1-bounded entropy and embeddings into a matrix ultraproduct

David Jekel

June 23, 2022

Abstract submitted to the non-commutative probability conference at IMPAN in August 2022.

Abstract: Our work is motivated by Jung's theorem that if \mathcal{M} is a tracial W*-algebra, then \mathcal{M} is amenable if and only if any two embeddings of \mathcal{M} into the ultrapower $\mathcal{R}^{\mathcal{U}}$ are unitarily conjugate. We show that if any two embeddings of \mathcal{M} into a matrix ultraproduct $\mathcal{Q} = \prod_{n \to \mathcal{U}} M_n(\mathbb{C})$ are conjugate by an automorphism of \mathcal{Q} , then \mathcal{M} must be strongly 1-bounded (a free entropic condition defined by Jung that means that \mathcal{M} has very few matrix approximations). The proof uses a combination of Ben Hayes 1-bounded entropy and the model theory of tracial von Neumann algebras introduced by Farah, Hart, and Sherman.