POINTWISE ATTRACTORS WHICH ARE NOT STRICT

MAGDALENA NOWAK

Abstract:

We deal with the finite family \mathcal{F} of continuous maps on the normal Hausdorff space. Each nonempty compact subset A of such space is called a strict attractor if it has an open neighborhood U such that $A = \lim_{n \to \infty} \mathcal{F}^n(S)$ for every nonempty compact $S \subset U$. Every strict attractor is a pointwise attractor, which means that the set $\{x \in X; \lim_{n \to \infty} \mathcal{F}^n(x) = A\}$ contains A in its interior.

We present a class of examples of pointwise attractors which are not strict - from the finite set to the Sierpiński gasket.

1

JAN KOCHANOWSKI UNIVERSITY IN KIELCE, POLAND *Email address*: mnowak@ujk.edu.pl