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Handy pre-Waldhausen categories
Our aim is to compute topological K-theory of quantum
spaces admitting a structure of kind of a quantum
CW-complex where we relax gluings so that we invert
formally maps (*-homomorphisms of C*-algebras) inducing
isomorphisms on K-theory.



Our litmus test is the case of multipullback quantum
complex projective spaces, since they do not admit a
CW-complex structure in a more restrictive sense, for
which we construct a formalism allowing us to mimick the
standard CW-complex structure of complex projective
spaces.



The use of the Meyer-Vietoris principle relies on a specific
structure, which we call (handy) pre-Waldhausen, on the
category of compact quantum spaces (meaning the
opposite category of unital C*-algebras).



Since general noncommutative C*-algebras rarely admit
characters, we are forced to consider an unpointed version
of the Waldhausen structure with an initial and a terminal
object, what we indicate by the prefix pre-.

The choice of this prefix is motivated by the fact that for
such categories there is always a canonical functor into the
Waldhausen category of pointed objects.



In the classical situation of the category of compact spaces,
this functor is faithful and reconstructs the K-theory of
compact spaces as the reduced K-theory of compact spaces
with a distinguished point added as a disjoint connected
component.



To allow a well defined, at least at the level of K-theory,
cell decomposition we need the property of handyness.

In our particular case, it allows composition of weak
hyperplane embeddings of multipullback quantum
complex projective spaces into ones of higher dimension
and constructing their weak filtration by skeleta .



Here is the categorical framework making the above
composition possible.

Definition. A pre-Waldhausen category C is a category
with an initial object ∅ and a terminal object ?, with
distinguished two classes of maps, Cof of cofibrations,
depicted as , and Weq of weak equivalences, depicted
as ∼ , such that



(Cof 1) all isomorphisms are cofibrations,
(Cof 2) for any object X the unique morphism ∅→ X is a

cofibration,
(Cof 3) if X Y is a cofibration and X X̃ any

morphism then the pushout
Y X̃ tX Y is a cofibration,



(Weq 1) all isomorphisms are weak equivalences,
(Weq 2) weak equivalences are closed under composition,
(Weq 3) glueing for weak equivalences: Given any

commutative diagram of the form
Z X Y

Z̃ X̃ Ỹ

∼ ∼ ∼

in which the vertical arrows are weak equivalences
and right horizontal ones are cofibrations, the induced
map Z tX Y → Z̃ tX̃ Ỹ is a weak equivalence.



We call a pre-Waldhausen category handy if

(Han) for every pushout diagram˜̃Z
Ỹ Z̃

Y

j̃

g j

h̃

with j being a cofibration and g being a weak
equivalence, h̃ is a weak equivalence as well.



Note that then, by (Cof 3), the arrow j̃ is necessarilly a
cofibration. Introducing the condition (Han) is motivated
by the fact that uncontrolled inverting weak equivalences
could lead, in principle, to unwanted collapses in the
homotopy category.



The latter condition prevents this and allows one to work
within the calculus of left fractions of the form Weq−1 ◦ Cof
in the homotopy category

Ho(C ) := C [Weq−1].

We call the morphisms in the class Weq−1 ◦ Cof in Ho(C )

weak cofibrations.



Under the handyness assumption we can represent them as
cospans

Ỹ

X Y

∼

denote by
X � Y



and compose them in the homotopy category Ho(C )

as follows

Z̃ Ỹ

Y Z

◦
X Y

=

˜̃Z
X Z

Fig. 1. Composition of weak cofibrations in Ho(C ):

j h i g j̃ ◦ i g̃ ◦ g

(g−1 ◦ i) ◦ (h−1 ◦ j) = (h̃ ◦ h)−1 ◦ (j̃ ◦ i)



where j̃ and h̃ are the arrows completing the pushout
square in the diagram below

˜̃Z
Ỹ Z̃

X Y Z

j̃ h̃

i g j h



Theorem 1. The opposite category of unital C*-algebras
with *-homomorphisms as morphisms, zero C*-algebra as
an initial object, complex numbers as a terminal object,
surjective *-homomorphisms as cofibrations and
*-homomorphisms inducing an isomorphism on K-theory
as weak equivalences is a handy pre-Waldhausen category.



Proof. It is obvious that the zero algebra (resp. complex
numbers) is a terminal (resp. initial) object in the
category of unital C*-algebras.

(Cof 1) Every *-isomorphism of unital C*-algebras is
surjective.

(Cof 2) The *-homomorphism into the zero algebra is
surjective.

(Cof 3) If C̃ B is a surjective *-homomorphism and
B̃ B any *-homomorphism then the pullback
*-homomorphism ˜̃C := B̃ ×B C̃ B̃ is surjective.



(Weq 1) and (Weq 2) are obvious.

(Weq 3) After inverting directions of all arrows, this is
verbatim Thm. 3.1 of [Farsi-Hajac-Maszczyk-Zieliński ‘18].



(Han) Assume that in the following pullback diagram of
C*-algebras

C

A B

D

π β

δ τ

τ is a surjective. Then π is surjective as well and β is a
K-equivalence if and only if δ is such.



Since surjective *-homomorphisms are regular
epimorphisms, they are stable under all pullbacks. This
proves surjectivity of π. Thanks to surjectivity of τ the
Mayer-Vietoris theorem provides the six-term exact
sequence

K0(C)

( π∗
β∗

)
// K0(A)⊕K0(B)

(δ∗,−τ∗)
// K0(D)

��

K1(D)

OO

K1(A)⊕K1(B)
(δ∗,−τ∗)
oo K1(C).

( π∗
β∗

)
oo



First we assume that δ is a K-equivalence. This implies
that we have a section of the map (δ∗,−τ∗), provided by
composing iA : K∗(A)→ K∗(A)⊕K∗(B), the standard
embedding, with δ−1∗ . This cuts the six-term exact
sequence into split short exact ones

0 // K∗(C)

( π∗
β∗

)
// K∗(A)⊕K∗(B)

(δ∗,−τ∗)
// K∗(D) //

iA◦δ−1∗

hh

0.



This splitting produces idempotent endomorphisms of
K∗(A)⊕K∗(B)

p := iA ◦ δ−1∗ ◦ (δ∗,−τ∗) = p ◦ p, p⊥ := id− p

such that

im
( π∗
β∗

)
= ker(δ∗,−τ∗) = ker p ∼= coim p⊥ = coim pB

where pB is a canonical projection from K∗(A)⊕K∗(B) onto
K∗(B).



Since both arrows in the sequence

K∗(C)

( π∗
β∗

)
// im
( π∗
β∗

) ∼= coim pB
pB

// K∗(B)

are isomorphisms and

pB ◦

(
π∗

β∗

)
= β∗,

β∗ is an isomorphism as well, hence β is a weak equivalence.



Now, we assume that β is a K-equivalence. This implies
that we have a map provided by composing β−1∗ with the
standard projection pB : K∗(A)⊕K∗(B)→ K∗(B), for which
the map (δ∗,−τ∗) is a section. This cuts the six-term exact
sequence into split short exact ones

0 // K∗(C)

( π∗
β∗

)
// K∗(A)⊕K∗(B)

(δ∗,−τ∗)
//

β−1∗ ◦pB

hh

K∗(D) // 0.



This splitting produces idempotent endomorphisms of
K∗(A)⊕K∗(B)

q :=

(
π∗

β∗

)
◦ β−1∗ ◦ pB = q ◦ q, q⊥ := id− q

such that

im iA = im q⊥ ∼= coker q = coker

(
π∗

β∗

)
= coim (δ∗,−τ∗) .



Since both arrows in the sequence

K∗(A)
iA

// im iA ∼= coim(δ∗,−τ∗)
(δ∗,−τ∗)

// K∗(D)

are isomorphisms and

(δ∗,−τ∗) ◦ iA = δ∗,

δ∗ is an isomorphism as well, hence δ is a weak
equivalence. 2



Remark. Keeping in mind opposite directions of all arrows
in the opposite category, the composition of weak
cofibrations in the homotopy category Ho(C∗-Alg1)

op,
understood as generalized maps from the left to the right,
reads as follows

B̃ C̃

A B

◦
B C

=

˜̃C
A C

Fig. 2. Composition of weak cofibrations in Ho(C∗-Alg1)
op:

π β ρ γ π ◦ ρ̃ γ ◦ γ̃

(π ◦ β−1) ◦ (ρ ◦ γ−1) = (π ◦ ρ̃) ◦ (γ ◦ γ̃)−1



where ρ̃ and γ̃ are the arrows completing the pullback
square in the diagram below

˜̃C
B̃ C̃

A B C

ρ̃ γ̃

π β ρ γ



Weak CW-complex structure of CPnT . Consider the two
pushout squares

C̃PnT

CPn−1T CPnT

Tub CPnT(CP
n−1
T )

S2n−1
H

Dn
T

ι̃ ψ

π

χ

φ

ε

∂



where the upper one is defined as follow.

Since the collapse Tub CPnT(CP
n−1
T ) −→ CPn−1T is a weak

equivalence and by the lower pushout ε is a cofibration, by
Theorem 1 (Han) ψ is a weak equivalence as well.

The quantum space C̃PnT is then the result of collapsing
Tub CPnT(CP

n−1
T ), the tubular neighborhood of a hyperplane

CPn−1T in CPnT , to this hyperplane.

Since the concatenation of pushout squares is a pushot
square, we obtain a new pushout square, the outer one



C̃PnT

CPn−1T Dn
T

S2n−1
H

ι̃ φ̃

h ∂

where h := π ◦ χ is a quantum Hopf fibration and φ̃ := ψ ◦ φ,
accompanied by a weak equivalence

ψ : CPnT
∼→ C̃PnT .



Note that since ψ is a weak equivalence, the upper cospan
defines a weak cofibration

ι := ψ−1 ◦ ι̃ : CPn−1T � CPnT

in its homotopy category. We can understood it as a weak
replacement of the classical hyperplane embedding .



Therefore, since we now can compose weak cofibrations, we
can form a weak filtration by skeleta where at every step
we attach a single quantum cell, as in the classical case

CP0
T � CP1

T � · · ·� CPn−1T � CPnT .

It induces a system of Z/2Z-graded K-groups

0← K∗(CP0
T )← K∗(CP1

T )← · · · ← K∗(CPn−1T )← K∗(CPnT ).



Quantum Atiyah-Todd picture
The classical case revisited. The classical result of
Atiyah-Todd says that K0(CPn) equipped with the ring
structure defined via the tensor product of vector bundles
over CPn fits into the following commutative square of
rings:

Z[t, t−1]

��

∼=
// R(U(1))

��

Z[x]/(xn+1)
∼=
// K0(CPn).



Here the left vertical arrow is given by t 7→ 1 + x, the right
vertical arrow is induced by the associated vector bundle
construction, the top isomorphism maps t into the
fundamental representation of U(1) in the representation
ring R(U(1)), and the bottom isomorphism maps x to the
K-theory element [L1]− [1], where L1 denotes the Hopf line
bundle on CPn associated with the fundamental
representation of U(1).



Below, for any k ∈ Z, we denote by Lk the k-th tensor
power of L1 when k is non-negative, and the |k|-th tensor
power of L−1 when k is negative, where L−1 is the Hopf line
bundle on CPn associated with the dual of the fundamental
representation of U(1).



Equivalently, Lk is the Hopf line bundle on CPn associated
with the k-th tensor power of the fundamental
representation of U(1), where negative tensor powers refer
to tensor powers of the dual of the fundamental
representation of U(1).



Since the elements (1 + x)k, k = 0, . . . , n, form a basis of the
free Z-module Z[x]/(xn+1) and the assignment (1 + x) 7→ [L1]

gives an isomorphism of rings, the classes

[L0], . . . , [Ln]

form the Atiyah-Todd basis of K0(CPn).



Our next step is to unravel how the classes [Lk], for k = −1
or k = n + 1, can be expressed in the Atiyah-Todd basis.
Note first that the equality

0 = xn+1 = ((1 + x)− 1)n+1 =

n+1∑
k=0

(−1)n+1−k ( n+1
k ) (1 + x)k

in Z[x]/(xn+1) translates to the equality in K0 (CPn)
n+1∑
k=0

(−1)n+1−k ( n+1
k ) [Lk] = 0.



Thus we obtain

[Ln+1] =

n∑
k=0

(−1)n−k ( n+1
k ) [Lk],

which we will refer to as the first Atiyah-Todd identity .



Furthermore, since (1 + x) is invertible in Z[x]/(xn+1) and
the initial equality can be rewritten as

(1 + x)
n+1∑
k=1

(−1)1−k ( n+1
k ) (1 + x)k−1 = 1,

we obtain

(1 + x)−1 =

n+1∑
k=1

(−1)1−k ( n+1
k ) (1 + x)k−1 =

n∑
k=0

(−1)k
(
n+1
k+1

)
(1 + x)k

in Z[x]/(xn+1).



This equality translates to K0(CPn) as

[L−1] =
n∑
k=0

(−1)k
(
n+1
k+1

)
[Lk].

We will refer to it as the second Atiyah-Todd identity .



In Prop. 3.3 and 3.4 of [Arici-Brain-Landi ‘15 ], the
additive version of the bottom isomorphism in the
Atiyah-Todd diagram was established for the
Vaksman-Soibelman quantum complex projective
spaces CPnq . It yields a noncommutative version of the
Atiyah-Todd basis for CPnq .



All this seems interesting because Atiyah-Todd’s method
to prove the existence of the Atiyah-Todd diagram uses
the ring structure of K-theory, which is missing in the
noncommutative setting. Instead, the index pairing is used
which is merely additive.



Below we not only obtain an analog of the Atiyah-Todd
basis for CPnT , but also we establish analogues of the
Atiyah-Todd identities and which are lacking in Prop. 3.3
and 3.4 of [Arici-Brain-Landi ‘15].



The multipullback noncommutative deformation.

Although the K0-group of a noncommutative C*-algebra
does not have an intrinsic ring structure, it turns out that,
much as in the Atiyah-Todd diagram, the abelian group
K0(C(CPnT )) is a free module of rank one over the ring
Z(x)/(xn).



The basis of this free module is the K0-class of C(CPnT ). The
module structure comes from tensoring finitely generated
projective C(CPnT )-modules by the bimodules associated
with the quantum Hopf U(1)-principal bundle S2n+1

H → CPnT .



Moreover, we will show that, despite the aforementioned
lack of an intrinsic ring structure, we still enjoy analogs of
the Atiyah-Todd identities.



Recall that, we denote by S2n+1
H the multipullback

(2n + 1)-dimensional quantum sphere
[Hajac-Nest-Pask-Sims-Zieliński ‘18] and by CPnT the
corresponding multipullback quantum complex projective
space [Hajac-Kaygun-Zieliński ‘12], whose C*-algebra we
identify with a U(1)-fixed-point subalgebra of C(S2n+1

H )

[Hajac-Nest-Pask-Sims-Zieliński ‘18].



Next, let
∂n+1 : T ⊗(n+1) −→ T ⊗(n+1)/K⊗(n+1) ∼= C

(
S2n+1
H

)
be the canonical quotient map from Lemma 5.1 of
[Hajac-Nest-Pask-Sims-Zieliński ‘18], and let

Pk :=
k∑
i=1

eii ∈ K ⊂ T , P⊥k := I − Pk ∈ K+ ⊂ T , k ∈ N.

Here eij with i, j ∈ N represents a matrix unit in K which
we identify with K

(
`2 (N)

)
, and K+ stands for the minimal

unitization of K.



Note that, according to the standard
summation-over-the-empty-set convention, P0 := 0, so
P⊥0 = I. For finite square matrices P,Q ∈M∞ (A) with
entries in a unital C*-algebra A, we use the notion P ∼A Q
to denote that they are unitarily equivalent over A, and
use P �Q to denote their diagonal direct sum.



Furthermore, for 0 ≤ j ≤ n and k ≥ 0, we define the
projections

Ej
k := ∂n+1

(
(⊗jP1)⊗ P⊥k ⊗ (⊗n−jI)

)
∈ C(CPnT ).

Note that En
k = ∂n+1((⊗nP1)⊗ P⊥k ) = ∂n+1((⊗nP1)⊗ I) since

∂n+1((⊗nP1)⊗ Pk) = 0. In particular,

En
k = En

k+1

is independent of k.



For the sake of forthcoming recursive formulas, we adopt
the convention En+1

k := 0 and 00 := 1.

Now, recall from Theorem 4 [Sheu ‘19] and the remark
below this theorem that, for j = 0, . . . , n, the classes [Ej

0]

form a basis of the free Z-module K0(C(CPnT )) ∼= Zn+1.



Next, remembering that Ej
k ∈ C(CP

n
T ) (they are all

U(1)-invariant), we will follow an argument
used in [Sheu ‘19] to establish

{
[∂n((⊗jI)⊗ (⊗n−jP1))]

}
0<j≤n

as a basis of K0(C(CPn−1T )), to prove the recursive relation
in K0(C(CPnT ))

[Ej
k+1] = [Ej

k]− [Ej+1
k ].



To this end, we need the following lemma:

Lemma 1. Let S be the generating isometry of the Toeplitz
algebra T identified with the unilateral shift on the Hilbert
space `2 (N). For any k ≥ 0 and n ≥ 1,

uk :=

(
Pk ⊗ I Sk ⊗ (Sk)∗

(Sk)∗ ⊗ Sk I ⊗ Pk

)
∈M2(T ⊗2)

is a self-adjoint unitary conjugating (ekk ⊗ I)� 0 to
0� (P1 ⊗ P⊥k ).



Proof. First, we verify that the self-adjoint element
uk ∈M2(T ⊗2) is unitary:(

Pk ⊗ I Sk ⊗ (Sk)∗

(Sk)∗ ⊗ Sk I ⊗ Pk

)(
Pk ⊗ I Sk ⊗ (Sk)∗

(Sk)∗ ⊗ Sk I ⊗ Pk

)

=

(
Pk ⊗ I + Sk(Sk)∗ ⊗ (Sk)∗Sk PkS

k ⊗ (Sk)∗ + Sk ⊗ (Sk)∗Pk

(Sk)∗Pk ⊗ Sk + (Sk)∗ ⊗ PkSk (Sk)∗Sk ⊗ Sk(Sk)∗ + I ⊗ Pk

)



=

(
Pk ⊗ I + P⊥k ⊗ I 0⊗ (Sk)∗ + Sk ⊗ 0

0⊗ Sk + (Sk)∗ ⊗ 0 I ⊗ P⊥k + I ⊗ Pk

)

=

(
I ⊗ I 0

0 I ⊗ I

)
.



Next, uk conjugates (ekk ⊗ I)� 0 to 0�
(
P1 ⊗ P⊥k

)
because(

Pk ⊗ I Sk ⊗ (Sk)∗

(Sk)∗ ⊗ Sk I ⊗ Pk

)(
ekk ⊗ I 0

0 0

)(
Pk ⊗ I Sk ⊗ (Sk)∗

(Sk)∗ ⊗ Sk I ⊗ Pk

)

=

(
0 0

e0k ⊗ Sk 0

)(
Pk ⊗ I Sk ⊗ (Sk)∗

(Sk)∗ ⊗ Sk I ⊗ Pk

)
=

(
0 0

0 e00 ⊗ P⊥k

)
.

2



Lemma 1. For any 0 ≤ j ≤ n and any k ≥ 0,

[Ej
k+1] = [Ej

k]− [Ej+1
k ].

Proof. First, note that the statements are true for j = n

because En
k = En

k+1 is independent of k, and En+1
k := 0.

Hence, we can assume 0 ≤ j < n.



Furthermore, since P⊥k = P⊥k+1 + ekk and the summands are
orthogonal projections, we obtain

Ej
k = ∂n+1((⊗jP1)⊗ P⊥k ⊗ (⊗n−jI))

∼C(CPnT ) ∂n+1((⊗jP1)⊗ P⊥k+1 ⊗ (⊗n−jI))� ∂n+1((⊗jP1)⊗ ekk ⊗ (⊗n−jI))

=Ej
k+1 � ∂n+1((⊗jP1)⊗ ekk ⊗ (⊗n−jI)).



Therefore, to finish the proof, it suffices to show the
following auxiliary identity

[∂n+1((⊗jP1)⊗ ekk ⊗ (⊗n−jI))] = [Ej+1
k ].

To this end, we take advantage of Lemma 1 to conclude
that (⊗jP1)⊗ uk ⊗ (⊗n−j−1I) conjugates
((⊗jP1)⊗ ekk ⊗ (⊗n−jI))� 0 to

0� ((⊗jP1)⊗ P1 ⊗ P⊥k ⊗ (⊗n−j−1I)) = 0� Ej+1
k .

Here the tensor product (⊗jP1)⊗ uk ⊗ (⊗n−j−1I) is
understood entrywise with respect to the matrix uk.



Finally, since ∂n+1(aij) is U(1)-invariant for each entry aij of
(⊗jP1)⊗ uk ⊗ (⊗n−j−1I), we have ∂n+1(aij) ∈ C(CPnT ), so

∂n+1(((⊗jP1)⊗ ekk ⊗ (⊗n−jI))� 0) ∼C(CPnT ) 0� Ej+1
k .

Passing to the K0-classes, we obtain the desired auxiliary
identity. 2



Having shown the recursive relation, we are ready to prove

Lemma 2. For any k ≥ 0,

[Lk] =
k∑
j=0

(−1)j
(
k
j

)
[Ej

0].



Proof. By Theorem 6 of [Sheu ‘19], for k ≥ 0, the modules
Lk are represented, respectively, by the projections
∂n+1

(
P⊥k ⊗ (⊗nI)

)
=: E0

k.

Starting from l = 0, we prove inductively, for 0 ≤ l ≤ k with
k ≥ 0 fixed, the intermediate identity

[Lk] =
l∑

j=0

(−1)j
(
l
j

)
[Ej

k−l].



This equation is clearly true for l = 0. Now, for 0 < l ≤ k,
taking advantage of the induction hypothesis and the
recursive relation as in Lemma 1, we compute:

[Lk] =
l−1∑
j=0

(−1)j
(
l−1
j

)
[Ej

k−l+1]

=

l−1∑
j=0

(−1)j
(
l−1
j

) (
[Ej

k−l]− [Ej+1
k−l ]
)



=

l−1∑
j=0

(
(−1)j

(
l−1
j

)
[Ej

k−l] + (−1)j+1
(
l−1
j

)
[Ej+1

k−l ]
)

= [E0
k−l] +

l−1∑
j=1

(−1)j
((

l−1
j

)
[Ej

k−l] +
(
l−1
j−1
)
[Ej

k−l]
)
+ (−1)l

(
l−1
l−1
)
[El

k−l]



= [E0
k−l] +

l−1∑
j=1

(−1)j
(
l
j

)
[Ej

k−l] + (−1)l[El
k−l]

=

l∑
j=0

(−1)j
(
l
j

)
[Ej

k−l].

This proves the intermediate identity, which, for l = k,
becomes the desired identity. 2



Theorem 2. For any n ∈ N, we have quantum Atiyah-Todd
basis and identities:

K0(C(CPnT )) =
n⊕
k=0

Z[Lk],

[Ln+1] =

n∑
k=0

(−1)n−k ( n+1
k ) [Lk],

[L−1] =

n∑
k=0

(−1)k
(
n+1
k+1

)
[Lk].



Proof. To begin with, note that the first equality follows
immediately from Lemma 2 and Theorem 4 of [Sheu ‘19]
because the expansion coefficients (−1)j

(
k
j

)
in Lemma 2

form a matrix in GLn+1(Z). (The matrix is lower-triangular
of determinant ±1.)



Next, to prove the first quantum Atiyah-Todd identity, we
show an equivalent identity:

n+1∑
k=0

(−1)n+1−k ( n+1
k ) [Lk]

=

n+1∑
k=0

(−1)n+1−k ( n+1
k )

 k∑
j=0

(−1)j
(
k
j

)
[Ej

0]


=

n+1∑
j=0

n+1∑
k=j

(−1)n+1+j−k ( n+1
k )
(
k
j

)
[Ej

0]



=

n+1∑
j=0

n+1∑
k=j

(−1)n+1+j−k (n + 1)!

k!(n + 1− k)!
k!

j!(k − j)!

 [Ej
0]

=

n+1∑
j=0

(n + 1)!

j!(n + 1− j)!

n+1∑
k=j

(−1)n+1+j−k (n + 1− j)!
(n + 1− k)!(k − j)!

 [Ej
0]



=

n+1∑
j=0

(n + 1)!

j!(n + 1− j)!
(−1)j

(
n+1−j∑
k=0

(−1)n+1−j−k (n + 1− j)!
(n + 1− j − k)!k!

)
[Ej

0]

=

n+1∑
j=0

(n + 1)!

j!(n + 1− j)!
(−1)j(1 + (−1))n+1−j[Ej

0] = 0.



Finally, to prove the second quantum Atiyah-Todd
identity, we recall from [Sheu ‘19] that the class [L−1] can
be represented by the projection �n

j=0E
j
0. Thus the second

quantum Atiyah-Todd identity becomes
n∑
k=0

(−1)k
(
n+1
k+1

)
[Lk] =

n∑
j=0

[Ej
0].



The left-hand-side can be computed as follows:

n∑
k=0

(−1)k
(
n+1
k+1

)
[Lk] =

n∑
k=0

(−1)k
(
n+1
k+1

) k∑
j=0

(−1)j
(
k
j

)
[Ej

0]


=

n∑
j=0

n∑
k=j

(−1)k+j(n + 1)!

(k + 1)!(n− k)!
k!

j!(k − j)!
[Ej

0]



=

n∑
j=0

(n + 1)!

j!(n− j)!

 n∑
k=j

(−1)k+j(n− j)!
(n− k)!(k − j)!

1

k + 1

 [Ej
0]

=

n∑
j=0

(n + 1)!

j!(n− j)!

(
n−j∑
k=0

(−1)k(n− j)!
(n− j − k)!k!

1

k + j + 1

)
[Ej

0]

=

n∑
j=0

(n + 1)!

j!(n− j)!

(
n−j∑
k=0

(−1)k
(
n−j
k

) 1

k + j + 1

)
[Ej

0].



Hence it remains to show that, for all 0 ≤ j ≤ n,

(n + 1)!

j!(n− j)!

(
n−j∑
k=0

(−1)k
(
n−j
k

) 1

k + j + 1

)
= 1.

To this end, we introduce auxiliary polynomials over Q:

fj(x) :=

n−j∑
k=0

(−1)k
(
n−j
k

) 1

k + j + 1
xk+j+1,

which can be evaluated and formally differentiated and
integrated.



Now our goal can be rephrased as follows:
j!(n− j)!
(n + 1)!

= fj(1).

To compute this, note first that

f ′j(x) =

n−j∑
k=0

(−1)k
(
n−j
k

)
xk+j = (−1)n−jxj(x− 1)n−j.



Therefore, as fj(0) = 0 because k, j ≥ 0, we obtain:

fj(1) =

∫ 1

0

(−1)n−jxj(x− 1)n−jdx

=
(−1)n−j

j + 1
xj+1(x− 1)n−j

∣∣∣∣1
0

−
∫ 1

0

(−1)n−j(n− j)
j + 1

xj+1(x− 1)n−j−1dx

=
(−1)n+1−j(n− j)

j + 1

∫ 1

0

xj+1(x− 1)n−j−1dx.



Iterating this kind of integration by parts, we infer that

fj(1) =
(−1)n+(n−j)−j(n− j)!

(j + 1)(j + 2) · · · (j + (n− j))

∫ 1

0

xj+(n−j)(x− 1)0dx

=
(n− j)!

(j + 1)(j + 2) · · ·n

∫ 1

0

xndx =
(n− j)!

(j + 1)(j + 2) · · ·n(n + 1)

=
j!(n− j)!
(n + 1)!

,

as desired. 2



The R(U(1))-module structure on K0(CPnT ) := K0(C(CPnT ))
Assume that a free action of a compact quantum group G
on a C*-algebra A is given, with the subalgebra B = AG of
invariants. Let H = O(G) be the the Peter-Weyl Hopf
dense *-subalgebra in the C*-algebra C(G) “of continuous
functions on G” and A be the Peter-Weyl dense
H-comodule *-B-subalgebra in A.



Given a representation V of G equivalent to a finite
dimensional left H-comodule V one has a finitely
generated projective from either side associated B-module
A2HV . This B-bimodule defines an endofunctor
(−)⊗B (A2HV ) on the exact category of finitely generated
projective right B-modules. Since the association is a
strong monoidal functor from the category of left
H-comodules to the category of B-bimodules, it defines an
action of the representation ring R(G) of G on the
topological K-theory of B.



The action on the distinguished class [B] ∈ K∗(B) defines a
right R(G)-module map

R(G)→ K∗(B),

essentially being forgetting of the left B-module structure
of an associated finitely generated projective B-bimodule.
In our case, when A = C(S2n+1

H ), G = U(1), B = C(CPnT ), we
obtain a map of right R(U(1))-modules

R(U(1))→ K∗(CPnT ),



Theorem 3. The above map of right R(U(1))-modules and
the left-hand-side map being a ring map induced by
t 7→ 1 + x fit into the following diagram of right
Z[t, t−1]-modules

Z[t, t−1]

��

∼=
// R(U(1))

��

Z[x]/(xn+1)
∼=
// K0(CPnT ).

In particular, K∗(CPnT ) is a rank one free right Z/2Z-graded
Z[x]/(xn+1)-module, where x is even, generated by the class
[L0].



Proof. By Theorem 2 the canonical right Z[t, t−1]-module
structure on the free Z-module

K0(CPnT ) =
n⊕
k=0

Z[Lk]

is uniquely determined as shifting the winding number by
one

[Lk]t = [Lk+1], for k = 0, . . . , n− 1,

[Ln]t =

n∑
k=0

(−1)n−k ( n+1
k ) [Lk],



and by minus one

[L0]t
−1 =

n∑
k=0

(−1)k
(
n+1
k+1

)
[Lk],

[Lk]t
−1 = [Lk−1], for k = 1, . . . , n.



The fact that the minimum polynomial of the matrix of
the right action of t is equal to (t− 1)n+1 and the
isomorphism of rings

Z[t, t−1]/((t− 1)n+1) ∼= Z[x]/(xn+1)

t 7→ 1 + x, t−1 7→ 1− x + x2 − . . . + (−1)nxn

together prove the bottom isomorphism fitting into the
quantum Atiyah-Todd diagram of Z[t, t−1]-modules. 2



Remark. Since K-theory of a noncommutative ring lacks
an intrinsic ring structure, the above Z[x]/(xn+1)-module
structure is best one could expect about the structure of
K-theory of CPnT .

Another good feature of this module structure is
compatibility with the weak filtration by skeleta, where
the tower of K-theories of the weak skeleta becomes the
tower of truncated polynomials



0 K∗(CP0
T )oooo

∼=
��

K∗(CP1
T )oooo

∼=
��

· · ·oooo K∗(CPn−1T )oooo

∼=
��

K∗(CPnT )oooo

∼=
��

0 Zoooo Z[x]/(x2)oooo · · ·oooo Z[x]/(xn)oooo Z[x]/(xn+1)oooo

giving the generators of the kernels of the succesive
restriction morphisms of K-theory to lower weak skeleta in
terms of the quantum Atiyah-Todd basis, e.g.

[L0]x
n = [L0](t− 1)n =

n∑
k=0

(−1)n−k ( nk ) [Lk] ∈ K∗(CPnT ).


