19th Workshop: Noncommutative Probability, Noncommutative Harmonic Analysis and Related Topics with Applications, 31.07-6.08.2022, Będlewo

Abstract

Adam Paszkiewicz (common works with Stanisław Goldstein) Faculty of Mathematics and Computer Science Uniwersity of Lodz

Linear combinations of projections and perturbations of operators in von Neumann factors Abstract: We present recent results of the following type: For any hermitian operator $a \in \mathcal{M}, a \in \operatorname{lin}\left(p_{1}, \ldots, p_{n}\right)$ for some projections $p_{1}, \ldots, p_{n} \in \mathcal{M}$; for some hermitian operator $a \in \mathcal{M}$, $a \notin \operatorname{lin}\left(p_{1}, \ldots, p_{n-1}\right)$ for any projections $p_{1}, \ldots, p_{n-1} \in \mathcal{M}$. If proves that $n=4$ for \mathcal{M} being a factor of type $I_{n}, n>76 ; I_{\infty} ; I I_{1}$ or $I I_{\infty}$ but $n=3$ for \mathcal{M} of type $I I I$.

Similar methods gives results of type: If hermitian operators H_{1}, H_{-1} satisfies $\left\|H_{+1}\right\|>1$ and some conditions in spectral language, then for any operator $0 \leqslant H \leqslant 2 \cdot \mathbf{1}$ we have $\left(H_{1}+H_{-1}^{\prime}\right)^{+}=H^{\prime}$ for some $H_{-1}^{\prime} \sim H_{-1}, H \sim H^{\prime}$. The equivalence relation $H \sim H^{\prime}$ means that $H^{\prime}=u H u^{*}$ for some partial isometry u in \mathcal{M}.

Some new look at old methods in perturbations theory of operator in Hilbert space will also be presented.

