Polynomials with Bounded Type Siegel Disks

Jonguk Yang, Stony Brook University

On Geometric Complexity of Julia Sets II, August 2020
Consider a polynomial f of degree $d \geq 2$ that has a Siegel point at 0 with rotation number ρ. Let $0 \in \Delta_f$ be the Siegel disk, A_f^∞ the attracting basin of infinity, K_f the filled Julia set, and J_f the Julia set. WLOG, assume

- 0 is fixed.
- K_f is connected.
Statement of the Theorem

Theorem (Shishikura, Zhang*)

Suppose ρ is of bounded type. Then $\partial \Delta_f$ is a quasicircle that contains at least one critical point. Consequently, ϕ_0 extends homeomorphically to $\partial \Delta_f$.

* Zhang proved the theorem for all rational maps.

Recall that ϕ^{-1}_∞ extends continuously to $\partial \mathbb{D}$ \iff J_f is locally connected.

Theorem (Y.)

Suppose ρ is of bounded type. Then J_f is locally connected at every point in $\partial \Delta_f$.

The analogous theorem for attracting components was proved by Kozlovski-van Strien, and for parabolic components by Roesch-Yin.
Suppose ρ is of bounded type. Then there exists a Blaschke product F of degree $2d - 1$ such that f is quasiconformally conjugate to the modified Blaschke product \tilde{F} obtained from F via the Douady-Ghys surgery.

Henceforth, we assume that F has a critical point at 1.
Consider an analytic circle homeomorphism F with rotation number ρ. Choose $x_0 \in \partial \mathbb{D}$. Let q_n be the nth closest return time, and let l_n be the nth closest return arc bounded by x_0 and $x_{q_n} = F^{q_n}(x_0)$. The nth dynamic partition of $\partial \mathbb{D}$ is defined as

$$\mathcal{I}_n = \{F^i(l_n) \mid 0 \leq i < q_{n+1}\} \cup \{F^i(l_{n+1}) \mid 0 \leq i < q_n\}.$$
Real A Priori Bounds

Theorem (Herman)

For all adjacent arcs $I, J \in \mathcal{I}_n$, we have $C^{-1}|J| < |I| < C|J|$ for some uniform $C > 1$. Moreover, there exists a uniform constant $\lambda > 0$ such that $F^{q_{n+1}}$ restricted to the $\lambda|I_n|$-neighborhood N_n of I_n has uniformly bounded degree and distortion.
The Quadratic Case ($d = 2$)

Let f be a quadratic polynomial with a Siegel disc of rotation number ρ.

Theorem (Petersen)

Let F be a cubic Blaschke product with fixed critical points at 0 and ∞, and a double critical point at 1. Then J_F is locally connected. Consequently, if ρ is of bounded type, then J_f is locally connected.

Theorem (Petersen-Zakeri)

J_f is locally connected for almost every ρ.
Denote the puzzle partition of depth \(n \) by \(\mathcal{T}_n = f^{-n}(\mathcal{T}_0) \), and a puzzle piece of depth \(n \) by \(P_n \subseteq \mathbb{C} \setminus \mathcal{T}_n \). If \(x \in P_0 \supset P_1 \supset \ldots \), then the fiber at \(x \) is given by \(\mathcal{F}_x = \bigcap_{n=0}^{\infty} P_n \). Recall that if \(\mathcal{F}_x = \{x\} \), then \(J_f \) is locally connected at \(x \).
Suppose $P_{n_1} \supset P_{n_2} \supset \ldots \supset \times$. Denote the ith puzzle annuli by $A_i := P_{n_i} \setminus \overline{P_{n_{i+1}}}$. Grötzsch inequality: $\sum_{i=1}^{\infty} \mod(A_i) = \infty \implies \bigcap_{i=1}^{\infty} P_{n_i} = F_{\times} = \{x\}$. Let $A \subset U$ and $B \subset V$ be topological discs, and let $f : (U, A) \to (V, B)$ be a holomorphic branched covering between respective discs. Then

$$\mod(U \setminus \overline{A}) \geq \frac{1}{\deg f} \mod(V \setminus \overline{B}).$$
Let $A \subset A' \subset U$ and $B \subset B' \subset V$ be topological discs, and let $f : (U, A', A) \to (V, B', B)$ be a holomorphic branched covering between respective discs. Denote $D = \deg f \geq d = \deg(f|_{A'})$. Suppose for some $\eta > 0$, we have:

$$\text{mod}(B' \setminus B) > \eta \text{mod}(U \setminus A).$$

Then there exists $\epsilon = \epsilon(\eta, D) > 0$ such that

$$\text{mod}(U \setminus A) > \epsilon \quad \text{or} \quad \text{mod}(U \setminus A) > \frac{\eta}{2d^2} \text{mod}(V \setminus B).$$
Suppose that $f^{r_i}(P_{n_i}) = P_{n_{i-1}}$, where r_i is the first return time of x to P_{n_i}. Since r_i's grow exponentially, we have $r_i > R = r_{i-1} + r_{i-2} + \ldots + r_{i-K+1}$. Consider

$$(P_{n_{i-1}}, P_{n_i}, P_{n_{i+1}}) \xrightarrow{f^R} (P_{n_{i-K}}, f^R(P_{n_i}), f^R(P_{n_{i+1}})).$$
A fiber can only intersect $\partial \mathbb{D}$ at one point. A fiber \mathcal{F}_θ for which $\mathcal{F}_\theta \cap \partial \mathbb{D} = \{e^{\theta i}\}$ is said to be at height 0. A critical point c is at height 0 if $c \in \mathcal{F}_\theta$ for some θ. In this case, \mathcal{F}_θ is said to be critical.
Near Degenerate Modulus and Slits
For bounded type ρ, let \mathcal{C}_ρ be the family of cubic polynomials f_a, $a \in \mathbb{C}^*$, that has a Siegel fixed point at 0 of rotation number ρ, and critical points at 1 and a. Let $\mathcal{M}_\rho \subset \mathcal{C}_\rho$ be the connectedness locus. Define the Zakeri curve as

$$\mathcal{Z}_\rho := \{ a \in \mathbb{C}^* \mid 1, a \in \partial \Delta_{f_a} \} \subset \mathcal{M}_\rho.$$