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Basic notions in topological dynamics

Let G be a topological (often discrete) group.
1 A G -�ow is a pair (G ,X ), where X 6= ∅ is compact and G acts

continuously on X .
2 (G ,X ) is point-transitive if X contains a dense G -orbit.
3 A G -ambit is a G -�ow (G ,X , x0), where x0 ∈ X with Gx0

dense in X .
4 A G -�ow is minimal if it contains no proper sub�ows.

Fact

Each �ow contains a minimal sub�ow.

Example: Bernoulli shift

G := Z acts on X := 2Z via (k ∗ f )(n) := f (n − k). If f0 ∈ X
contains all �nite 0-1 sequences as subsequences of consecutive
elements, then G ∗ f0 is dense, so (G ,X , f0) is an ambit. If f ∈ X is
periodic, then G ∗ f is �nite (so closed), so G ∗ f is a minimal
sub�ow. There are other minimal sub�ows of (G ,X ).
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Some goals of abstract topological dynamics

Fact

1 For every group G there is a unique (up to ∼=) universal
G -ambit. If G is discrete, it is (G , βG ,Ue).

2 For every group G there is a unique (up to ∼=) universal
minimal G -�ow.

General goals of abstract topological dynamics

For a given G :

classify minimal G -�ows: deep structural theory with lots of
tools and special classes of �ows (Auslander, Ellis,
Furstenberg, Glasner, and others).

describe the universal minimal G -�ow, especially when G is
the group of automorphisms of a Fraïssé structure (Kechris,
Pestov, Todor£evi¢, and others).
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Connections with model theory

In the mid 2000's Newelski came up with an idea of applying
topological dynamics framework and tools to model theory. The
point is that various type spaces can naturally be treated as �ows;
some fundamental results of stable group theory are in fact top.
dyn. statements, and there is hope to generalize various ideas to an
unstable context via this top. dyn. point of view.

My personal look at the subject is that various type spaces are
naturally �ows and topological dynamics yields new notions and
methods to study [strong] types, de�nable sets, and other
model-theoretic objects, and prove new results about them. On the
other hand, model theory gives new descriptions of various objects
in topological dynamics, yields new objects, and may lead to new
results or new proofs.
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Topological dynamics in model theory

The theory developed by Newelski, including applications to
generating in �nitely many steps in groups covered by
countably many type-de�nable sets and Newelski's conjecture.

Solutions to Newelski's conjecture (Chernikov, Gismatullin,
Jagiella, Penazzi, Pillay, Simon, Yao, and others).

De�nably amenable groups and theories (Chernikov,
Hrushovski, Krupi«ski, Pillay, Simon, and others).

Applications of topological dynamics to quotients of de�nable
groups by model-theoretic connected components and to the
spaces of strong types (Krupi«ski, Pillay, Rzepecki). The Ellis
group of a theory (Krupi«ski, Newelski, Simon).

Variants of the last item (the �core� of a theory and its
automorphism group) with applications to approximate
subgroups (Hrushovski).
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Topological dynamics in model theory � cont.

Kechris, Pestov, Todor£evi¢ theory: correspondences between
various Ramsey and dynamical properties of Fraïssé structures;
describing universal minimal �ows of groups of automorphisms
(many people involved in this program).

De�nable counterparts of Kechris, Pestov, Todor£evi¢ theory:
correspondences between some �de�nable� Ramsey properties
and dynamical properties of theories; criteria for [pro]�niteness
of the Ellis group of the theory (Krupi«ski, Lee, Moconja).

Correspondences between model-theoretic notions and
dynamical notions. e.g. �stable=WAP�, �NIP=tame�
(Ben-Yaacov, Ibarlucía, and others).

Applications of model theory to the theory of algebras of
functions and compacti�cations of groups (Ben-Yaacov,
Ibarlucía, Tsankov,...).

Some recent developments on Keisler measures (Chernikov,
Conant, Gannon, Hanson).

...
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Large sets and points in �ows

Let (G ,X ) be a �ow.

De�nition

1 U ⊆ X is generic (syndetic) if AU = X for some �nite A ⊆ G .

2 U ⊆ X is weak generic if U ∪ U ′ is generic for some
non-generic U ′ ⊆ X .

3 p ∈ X is [weak] generic if every neighborhood U of p is [weak]
generic.

4 p ∈ X is almost periodic if it belongs to a minimal sub�ow.

Let Gen(X ) := {p ∈ X : p generic}. Similarly, we de�ne WGen(X )
and APer(X ).

Fact (Newelski)

1 WGen(X ) = cl(APer(X )) 6= ∅.
2 If Gen(X ) 6= ∅, then Gen(X ) = WGen(X ) = APer(X ) is a

unique minimal sub�ow of X .
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Large sets and points � cont.

Example

In (Z, 2Z), any f0 with Z ∗ f0 dense is not almost periodic. Since
Per(2Z) is dense in 2Z, we get
WGen(2Z) = cl(APer(2Z)) ⊇ cl(Per(2Z)) = 2Z. So Gen(2Z) = ∅.

Example

Consider the �ow (Z,S1), where S1 is the unit circle and Z acts on
S1 by: nz := αnz , where α ∈ S1 is not a root of unity. This �ow is
clearly minimal. Thus, Gen(S1) = S1.

Proof of Gen(S1) = S1

By compactness of S1, it is enough to show that for every
nonempty open U ⊆ S1 �nitely many translates of U by elements
from {αn : n ∈ Z} cover S1. This in turn follows from the fact that
S1 is a topological group and {αn : n ∈ Z} is dense in it.
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Basic model theory

L = {fi ,Pj , ck : i ∈ I , j ∈ J, k ∈ K}: a language (or
signature), i.e. the fi 's are function symbols, Pj 's relational
symbols, ck 's constant symbols. For example, Lgr = {·, e} is
the language of group theory.
Using symbols of L, =, variables, logical connectives, and
quanti�ers, one builds L-formulas. For example,
ϕ(x) := (∃y)(¬(x · y = y · x)) is an Lgr -formula with the free
variable x .
An L-theory is a set of L-sentences (i.e. L-formulas without
free variables).
An L-structure is a set M together with interpretations of all
symbols of the language; e.g. if fi is a binary function symbol,
then its interpretation is a function f Mi : M2 → M.
An L-structure M is a model of a theory T (symbolically,
M |= T ) if M satis�es all sentences from T . For example, if T
is group theory (i.e. the set of the well-known three axioms),
then M |= T i� (M, ·, e) is a group.
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Basic model theory � cont.

Theorem (Gödel). Let T be a theory.
A theory T is consistent (i.e. does not prove a contradiction in
a syntactic sense) i� T has a model.
(Completeness) For any formula ϕ, T ` ϕ i� T |= ϕ, where
T ` ϕ means that T proves ϕ, and T |= ϕ means that ϕ
holds in every model of T .
(Compactness) A theory T has a model i� every �nite subset
of T has a model.

For an L-structure M the theory of M is
Th(M) := {ϕ a sentence in L : M |= ϕ}.
A consistent theory T is complete if for every sentence ϕ we
have T |= ϕ or T |= ¬ϕ.
T = Th(M) is complete for any L-structure M.

Let M ⊆ N be L-structures. We say that M is an elementary
substructure of N (in symbols M ≺ N), if for every L-formula
ϕ(x1, . . . , xn) and ā = (a1, . . . , an) ∈ Mn,
M |= ϕ(ā) ⇐⇒ N |= ϕ(ā).
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Basic model theory � cont.

Theorem (Löwenheim-Skolem). Let M be an in�nite
L-structure and κ ≥ |L|+ ℵ0. Then,

if κ ≥ |M|, there is N � M with |N| = κ,
if κ < |M|, there is N ≺ M with |N| = κ.

A ∅-de�nable set in an L-structure M is a set of the form
ϕ(M) := {ā ∈ Mn : M |= ϕ(ā)} for an L-formula ϕ(x̄). One
can also allow parameters from M in ϕ(x̄), and then the
resulting set is called de�nable (over the parameters involved
in ϕ(x̄)).

For example, if (M, ·, e) is a group and g ∈ M, then the
centralizer C (g) is the de�nable set ϕ(M) for
ϕ(x) := (x · g = g · x).
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Types

T a complete L-theory; n ∈ N>0; x̄ = (x1, . . . , xn) variables.

De�nition

An n-type π(x̄) is a consistent (with respect to T ) collection of
L-formulas in free variables x̄ , where �consistent� means that any
�nitely many formulas from this collection have a realization in
every model of T . The type π(x̄) is complete if for every formula
ϕ(x̄) either ϕ(x̄) ∈ π(x̄) or ¬ϕ(x̄) ∈ π(x̄).

Example

If a ∈ M |= T , tpM(a) := {ϕ(x) : M |= ϕ(a)} is a complete type.

Formulas ϕ(x̄), ψ(x̄) are equivalent if T |= (∀x̄)(ϕ(x̄)↔ ψ(x̄)).

Remark

If p(x̄) is a complete type, and ϕ(x̄) and ψ(x̄) are equivalent, then
ϕ(x̄) ∈ p(x̄) ⇐⇒ ψ(x̄) ∈ p(x̄).
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Types � cont.

De�nition

The Lindenbaum-Tarski algebra Ln(∅) of T in n-variables is the
quotient of the set of all formulas in n-variables by the above
equivalence relation (say denoted by ∼), with Boolean algebra
operations induced by ∧,∨,¬; 0 := [ϕ ∧ ¬ϕ]∼; 1 := [ϕ ∨ ¬ϕ]∼.

By the last remark, complete types can be identi�ed with
ultra�lters in Ln(∅).
It is also convenient to use another description. Take any
M |= T . Then two formulas ϕ(x̄) and ψ(x̄) are equivalent i�
ϕ(M) = ψ(M). Therefore, Ln(∅) is isomorphic to the Boolean
algebra of ∅-de�nable subsets of Mn. And complete types can
be seen as ultra�lters in this algebra.
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Space of types

The set of all complete types in n-variables is denoted by
Sn(∅). Viewing it as the set of ultra�lters (as above), it can be
equipped with the Stone space topology. Explicitly, a basis of
open sets consists of the sets of the form

[ϕ(x̄)] := {p(x̄) ∈ Sn(x̄) : ϕ(x̄) ∈ p(x̄)},

where ϕ(x̄) is a formula. These sets are then clopen, and
Sn(∅) is a compact, totally disconnected space, which plays a
key role in model theory.

Let M |= T and A ⊆ M. Let us add new constant symbols
corresponding to all elements of A, and denote the obtained
language by L(A). Then T (A) := Th((M, a)a∈A) is an
extension of T to a complete L(A)-theory. Then we can talk
about types over A and the space Sn(A) with respect T ,
which are formally types over ∅ and the space Sn(∅) in the
sense of T (A).
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Realizing types and saturation

Let M |= T and A ⊆ M. By compactness theorem:

Fact

Each type p ∈ Sn(A) is realized in some N � M, i.e. there is a ∈ N
with tp(a/A) = p.

Using this fact, by a recursive construction, we get

Fact

Let κ be a cardinal number. Every model can be extended to a
κ-saturated model C, i.e. a model such that for every B ⊆ C of
cardinality < κ every type in Sn(B) has a realization in C.

One can also construct C as above which is additionally strongly
κ-homogeneous (each partial elementary map between subsets of
cardinality < κ extends to an automorphism of C). For most of the
purposes, it is enough to work in such a C (which is called a
monster model of T ) in place of the class of all models of T .
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Space of types � Example

Let T := Th(R,+, ·,≤). We will describe the space S1(R). T has
quanti�er elimination, that is every formula is equivalent to a
formula without quanti�ers. In particular, each L(R)-formula in one
variable is equivalent to a �nite disjunction of formulas de�ning
intervals (proper or not). So
S1(R) = {p−a , pa, p+a : a ∈ R} ∪ {p−∞, p∞}, where:

pa = tp(a/R) (a type whose unique realization is a),

p−a is the type determined by {x > b : b < a} ∪ {x < a},
p+a is the type determined by {x > a} ∪ {x < b : b > a},
p−∞ is the type determined by {x < a : a ∈ R},
p+∞ is the type determined by {x > a : a ∈ R}.

A basis of the topology on S1(R) consists of the sets determined by
the intervals (closed, open, etc.) on the real line. For example, the
sets {pa}, a ∈ R, are all open, whereas all other singletons are not.
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Type-de�nable sets

For a type π(x̄) and ā ∈ Cn we write ā |= π when ā satis�es all
formulas in π(x̄).

De�nition

A type-de�nable set in C is a set X of the form {ā ∈ Cn : ā |= π(x̄)}
for some type π(x̄) over a small (i.e. of cardinality < κ) set A of
parameters in C. More precisely, we say that X is A-type-de�nable.

Remark

∅-type-de�nable sets are invariant under the natural action of
Aut(C).

De�nition

A group G is de�nable in a model M if both G and the group law
are de�nable in M.

Krzysztof Krupi«ski On some application of topological dynamics and model theory



General goals of model theory

Describe the structure of models of theories satisfying some
general assumptions. Compute the number of models (up to
isomorphism) of a given cardinality of such theories.
Describe the structure (combinatorial, algebraic, ...) of
de�nable (or, more generally, type-de�nable, invariant, etc.)
sets of models of a given theory.
Prove structural results about algebraic structures satisfying
some general model-theoretic assumptions.
Apply model theory of concrete algebraic structures (or
theories) to obtain purely algebraic or geometric results. There
are deep applications from the 90's to diophantine geometry,
e.g. to the proofs of Mordell-Lang conjecture and
Manin-Mumford conjecture.
In recent years, an important part of model theory is the study
of interactions with many other branches of mathematics, e.g.
combinatorics, topological dynamics, non-archimedean
geometry.
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Flows in model theory

Sn(M) as an Aut(M)-�ow

Let M be a structure, and Aut(M) the group of automorphisms of
M. Then Sn(M) is naturally an Aut(M)-�ow: gp := {gD : D ∈ p}.

SG (M) as a G -�ow

Let G be a group ∅-de�nable in a model M. SG (M) denotes the
space of complete types over M concentrated on G , i.e. containing
the formula de�ning G ; equivalently, the space of ultra�lters of
de�nable subsets of G . SG (M) is naturally a G -�ow:
gp := {gD : D ∈ p} = tp(ga/M), where a |= p (here a ∈ G (C),
where C � M is a monster model).

Another important �ow is SG ,ext(M), i.e. the space of all external
complete types over M concentrated on G , i.e. ultra�lters of
externally de�nable subsets of G (i.e. subsets of the form
ϕ(M, ā) ∩ G , where ā ∈ Cn).
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An application of top. dyn. of SG (M)

Example

M := (R,+, ·), G := S1 ⊆ R2. Then
SG (M) = {pa : a ∈ G} ∪ {p−a : a ∈ G} ∪ {p+a : a ∈ G}, where
pa := tp(a/R), p−a is the left cut at a, p+a is the right cut at a.
Here, Gen(SG (M)) = {p−a : a ∈ G} ∪ {p+a : a ∈ G} 6= ∅, so
Gen(SG (M)) is the unique minimal sub�ow.

Theorem (Newelski, Petrykowski)

Let G be ∅-de�nable in an ℵ0-saturated model M. Assume
G =

⋃
n<ω Xn, where all Xn's are ∅-type-de�nable [or just Borel

over ∅]. Then for some �nite A ⊆ G and n < ω, G = AXnX
−1
n .
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Sketch of the proof

Let Yn := {tp(a/M) : a ∈ Xn}: a closed [or Borel] set. Let
S ⊆ SG (M) be a minimal sub�ow. By BCT, there is n < ω such
that Yn ∩ S is non-meager in S . Since it is also Borel, using
minimality of S and basic descriptive set theory, one can �nd a
�nite A ⊆ G for which A(Yn ∩ S) is comeager in S .

Claim. G = AXnX
−1
n .

Proof of claim.

For any g ∈ G , g(Yn ∩ S) is non-meager in S , so
g(Yn ∩ S) ∩ A(Yn ∩ S) 6= ∅. Hence, there are p, q ∈ Yn and a ∈ A
with gp = aq, i.e. g ∈ aq(C)p(C)−1. In particular,
g ∈ aq′(C)p′(C)−1 for p′ := p|∅, q′ := q|∅. So, by ℵ0-saturation of
M, g ∈ aq′(M)p′(M)−1 ⊆ aXnX

−1
n .
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De�nable maps

Let X be a de�nable set in a model M; X ∗ := X (C).

De�nition

A function f : X → C , where C is a compact (Hausdor�) space, is
de�nable if preimages of any disjoint closed subsets of C can be
separated by a de�nable set.

De�nition

A de�nable compacti�cation of X is a de�nable map f : X → C
with dense image, where C is compact. If X is equipped with the
full structure (or just all subsets of X are de�nable), this is the
usual compacti�cation of the discrete space X .
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Topological restatement of the previous N-P theorem

Fact

The map t : X → SX (M) given by t(a) := tp(a/M) is the unique
(up to ∼=) universal de�nable compacti�cation of X .

Restatement of N-P theorem

Let G be a group de�nable in M and f : G → C a de�nable
compacti�cation. Assume C =

⋃
n<ω Xn, where all Xn are closed.

Then for some �nite A ⊆ G and n < ω, for every open U ⊇ Xn, we
have G = Af −1[U]f −1[U]−1.

Remark

Taking the full structure on M, we obtain a model-theory free
version of this result by removing the word �de�nable� in the above
statement.
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More abstract topological dynamics

Let (G ,X ) be a �ow. For every g ∈ G we have πg : X → X given
by πg (x) := gx . (One often �identi�es� g with πg , although this
�identi�cation� need not be injective.)

De�nition/Fact

E (X ) is de�ned as the closure of {πg : g ∈ G} ⊆ XX in the
pointwise convergence topology on XX . Then E (X ) with ◦ (i.e.
composition) is a left topological semigroup which is compact. It is
called the Ellis semigroup of the �ow (G ,X ).

Comment

Various dynamical properties of the �ow (G ,X ) can be expressed in
terms of some algebraic or topological properties of E (X ), but we
will not go into this.
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Ellis theorem

Ellis Theorem

Suppose S is a compact (Hausdor�) left topological semigroup.
Then there exists a minimal left idealM in S (i.e. a minimal
non-empty subset for which SM⊆M). And every suchM
satis�es the following properties.

1 M is closed, andM = Ss for all s ∈M.

2 If u ∈ J(M) := {u ∈M : u2 = u}, then uM is a group with
the neutral element u.

3 M =
⊔

u∈J(M) uM; in particular, J(M) 6= ∅.
4 For every u ∈ J(M) and s ∈M, we have su = s.

5 For every minimal left ideal N of S (e.g. N =M), u ∈ J(M)
and v ∈ J(N ), we have uM∼= vN .
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Ellis group of a �ow

Let (G ,X ) be a �ow. Ellis theorem applies to the Ellis semigroup
E (X ).

De�nition

The Ellis group of the �ow (G ,X ) is the isomorphism type of the
isomorphic groups of the form uM for any minimal left idealM of
E (X ) and u ∈ J(M). Any group uM as above will also be called
the Ellis group of X .

Warning

In topological dynamics, something else (but strongly related) is
called the Ellis group of a �ow, but in model theory we use the
above terminology.
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Ellis group of a �ow � cont.

The Ellis group of a �ow is equipped with so-called τ -topology
which makes it a quasi-compact, T1 semitopological group
(i.e. group operation is separately continuous) with continuous
inversion. One can then take the largest Hausdor� quotient to
obtain a compact topological group.
The Ellis group of a �ow plays an important role in abstarct
topological dynamics in the proofs of structural theorems.
In model theory, it was an essential tool to describe the
complexity in various senses of the Lascar Galois group of a
theory (a generalization of the absolute Galois group of
rationals) as well as spaces of strong types (by Krupi«ski,
Pillay, Rzepecki). In fact, one de�nes the Ellis group of a
theory (which does not depend on the choice of the monster
model of the theory) which is an interesting new invariant (this
was shown by Krupi«ski, Newelski, and Simon). Very recently,
Hrsuhovski developed a variant of this notion and applied it to
approximate subgroups.
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