Real Analytic Inspiration -from Continuous Images of Bernstein Sets to (non-)Productable Continua

J. Cichoń, M. Morayne, R. Rałowski

Inspirations in Real Analysis, Będlewo, April 2022

A. Osipov asked if for every Bernstein set $B \subseteq \mathbb{R}$ the real line can be covered by a countable family of sets each of which is a continuous image of B.

A topological space X is *fiberable* if there exists a continuous mapping $f: X \to X$ such that $|f^{-1}[{x}]| = \mathfrak{c}$ for each $x \in X$. We proved that if X is a fiberable Polish space then there exists a continuous mapping $f: X \to X$ such that every Bernstein subset B of X is mapped by f onto X.

A topological space X is *productable* if there are a topological space T, $|T| = \mathfrak{c}$, and a continuous surjection from X onto $X \times T$. One can see that every productable space is fiberable. Indeed, let $g: X \to X \times T$. Then $f = \pi_X \circ g$ satisfies the condition from the definition of a fiberable space (π_X denotes the projection of $X \times T$ onto X). As there exists a Peano mapping from \mathbb{R} onto \mathbb{R}^2 , \mathbb{R} is fiberable and Osipov's question is (strongly) answered in the positive.

If we do not want the topology on T to have any specific properties (e.g. if we do not want T to satisfy any separation axiom) the notions of separable space and productable space coincide.

The aim of the talk will be to present an example of a fiberable (thus also productable) metric continuum X for which there is no topological space T with <u>nontrivial</u> topology such that there exists a continuous mapping from X onto $X \times T$.

Thus one can make the definition of *productable* more precise requiring some properties from the topology on T. We call a space $X T_i$ -productable, i = -1, 0, 1, 2, if there are a T_i topological space T, $|T| = \mathfrak{c}$, and a continuous surjection from X onto $X \times T$ (" T_{-1} " - means no separation property assumed). We discuss the existence of metric continua which are T_i -productable but not T_{i+1} -productable.