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Let Ω be a perfectly normal topological space, let A be a non-empty subset of Ω
and let Bα(A) denote the space of all functions A→ R of Baire class α ≥ 1, where
α is an ordinal number < ω1. A short and direct version of proof of the Kuratowski
Extension Theorem for Baire-one functions had lead us to the generalization of this
theorem to the case of extensions of Baire-α functions. This generalization allowed
us to prove that Bα(Ω) has the so-called (δ)-property for linear lattices: for all
f, g ∈ Bα(Ω) with f ∧ g = 0 there exists a Borel subset A ⊂ Ω of ambiguous class
α with χA · f = f and χA · g = 0, where χA is the characteristic function of A.
The (δ)-property implies the spectral Freudenthal property and was first studied
independently by Veksler and Lavrič. It was also studied in detail by Lipecki and
Wójtowicz.
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