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Goals 2

Introduce and spawn interest in:

Extreme value theory
A class of processes “moving” current probability theory

We will also touch upon fancy buzzwords such as
scaling limit
extremal process
branching random walk
Gaussian free field
etc



Extreme value theory: key questions 3

Let X1, . . . , Xn be random variables (no assumptions).

Absolute maximum
Mn :“ max

i“1,...,n
Xi

Questions:
Order of magnitude
Typical fluctuation
Centered distribution

Quantitative version: Are there an and bn such that

t ÞÑ P
`

Mn ´ an ď bnt
˘

tends, as n Ñ8, to a non-trivial function?



Some real life examples 4

Ages of individuals (people) in a population
Wildfire, earthquake, flood or tornado sizes, insurance losses
Infrastructure failures (power grid, pipelines, cell network etc)
Athletic achievements (100 m sprint runs)
Annual temperature maxima



Mathematical model I: i.i.d.’s 5

Assume: X1, X2, . . . , Xn independent and identically distributed (i.i.d)

Basic calculation:

P
`

Mn ´ an ď bnt
˘

“ P
´

n
č

i“1

tXi ď an ` bntu
¯

i.i.d.
“

n
ź

i“1

P
`

Xi ď an ` bnt
˘ i.i.d.
“ PpX1 ď an ` bntqn

As non-degeneracy requires PpX1 ď an ` bntq Ñ 1, we are justified to write

P
`

X1 ď an ` bnt
˘n
“

“

1´PpX1 ą an ` bntq
‰n

« e´nPpX1ąan`bntq

and so we need . . .



Model I: i.i.d.’s continued . . . 6

. . . to find an and bn so that

Fnptq :“ nPpX1 ą an ` bntq

tends to a non-degenerate limit. This requires a certain amount of regularity.
The limit law is then quite constrained:

Theorem (Fisher-Trippet-Gnedenko)

Suppose Fptq :“ limnÑ8 Fnptq exists for all t P R. Then Gptq :“ e´Fptq is, up to shift
and scaling, one of the functions:

(Weibull class) Gptq “ e´|t|
α

for t ď 0 and Gptq “ 1 for t ě 0

(Fréchet class) Gptq “ e´t´α
for t ě 0 and Gptq “ 0 for t ă 0

(Gumbel class) Gptq “ e´e´t

Fréchet (1924), Fisher & Trippet (1928), von Mises (1936), Gnedenko (1943), . . .



Model I: an example 7

Suppose that X1, X2, . . . are i.i.d. normal N p0, 1q. Then for t " 1,

PpX1 ą tq «
1
t

e´t2{2

and so

nP

ˆ

X1 ą
a

2 log n´
log log n

2
a

2 log n
looooooooooooomooooooooooooon

an

` bnt
˙

“
1
?

2
e´
?

2 log n bntp1`op1qq

Now set bn :“ 1?
2 log n

to get

nPpX1 ą an ` bntq ÝÑ
nÑ8

1
?

2
e´t

The centered maximum is asymptotically Gumbel, Gptq “ e´
1?
2

e´t
.



Model I: extremal process 8

Question: How about the second, third, etc (local) maxima?

Extremal process: random point measure

ηn :“
n
ÿ

i“1

δpXi´anq{bn

captures the whole set of near-maximal values.

Theorem
Let G be the limit CDF in previous Theorem. Then for Fptq :“ ´ log Gptq,

ηn
law
ÝÑ
nÑ8

PPP
`

dFq

where PPP pµq :“ Poisson point process with intensity µ.

L. De Haan, A. Ferreira. Extreme value theory: an introduction. Springer Verlag.



Mathematical model II: random walks 9

Assume Y1, Y2, . . . are i.i.d. and that X1, X2, . . . are given by

Xk :“
k
ÿ

i“1

Yi

This makes k ÞÑ Xk a random walk.

Typical plots (assuming EY1 “ 0 for simplicity):

EpY2
1q ă 8 EpY2

1q “ 8



Model II: scaling limit in CLT regime 10

Theorem (Donsker’s Invariance Principle)

Assume the above setting with EpY1q “ 0 and EpY2
1q ă 8. Then, as n Ñ8, the

distribution of t ÞÑ Wpnq
t on Cr0,8q where

Wpnq
t :“

1
?

n

´

Xtntu ` ptn´ tntuqXtntu`1

¯

tends to the law of Brownian motion t ÞÑ Bt with EpB2
t q “ EpY2

1qt.

Brownian motion :“ random continuous function with independent centered
Gaussian increments such that EpBtBsq “ mintt, su
Law of Brownian motion on Cr0,8q is called Wiener measure
An example of a scaling limit: at global scale, a non-trivial
limit process is obtained



Model II: maximum in CLT regime 11

Convergence in law := expectations of bounded continuous functions
converge. So, in particular, we have:

Corollary

Assume the above setting with EpY1q “ 0 and EpY2
1q ă 8. Then

1
?

n
max

k“1,...,n
Xk

law
ÝÑ
nÑ8

max
0ďtď1

Bt
law
“

ˇ

ˇN p0, EpY2
1qq

ˇ

ˇ

Note: Limit law universal modulo scaling, where (vaguely)

universal :“ independent of particulars of the model

Still, very different structure than for Model I!



Model II: other regimes 12

Changes for EpY1q ă 0:

max
k“1,...,n

Xk converges in law without centering or scaling

The limit distribution is NOT universal, individual values matter

Changes for EpY2
1q “ 8, the so called heavy tailed regime:

Limit process has stable law
Need to scale by n1{α for α P p0, 2q instead of

?
n



Intermediate regime? 13

Model I: determined by local properties (individual entries matter)
Model II: determined by global properties (only averages matter)

Universal behavior obtained, stable under perturbations.

Question: Is there a regime where both local and global properties matter?



Model III: branching random walk 14

Let b P N obey b ě 2 and set L0 :“ t$u and Ln :“ t1, . . . , bun for n ě 1.
A b-ary tree of depth n :“ graph with vertex set Tn :“

Ťn
k“0 Lk and an edge

between any vertices of the form pσ1, . . . , σkq and pσ1, . . . , σk, σk`1q.

Definition
Given i.i.d. r.v.’s tYσ : σ P Tnu, a branching random walk of depth n and step
distribution Y is the family tXσ : σ P Lnuwhere, for σ “ pσ1, . . . , σnq P Ln,

Xσ :“ Y$ `

n
ÿ

k“1

Ypσ1,...,σkq

Key facts:
Along each root-to-leaf path, Xσ is a random walk.
Walks along different path are correlated (by common part).
There are exponentially many root-to-leaf paths.



Model III: limit law of the maximum 15

Theorem (Aïdekon 2013)
Suppose that Y1 is continuously distributed with

EeY1 “
1
b

and E
`

Y1eY1
˘

“ 0

Then there exists a non-degenerate, positive random variable Z such that

P
´

max
σPLn

Xσ ď ´
3
2

log n` t
¯

ÝÑ
nÑ8

E
`

e´Ze´t˘

Main differences: For i.i.d.’s we’d get
Z constant a.s.
1{2 instead of 3{2



Model III: extremal process 16

As before, denote the (empirical) extremal process by

ηn :“
ÿ

σPLn

δpXσ´anq{bn

Theorem (Madaule 2017)
Under assumptions of the previous theorem,

ηn
law
ÝÑ
nÑ8

PPP
`

Ze´tdtq

where the Poisson point process is defined conditionally on Z.

Punchline:

maximum/extremal process: Gumbel with a random shift by log Z

The random shift arises from early “generations” of the process.



Universal behavior: examples 17

Branching Brownian motion: Early work by Fisher (1937), Kolmogorov,
Petrovsky and Piskunov (1937) on Fisher-KPP equation

Bu
Bt
“
B2u
Bx2 ` up1´ uq

for reaction-diffusion processes in sciences.

(stolen from N. Berestycki’s notes)
McKean (1975): probabilistic interpretation

upt, xq “ P
`

all BBM particles at time t left of xq

for “step” initial condition up0, xq “ 1r0,8qpxq

Maximum: Bramson (1978,1983), Lalley and Selke (1987)
Extremal process is randomly shifted Gumbel: Arguin, Bovier and Kistler
(2011,2012), Aïdekon, Berestycki, Brunet and Shi (2013)



Universal behavior: examples 18

Gaussian free field in Λ Ď Zd: Gaussian process thx : x P Λuwith

Ephxq “ 0 and Ephxhyq “ GΛpx, yq

where GΛpx, yq :“ expected number of visits to y by simple random walk
started at x before exiting Λ.

d “ 2 special due to logarithmic correlations: for ΛN :“ p0, Nqd XZd,

GΛNpx, yq “
2
π

log
´ N

1` |x´ y|

¯

`Op1q

Caused by marginal-recurrence of simple random walk in d “ 2



Universal behavior: GFF 19

Level lines (SLE4): Schramm and Sheffield (2009)
Maximum: Bramson, Ding and Zeitouni (2015)
Extremal process: B.-Louidor (2015, 2018, 2020)



Universal behavior: examples 20

Most frequent point of simple random walk: How much time does a simple
random walk of given time length spend at its most visited point?

leading order: Erdős & Taylor (1960), Dembo, Peres, Rosen & Zeitouni (2001)
towards actual limit: Jego (2020), B.-Louidor (2021), . . .

Strong connection to scaling limit of the cover time, etc



Take away message 21

Log-correlated processes form a universality class where both local and
global correlation structures matter.
They are ubiquitous in (particularly, two-dimensional) probability
Their maximum/extremal process has a randomly shifted Gumbel law

THANK YOU!


