On Δ -spaces X and their characterization in terms of spaces $C_p(X)$

ABSTRACT

Reed (see [6], [4]) studied those uncountable subsets D (under the name Δ -sets) of the reals \mathbb{R} (with the natural topology) having the following property:

For any decreasing sequence $(H_n)_n$ of subsets of D with $\bigcap_n H_n = \emptyset$ there is a sequence $(V_n)_n$ of G_{δ} -subsets of D such that $H_n \subset V_n$, $n \in \mathbb{N}$, and $\bigcap_n V_n = \emptyset$. Research about Δ -spaces is strictly connected with a study of \mathbb{Q} -sets, one of the most mysterious objects in \mathbb{R} . In [2] the concept of a Δ -set has been extended to arbitrary topological spaces: A topological space X is called a Δ -space if for every decreasing sequence $(D_n)_n$ of subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence $(V_n)_n$ of open subsets of X, $D_n \subset V_n$ for every $n \in N$ and $\bigcap_n V_n = \emptyset$. In [2] we proved that X is a Δ -space if and only the dual of $C_p(X)$ endowed with the topology of the uniform convergence on $C_p(X)$ -bounded sets carries the finest locally convex topology. This analytic approach provided several new results about Δ -sets and Δ -spaces [2], [3] [5]. Some alternative characterization was also presented in [1]. Applications for Banach spaces C(K) and spaces $C_p(K)$ are provided.

[1] J. C. Ferrando, S. A. Saxon, *If not distinguished, is* $C_p(X)$ *even close?*, Proc. Amer. Math. Soc. 149 (2021), 2583-2596.

[2] J. Kąkol, A. Leiderman, A characterization of X for which spaces $C_p(X)$ are distinguished and its applications, Proc Amer. Math. Soc. 8 (2021), 86–99.

[3] J. Kąkol, A. Leiderman, Basic properties of X for which spaces $C_p(X)$ are distinguished, Proc. Amer. Math. Soc. 8 (2021), 257–280.

[4] R. W. Knight, Δ-Sets, Trans. Amer. Math. Soc. 339 (1993), 45-60.

[5] A. Leiderman, V. V. Tkachuk, Pseudocompact Δ -spaces are often scattered, Monatshefte für Math. 196 (2021).

[6] G. M. Reed, On normality and countable paracompactness, Fund. Math. 110 (1980), 145-152.