Optimal Hardy inequalities for the fractional Laplacian on L^{p}

Tomasz Jakubowski
Wroctaw University of Science and Technology (Poland)

tomasz.jakubowski@pwr.edu.pl

Abstract

Let $d \geq 1$ and $0<\alpha<d \wedge 2$. For $p \in(1, \infty)$ and $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we define the p-form,

$$
\mathcal{E}_{p}[u]:=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}(u(x)-u(y))\left(u(x)^{\langle p-1\rangle}-u(y)^{\langle p-1\rangle}\right) \nu(x-y) d y d x,
$$

where

$$
\nu(z)=\frac{2^{\alpha} \Gamma((d+\alpha) / 2) \pi^{-d / 2}}{|\Gamma(-\alpha / 2)|}|z|^{-d-\alpha}, \quad z \in \mathbb{R}^{d},
$$

and $a^{\langle k\rangle}:=|a|^{k} \operatorname{sgn} a$. During the talk I will discuss the following inequality

$$
\mathcal{E}_{p}[u] \geq C \int_{\mathbb{R}^{d}} \frac{|u(x)|^{p}}{|x|^{\alpha}} d x, \quad u \in L^{p}\left(\mathbb{R}^{d}\right) .
$$

The explicit formula for the best constant C will be given. The talk will be based on the recent paper https://arxiv.org/abs/2103.06550

