19th Workshop: Noncommutative Probability, Noncommutative Harmonic Analysis and Related Topics with Applications, 31.07-6.08.2022, Będlewo

Abstract

Nobuaki Obata (Tohoku University) Positive definite Q-matrices and primary non-QE graphs Abstract: Let $G=(V, E)$ be a graph and $d(x, y)$ the graph distance. The Q-matrix of a graph is defined by $Q=Q_{q}=\left[q^{d(x, y)}\right]$ where $-1 \leq q \leq 1$. In spectral analysis of graphs the Q-matrix gives rise to a q-deformed vacuum functional on the adjacency algebra of G, defined by $\langle a\rangle_{q}=\left\langle Q_{q} e_{o}, a e_{o}\right\rangle$, where $o \in V$ is a fixed vertex. Bożejko [Heidelberg Lectures (1987) + private communications] proved that Q is positive definite for $0 \leq q \leq 1$ if and only if G admits a quadratic embedding (QE) in Euclidean space, and gave two basic examples of non-QE graphs, see also [Hora-Obata book (2007)]. In fact, it follows from Schoenberg's theorem (1935-37) that G is of QE class if and only if the distance matrix $D=[d(x, y)]$ is conditionally negative definite. These observations motivated us [Obata-Zakiyyah (2018)] to initiate a quantitative approach by means of the quadratic embedding constant (QEC) of a graph defined by

$$
\operatorname{QEC}(G)=\max \{\langle f, D f\rangle ; f \in C(V),\langle f, f\rangle=1,\langle\mathbf{1}, f\rangle=0\} .
$$

In this talk, we discuss the recent attempt of classifying graphs in terms of the QE constants and of exploring primary non-QE graphs, that is, graphs which do not admit quadratic embeddings and do not possess such graphs as isometrically embedded subgraphs.

