Working seminar on arXiv:2002.09015 [math.KT]

(a.k.a. what Piotr and I did in Naples before COVID-19)

Francesco D'Andrea

06/04/2020

Skype meetings on C*-algebras 2020

Summary

Plan of the talk: go through some of the proofs in arXiv:2002.09015 [math.KT].
(1) Three preliminary lemmas
(2) Milnor approach
(3) Comparison theorem: from q - to multipullback

Three preliminary lemmas

Lemma 1: attaching pullbacks.

Given a commutative diagram of C^{\star}-algebras and morphisms:

if the two inner squares are pullbacks, then so is the outer rectangle; if the right square and the outer rectangles are pullbacks, so is the left square.

Lemma 2: gauging U(1)-actions.

In the above diagram, suppose f and g are isomorphisms.
Then the left square is a pullback \Longleftrightarrow the outer rectangle is a pullback.

Three preliminary lemmas

```
Remark (Waldhausen category)
A*-hom \phi:A }->\mathrm{ B is called a weak equivalence if }\mp@subsup{\phi}{*}{}:\mp@subsup{K}{*}{}(A)->\mp@subsup{K}{*}{}(B)\mathrm{ is iso.
```


Three preliminary lemmas

Remark (Waldhausen category)
$A *$-hom $\phi: A \rightarrow B$ is called a weak equivalence if $\phi_{*}: K_{*}(A) \rightarrow K_{*}(B)$ is iso.

Lemma 3: comparison.
[Farsi, Hajac, Maszczyk, Zieliński, 2017]
In a commutative diagram

if the squares are pullback diagrams and ϕ, ϕ_{1}, ϕ_{2} are weak equivalences, then so is ϕ.

Multipullback quantum spaces

- $C\left(S_{H}^{2 n+1}\right)$ is generated by commuting partial isometries s_{0}, \ldots, s_{n} with relation

$$
\prod_{i=0}^{n}\left(1-s_{i} s_{i}^{*}\right)=0
$$

Multipullback quantum spaces

- $C\left(S_{\mathrm{H}}^{2 n+1}\right)$ is generated by commuting partial isometries s_{0}, \ldots, s_{n} with relation

$$
\prod_{i=0}^{n}\left(1-s_{i} s_{i}^{*}\right)=0
$$

- $t:=$ right unilateral shift on $\ell^{2}(\mathbb{N})$ and

$$
t_{i}:=\underbrace{1 \otimes \ldots \otimes 1}_{i \text { times }} \otimes t \otimes \underbrace{1 \otimes \ldots \otimes 1}_{n-i \text { times }} \quad \forall i=0, \ldots, n .
$$

Multipullback quantum spaces

- $C\left(S_{\mathrm{H}}^{2 n+1}\right)$ is generated by commuting partial isometries s_{0}, \ldots, s_{n} with relation

$$
\prod_{i=0}^{n}\left(1-s_{i} s_{i}^{*}\right)=0
$$

- $t:=$ right unilateral shift on $\ell^{2}(\mathbb{N})$ and

$$
t_{i}:=\underbrace{1 \otimes \ldots \otimes 1}_{i \text { times }} \otimes t \otimes \underbrace{1 \otimes \ldots \otimes 1}_{n-i \text { times }} \quad \forall i=0, \ldots, n .
$$

- There is an obvious $\mathrm{U}(1)$-action / $\mathrm{C}(\mathrm{U}(1))$-coaction on $\mathrm{C}\left(\mathrm{S}_{\mathrm{H}}^{2 n+1}\right)$ and $\mathcal{T}^{\otimes n+1}$.

Multipullback quantum spaces

- $C\left(S_{\mathrm{H}}^{2 n+1}\right)$ is generated by commuting partial isometries s_{0}, \ldots, s_{n} with relation

$$
\prod_{i=0}^{n}\left(1-s_{i} s_{i}^{*}\right)=0
$$

- $t:=$ right unilateral shift on $\ell^{2}(\mathbb{N})$ and

$$
t_{i}:=\underbrace{1 \otimes \ldots \otimes 1}_{i \text { times }} \otimes t \otimes \underbrace{1 \otimes \ldots \otimes 1}_{n-i \text { times }} \quad \forall i=0, \ldots, n .
$$

- There is an obvious $\mathrm{U}(1)$-action $/ \mathrm{C}(\mathrm{U}(1))$-coaction on $\mathrm{C}\left(\mathrm{S}_{\mathrm{H}}^{2 n+1}\right)$ and $\mathcal{T}^{\otimes \mathfrak{n + 1}}$.
- $\mathrm{C}\left(\mathbb{C P}_{\mathcal{T}}^{n}\right):=\mathrm{C}\left(\mathrm{S}_{\mathrm{H}}^{2 n+1}\right)^{\mathrm{u}(1)}$.

Multipullback quantum spaces

- $C\left(S_{\mathrm{H}}^{2 n+1}\right)$ is generated by commuting partial isometries s_{0}, \ldots, s_{n} with relation

$$
\prod_{i=0}^{n}\left(1-s_{i} s_{i}^{*}\right)=0
$$

- $t:=$ right unilateral shift on $\ell^{2}(\mathbb{N})$ and

$$
t_{i}:=\underbrace{1 \otimes \ldots \otimes 1}_{i \text { times }} \otimes t \otimes \underbrace{1 \otimes \ldots \otimes 1}_{n-i \text { times }} \quad \forall i=0, \ldots, n .
$$

- There is an obvious $\mathrm{U}(1)$-action $/ \mathrm{C}(\mathrm{U}(1))$-coaction on $\mathrm{C}\left(\mathrm{S}_{\mathrm{H}}^{2 \mathfrak{n}+1}\right)$ and $\mathcal{T}^{\otimes \mathfrak{n}+1}$.
- $\mathrm{C}\left(\mathbb{C P}_{\mathcal{T}}^{\mathrm{n}}\right):=\mathrm{C}\left(\mathrm{S}_{\mathrm{H}}^{2 n+1}\right)^{\mathrm{u}(1)}$.
- There is a $\mathrm{U}(1)$-equivariant short exact sequence

$$
0 \rightarrow \mathcal{K}\left(\ell^{2}\left(\mathbb{N}^{\otimes n+1}\right)\right) \rightarrow \mathcal{T}^{\otimes n+1} \xrightarrow{\sigma_{n}} C\left(S_{\mathrm{H}}^{2 n+1}\right) \rightarrow 0
$$

where $\sigma_{n}\left(t_{i}\right):=s_{i}$ for all $i=0, \ldots, n$.

A tubular neighbourhood theorem

Want to prove $(\forall \mathrm{n} \geqslant 0)$:

Theorem

The map

$$
\mathrm{C}\left(\mathbb{C P}_{\mathcal{T}}^{n}\right) \xrightarrow{\mathrm{id} \otimes 1_{\mathcal{T}}} \mathrm{C}\left(\mathrm{TN}\left(\mathbb{C P}_{\mathcal{T}}^{n}\right)\right):=\left(\mathrm{C}\left(\mathrm{~S}_{\mathrm{H}}^{2 \mathrm{n}+1}\right) \otimes \mathcal{T}\right)^{\mathrm{u}(1)}
$$

is a weak equivalence.

Lemma
[Hajac, Nest, Pask, Sims, Zieliński, 2018]
For every $\mathrm{n} \geqslant 1$ the diagram

$$
\begin{aligned}
\mathrm{p}_{1}\left(s_{\mathrm{i}}\right) & := \begin{cases}\mathrm{s}_{\mathrm{i}} \otimes 1 & \forall 0 \leqslant \mathfrak{i}<\mathrm{n} \\
1 \otimes \mathrm{t} & \text { if } \mathfrak{i}=\mathrm{n}\end{cases} \\
\mathrm{p}_{2}\left(\mathrm{~s}_{\mathrm{i}}\right) & := \begin{cases}\mathrm{t}_{\mathrm{i}} \otimes 1 & \forall 0 \leqslant \mathfrak{i}<\mathrm{n} \\
1 \otimes \mathfrak{u} & \text { if } \mathfrak{i}=\mathrm{n}\end{cases} \\
\pi_{1} & :=\mathrm{id} \otimes \sigma_{0} \\
\pi_{2} & :=\sigma_{\mathrm{n}-1} \otimes \mathrm{id}
\end{aligned}
$$

is a $\mathrm{U}(1)$-equivariant pullback diagram w.r.t. the diagonal $\mathrm{U}(1)$-action on each vertex.

We can tensor everywhere by $\mathcal{T}^{\otimes k}=: \mathcal{T}^{k}$ and get a new pullback diagram:

...then gauge the $\mathrm{U}(1)$-action using the map:

$$
\begin{aligned}
\phi: A \cdot \otimes C\left(S^{1}\right) \bullet \otimes B_{\bullet} & \rightarrow A \otimes C\left(S^{1}\right) \bullet B \\
a \otimes f \otimes b & \mapsto a_{(0)} \otimes a_{(1)} f b_{(-1)} \otimes b_{(0)}
\end{aligned}
$$

\ldots then gauge the $\mathrm{U}(1)$-action using the map:

$$
\begin{aligned}
\phi: A \cdot \otimes C\left(S^{1}\right) \bullet \otimes B_{\bullet} & \rightarrow A \otimes C\left(S^{1}\right) \bullet B \\
a \otimes f \otimes b & \mapsto a_{(0)} \otimes a_{(1)} f b_{(-1)} \otimes b_{(0)}
\end{aligned}
$$

and get the $\mathrm{U}(1)$-pullback diagram:

For $\mathrm{k}=0$ and for all $\mathrm{n} \geqslant 1$, the $\mathrm{U}(1)$-invariant part gives the pullback diagram:

For $\mathrm{k}=0$ and for all $\mathrm{n} \geqslant 1$, the $\mathrm{U}(1)$-invariant part gives the pullback diagram:

Recall that: $\quad\left(\mathrm{C}\left(\mathrm{S}_{\mathrm{H}}^{2 \mathrm{n}-1}\right) \otimes \mathcal{T}\right)^{\mathrm{U}(1)}=\mathrm{C}\left(\mathrm{TN}\left(\mathbb{C P}_{\mathcal{T}}^{n-1}\right)\right)$

We can now prove the tubular neighbourhood theorem.

Observation

A, B unital with $K_{0}=\mathbb{Z}[1]$ and $K_{1}=0 \Longrightarrow$ any unital $*$-hom $A \rightarrow B$ is a weak equivalence.

We can now prove the tubular neighbourhood theorem.
Observation
A, B unital with $K_{0}=\mathbb{Z}[1]$ and $K_{1}=0 \Longrightarrow$ any unital $*$-hom $A \rightarrow B$ is a weak equivalence.

Proof. Consider the commutative diagram:

The squares are pullbacks, the $\mathrm{U}(1)$-action is diagonal on top-left vertices and central on bottom-right, horizontal arrows are id $\otimes 1_{\mathcal{J}}$.

The $\mathrm{U}(1)$-invariant part gives:

The $\mathrm{U}(1)$-invariant part gives:

- Blue line = weak equivalence by the above-mentioned Observation.

The $\mathrm{U}(1)$-invariant part gives:

- Blue line = weak equivalence by the above-mentioned Observation.
- Green line $=$ tensor product of weak equivalences $\left(\mathrm{id}_{\mathrm{C}\left(S^{2 n-1}\right)_{H}}\right.$ and $\left.\mathrm{id}_{\mathcal{T}^{k}} \otimes 1_{\mathcal{T}}\right)$.

The $\mathrm{U}(1)$-invariant part gives:

- Blue line = weak equivalence by the above-mentioned Observation.
- Green line $=$ tensor product of weak equivalences $\left(\mathrm{id}_{\mathrm{C}\left(\mathrm{S}^{2 n-1}\right)_{\mathrm{H}}}\right.$ and $\left.\mathrm{id}_{\mathcal{T}^{k}} \otimes 1_{\mathcal{T}}\right)$.
- If we prove that $\phi_{0, k}$ is a weak equivalence for all $k \geqslant 0$, Lemma $3+$ induction on n imply that $\phi_{n, k}$ is a weak equivalence for all $n, k \geqslant 0$.

The $\mathrm{U}(1)$-invariant part gives:

- Blue line = weak equivalence by the above-mentioned Observation.
- Green line $=$ tensor product of weak equivalences $\left(\mathrm{id}_{\mathrm{C}\left(\mathrm{S}^{2 n-1}\right)_{\mathrm{H}}}\right.$ and $\left.\mathrm{id}_{\mathcal{T} k} \otimes 1_{\mathcal{T}}\right)$.
- If we prove that $\phi_{0, k}$ is a weak equivalence for all $k \geqslant 0$, Lemma $3+$ induction on n imply that $\phi_{n, k}$ is a weak equivalence for all $n, k \geqslant 0$.
- In particular $\phi_{n, 0}=\mathrm{id} \otimes 1_{\mathcal{T}}: \mathrm{C}\left(\mathbb{C P}_{\mathcal{T}}^{n}\right) \rightarrow \mathrm{C}\left(\mathrm{TN}\left(\mathbb{C P}_{\mathcal{T}}^{n}\right)\right)$ is a weak equivalence.

It remains to prove that $\phi_{0, k}$ is a weak equivalence.

It remains to prove that $\phi_{0, k}$ is a weak equivalence.

U(1)-equiv. commutative diagram:

(red arrows: $\left.a \otimes b \mapsto a b_{(-1)} \otimes b_{(0)}\right)$

It remains to prove that $\phi_{0, k}$ is a weak equivalence.

U(1)-equiv. commutative diagram:

(red arrows: $\mathrm{a} \otimes \mathrm{b} \mapsto \mathrm{ab}_{(-1)} \otimes \mathrm{b}_{(0)}$)

U(1)-invariant part:

It remains to prove that $\phi_{0, k}$ is a weak equivalence.
$\mathrm{U}(1)$-equiv. commutative diagram: U(1)-invariant part:

(red arrows: $a \otimes b \mapsto a b_{(-1)} \otimes b_{(0)}$)

Since the vertical arrows are isomorphisms and (by the above Observation) the bottom arrows are weak equivalences, $\phi_{0, k}$ is a weak equivalence.

Milnor and K-groups

Using the six-term exact sequence associated to the one-surjective pullback diagram

Milnor and K-groups

Using the six-term exact sequence associated to the one-surjective pullback diagram

and the tubular neighbourhood theorem one proves that:

Milnor and K-groups

Using the six-term exact sequence associated to the one-surjective pullback diagram

and the tubular neighbourhood theorem one proves that:

Proposition

For all $n \geqslant 1$:

$$
\mathrm{K}_{0}\left(\mathrm{C}\left(\mathbb{C P}_{\mathcal{J}}^{n}\right)\right) \simeq \mathrm{K}_{0}\left(\mathrm{C}\left(\mathbb{C}_{\mathcal{J}}^{n-1}\right)\right) \oplus \partial\left(\mathrm{K}_{1}\left(\mathrm{C}\left(\mathrm{~S}_{\mathrm{H}}^{2 n-1}\right)\right)\right)
$$

where ∂ is Milnor connecting homomorphism.

A comparison theorem

For all $n \geqslant 0$ there is a $U(1)$-equivariant weak equivalence:

$$
\mathrm{C}\left(\mathrm{~S}_{\mathrm{q}}^{2 \mathrm{n}+1}\right) \rightarrow \mathrm{C}\left(\mathrm{~S}_{\mathrm{H}}^{2 \mathrm{n}+1}\right)
$$

Its restriction and corestriction to fixed point algebras:

$$
\mathrm{C}\left(\mathbb{C P}_{\mathrm{q}}^{\mathrm{n}}\right) \rightarrow \mathrm{C}\left(\mathbb{C P}_{\mathcal{T}}^{n}\right)
$$

is a weak equivalence as well.

It maps vector bundles associated to $\mathrm{S}_{\mathrm{q}}^{2 n+1} \xrightarrow{\mathrm{u}(1)} \mathbb{C P}_{\mathrm{q}}^{n}$, generators of $\mathrm{K}_{0}\left(\mathrm{C}\left(\mathbb{C P}_{\mathrm{q}}^{n}\right)\right)$, to v. bundles associated to $\mathrm{S}_{\mathrm{H}}^{2 n+1} \xrightarrow{\mathrm{U}(1)} \mathbb{C P}_{\mathcal{T}}^{n},{ }^{n}$ proving that the latter generate $\mathrm{K}_{0}\left(\mathrm{C}\left(\mathbb{C P}_{\mathcal{T}}^{n}\right)\right)$.

[^0]
Morphisms

A U(1)-equivariant pullback diagram:

[Arici, D'Andrea, Hajac, Tobolski, 2018]

A U(1)-equivariant pullback diagram:

Spherical vs. non-spherical balls:

[Arici, D’Andrea, Hajac, Tobolski, 2018]

A U(1)-equivariant pullback diagram:

Spherical vs. non-spherical balls:

[Arici, D'Andrea, Hajac, Tobolski, 2018]

On generators:

$$
\begin{array}{cl}
\rho_{n}\left(S_{e_{i j}}\right):=t_{i} t_{j} t_{j}^{*} \prod_{k=0}^{j-1}\left(1-t_{k} t_{k}^{*}\right) & \forall 0 \leqslant i \leqslant j<n \\
\rho_{n}\left(S_{e_{i n}}\right):=t_{i} \prod_{k=0}^{n-1}\left(1-t_{k} t_{k}^{*}\right) & \forall 0 \leqslant i<n \\
\omega_{n-1}\left(S_{e_{i j}}\right):=s_{i} s_{j} s_{j}^{*} \prod_{k=0}^{j-1}\left(1-s_{k} s_{k}^{*}\right) & \forall 0 \leqslant i \leqslant j<n
\end{array}
$$

Proof of the Theorem.
With an explicit check on generators one proves the commutativity of the diagram:

Proof of the Theorem.
With an explicit check on generators one proves the commutativity of the diagram:

The left and right square are pullbacks.

Proof of the Theorem.
With an explicit check on generators one proves the commutativity of the diagram:

The left and right square are pullbacks. Lemma $3+$ induction on n prove that ω_{n} is a weak equivalence

Proof of the Theorem.

With an explicit check on generators one proves the commutativity of the diagram:

The left and right square are pullbacks. Lemma $3+$ induction on n prove that ω_{n} is a weak equivalence (ρ_{n} is a weak equivalence due to the Observation, tensor product of weak equivalences is a weak equivalence by functoriality of to Kunneth formula).

Proof of the Theorem.
With an explicit check on generators one proves the commutativity of the diagram:

The left and right square are pullbacks. Lemma $3+$ induction on n prove that ω_{n} is a weak equivalence (ρ_{n} is a weak equivalence due to the Observation, tensor product of weak equivalences is a weak equivalence by functoriality of to Kunneth formula).

Passing to $\mathrm{U}(1)$-fixed point algebras one gets we get the commutative diagram:

Passing to $\mathrm{U}(1)$-fixed point algebras one gets we get the commutative diagram:

Using again Lemma $3+$ induction on n we prove that the top horizontal map is a weak equivalence.

Questions?

[^0]: *Pushforward commutes with association, cf. [Hajac, Maszczyk, 2018].

