $\mathcal{W}(t)$ or $\mathcal{L}(t)$ if and only if $\tau \circ P \circ \tau$ belongs to $\mathcal{W}^*(t)$ or $\mathcal{L}^*(t)$ respectively (recall $\tau(z) = -z$).

Definition

For $c \in \mathcal{M}$ denote by $\mathcal{L}_c(t)$ and $\mathcal{L}^*_c(t)$ the intersections

$$\mathcal{L}_c(t) := \overline{\mathcal{X}_c} \cap \mathcal{L}(t) \quad \mathcal{L}^*_c(t) := \overline{\mathcal{X}_c} \cap \mathcal{L}^*(t).$$
Wakes and Limbs in X_0.

\[\mathcal{W} \]

\[\mathcal{W}^{(1/3)} \]

\[\mathcal{W}^{(1/2)} \]

\[\mathcal{W}(0) \]

\[\mathcal{W}(1/3) \]

\[\mathcal{W}(2/3) \]

\[\mathcal{W}^{(2/3)} \]
More \mathcal{E}_c’s and corresponding conjectural \mathcal{X}_c’s.
What can we say about the Lemon t-limb for t a periodic point for m_2?

What can we say about the intersection $\mathcal{L}_c(t)$ of the Lemon t-limb with \mathcal{X}_c for t a periodic point for m_2?

Is

$$\mathcal{X}_c = \mathcal{E}_c \cup_{t, t^* \text{ periodic for } m_2} \mathcal{L}_c(t) \cup \mathcal{L}_c(t^*)$$

We know from the Faught-Roesch Theorem that for $c = 0$ the answer to this question is yes.
Proposition

Let $0 \leq t \leq s < 1$ be two periodic points for m_2. Then

1. $\mathcal{W}(t) \cap \mathcal{W}(s) \neq \emptyset \implies t = s$.

2. For $c \in M$

 $$\mathcal{W}_c(t) \cap \mathcal{W}_c^*(s) \neq \emptyset \implies$$
 - $t = s = 0$ or $t = t_k, s = t_j$ belongs to the same rotation cycle
 - $0 < t_1 < \ldots < t_q < 1$, $\sigma = (1, 2, \ldots, q)^p$ where $(p, q) = 1$ and $k + j = q + 1$.

For $c \notin M$ the intersection possibilities of $\mathcal{W}(t)$ and $\mathcal{W}^*(s)$ is much richer.
Basic Limb dynamics

- Let \(t = t_k \) belong to a \(q \)-cycle \(0 < t_1 < \ldots < t_q < 1 \) for \(m_2 \) with combinatorics \(\sigma \), let \(c \in M \) and let \(P = P_{a,b} \in \mathcal{L}_c(t) \).

- It is not difficult to see that the second critical point \(C = -2a \) belongs to the dynamical wake \(\mathcal{W}_P(t_k) \) with boundary rays \(\mathcal{R}_P(x_k) \) and \(\mathcal{R}_P(y_k) \).

- and more generally for each \(j = 1 \ldots q \) the iterate \(P^j(C) \) belongs to the wake \(\mathcal{W}_P(t_{\sigma^j(k)}) \) with boundary rays \(\mathcal{R}_P(x_{\sigma^j(k)}) \) and \(\mathcal{R}_P(y_{\sigma^j(k)}) \).
We say that $P \in \mathcal{L}_c(t)$ is **peripherally renormaliseable** iff P^q has a quadratic-like restriction

$$P^q : V \rightarrow V'$$

with connected filled-in Julia set containing the second or peripheral critical point $C = -2a$. We call such restriction a **peripheral renormalisation** of P.
Mandelbrot copies corresponding to peripheral renormalization in \mathcal{M}_0.
Main Theorem

Theorem

Let t be periodic for m_2 with orbit $0 < t_1 < \ldots t = t_k, \ldots < t_q < 1$. Let $c \in M \setminus \{\mathcal{R}_M(t_1), \ldots, \mathcal{R}_M(t_q)\}$ and let $d \in M \setminus \{1/4\}$. Then there exists a unique cubic polynomial $P = P_{a,b} \in \mathcal{L}_c(t) = \mathcal{L}_c \cap \mathcal{L}(t)$ with peripheral renormalisation $P^q : V \to V'$ hybridly equivalent to Q_d.

Carsten Lunde Petersen, INM RUC
Start from the quadratic polynomial Q_c and the unique cubic polynomial $\hat{P} = P_a \in \text{Per}_1(0) \cap \mathcal{L}(t_k)$, which is peripherally renormalizeable with peripheral renormalisation hybridly equivalent to Q_d. Construct a new holomorphic map $f : \mathbb{C} \setminus \Lambda' \to \mathbb{C}$ by changing the external class Q_0 of Q_c to the external class of the quadratic-like map (in the sense of McMullen and Lyubich) obtained from the central renormalization of \hat{P} around the super attracting basin $\hat{\Lambda}$. Here Λ' is the hole coming from the non-fixed pre-image $\hat{\Lambda}'$ of the super attracting basin $\hat{\Lambda}$ for \hat{P}.
Illustration.
Illustrations.
Proof strategy II.

2 Change the complex structure on Λ' and its pre-images under iteration by f if necessary. The need for and possibility to do this will be described below. Denote also by f the new map.

3 Restrict to a disk bounded by some appropriate equipotential level. And perform a more or less standard cut and replace surgery on the sub-wake W'_k, $W_k \supset W'_k \supset \Lambda'$ for f to obtain a cubic polynomial like map with a central renormalization hybridly equivalent to Q_c and a peripheral renormalization, a q-renormalization around the second critical point which is hybridly equivalent to Q_d.
Proof strategy III.

4. Apply the usual straightening theorem to obtain the desired cubic polynomial $P = P_{a,b}$ by sending the central critical point to 0 and normalize at ∞ so that P is monic and $R_P(0)$ lands at the β-fixed point of the central renormalization.

Theorem

Cubic polynomials $P_{a,b}$ satisfying the specifications of the theorem are q-c-rigid.

5. Thus the so constructed polynomial P is uniquely defined up to affine conjugacy by the specifications of the theorem.
Illustrations.
Illustrations.
Illustrations.