On skew Brownian motion and its approximations

Adam Bobrowski

Lublin University of Technology
Baby Steps Beyond the Horizon 2022

Outline

- Brownian motion and its variants in $[0, \infty)$
- Semi-permeable membranes
- Skew Brownian motion
- A kinetic model

Brownian motion (in 1D)

Usually defined as a family $w(t), t \geq 0$ of random variables such that
(1) $w(0)=0$,
(2) increments are independent: $w\left(t_{n}\right)-w\left(t_{n-1}\right), \ldots, w\left(t_{1}\right)-w\left(t_{0}\right)$ independent for $t_{n}>t_{n-1}>\ldots>t_{0} \geq 0$
(0) $w(t)-w(s) \sim \mathcal{N}(0, t-s)$,

Brownian motion (in 1D)

Usually defined as a family $w(t), t \geq 0$ of random variables such that
(1) $w(0)=0$,
(2) increments are independent: $w\left(t_{n}\right)-w\left(t_{n-1}\right), \ldots, w\left(t_{1}\right)-w\left(t_{0}\right)$ independent for $t_{n}>t_{n-1}>\ldots>t_{0} \geq 0$
(0) $w(t)-w(s) \sim \mathcal{N}(0, t-s)$,
($t \mapsto w(t, \omega)$ is continuous for (almost) all $\omega \in \Omega$. !!

Brownian motion (in 1D)

Usually defined as a family $w(t), t \geq 0$ of random variables such that
(1) $w(0)=0$,
(2) increments are independent: $w\left(t_{n}\right)-w\left(t_{n-1}\right), \ldots, w\left(t_{1}\right)-w\left(t_{0}\right)$ independent for $t_{n}>t_{n-1}>\ldots>t_{0} \geq 0$
(0) $w(t)-w(s) \sim \mathcal{N}(0, t-s)$,
($t \mapsto w(t, \omega)$ is continuous for (almost) all $\omega \in \Omega$. !!
A BM starting at $x \in \mathbb{R}: x+w(t), t \geq 0$.

Brownian motion (in 1D)

Usually defined as a family $w(t), t \geq 0$ of random variables such that
(1) $w(0)=0$,
(2) increments are independent: $w\left(t_{n}\right)-w\left(t_{n-1}\right), \ldots, w\left(t_{1}\right)-w\left(t_{0}\right)$ independent for $t_{n}>t_{n-1}>\ldots>t_{0} \geq 0$
($w(t)-w(s) \sim \mathcal{N}(0, t-s)$,
(1) $t \mapsto w(t, \omega)$ is continuous for (almost) all $\omega \in \Omega$. !!

A BM starting at $x \in \mathbb{R}: x+w(t), t \geq 0$.
Described by a single operator: $f \mapsto \frac{1}{2} f^{\prime \prime}$

Reflected (reflecting) Brownian motion

RBM
a process with values in $[0, \infty)$

$$
|x+w(t)|
$$

Unrestricted BM

Reflecting BM

Reflected (reflecting) Brownian motion

RBM
a process with values in $[0, \infty)$

$$
|x+w(t)|
$$

Unrestricted BM
Reflecting BM
'Same' operator restricted to f such that $f^{\prime}(0)=0$.

Stopped Brownian motion

SBM

a process with values in $[0, \infty)$

$$
= \begin{cases}x+w(t), & t<\tau_{x}, \\ 0, & t \geq \tau_{x},\end{cases}
$$

where $\tau_{x}=\inf \{t \geq 0 ; x+w(t)=0\}$.

Stopped BM

Stopped Brownian motion

SBM

a process with values in $[0, \infty)$

$$
= \begin{cases}x+w(t), & t<\tau_{x}, \\ 0, & t \geq \tau_{x},\end{cases}
$$

where $\tau_{x}=\inf \{t \geq 0 ; x+w(t)=0\}$.

Stopped BM

'Same' operator restricted to f such that $f^{\prime \prime}(0)=0$.

Minimal Brownian motion

MBM
a process with values in $(0, \infty)$

$$
= \begin{cases}x+w(t), & t<\tau_{x}, \\ \text { undefined, }, & t \geq \tau_{x},\end{cases}
$$

where $\tau_{x}=\inf \{t \geq 0 ; x+w(t)=0\}$.

Minimal BM

Minimal Brownian motion

MBM
a process with values in $(0, \infty)$

$$
= \begin{cases}x+w(t), & t<\tau_{x}, \\ \text { undefined }, & t \geq \tau_{x},\end{cases}
$$

where $\tau_{x}=\inf \{t \geq 0 ; x+w(t)=0\}$.

Minimal BM
'Same' operator restricted to f such that $f(0)=0$.

Three extreme cases of boundary conditions

type of BM	minimal	reflecting	stopped
boundary condition	$f(0)=0$	$f^{\prime}(0)=0$	$f^{\prime \prime}(0)=0$
particle	removed	reflected	captured

Three extreme cases of boundary conditions

type of BM	minimal	reflecting	stopped
boundary condition	$f(0)=0$	$f^{\prime}(0)=0$	$f^{\prime \prime}(0)=0$
particle	removed	reflected	captured

For processes in $[0, \infty)$, combination of these three:

$$
\frac{1}{2} p f^{\prime \prime}(0)-(1-p) f^{\prime}(0)+c f(0)=0
$$

$p \in[0,1], c \geq 0$.

Three extreme cases of boundary conditions

type of BM	minimal	reflecting	stopped
boundary condition	$f(0)=0$	$f^{\prime}(0)=0$	$f^{\prime \prime}(0)=0$
particle	removed	reflected	captured

For processes in $[0, \infty)$, combination of these three:

$$
\frac{1}{2} p f^{\prime \prime}(0)-(1-p) f^{\prime}(0)+c f(0)=0
$$

$p \in[0,1], c \geq 0$.
Below,

- $p=1$ - elementary exit
- $p=0$ - elastic.

Elementary exit BM: $\frac{1}{2} f^{\prime \prime}(0)+c f(0)=0$

EEBM

$$
= \begin{cases}x+w(t), & t<\tau_{x}, \\ 0, & \tau \leq t<T+\tau_{x}, \\ \text { undefined, }, & t \geq T+\tau_{x},\end{cases}
$$

$$
\tau_{x}=\inf \{t \geq 0 ; x+w(t)=0\}, T-\operatorname{ind} ., \operatorname{Pr}(T>s)=\mathrm{e}^{-c s}, s \geq 0 .
$$

Unrestricted BM

Elementary exit BM

Elementary exit BM: $\frac{1}{2} f^{\prime \prime}(0)+c f(0)=0$

EEBM

$$
= \begin{cases}x+w(t), & t<\tau_{x} \\ 0, & \tau_{x} \leq t<T+\tau_{x} \\ \text { undefined, }, & t \geq T+\tau_{x}\end{cases}
$$

$$
\tau_{x}=\inf \{t \geq 0 ; x+w(t)=0\}, T-\text { ind., } \operatorname{Pr}(T>s)=\mathrm{e}^{-c s}, s \geq 0
$$

Elementary exit BM c - rate of probability mass escape

Elastic Brownian motion (1): $f^{\prime}(0)=c f(0)$

'How many zeros' of RBM?

Amazingly,

$$
\widetilde{w}(t):=m(t)-w(t), \text { where } m(t):=\max _{s \in[0, t]} w(t), \quad t \geq 0
$$

is also a reflecting Brownian motion (starting at $x=0$).

Elastic Brownian motion (2): $f^{\prime}(0)=c f(0)$

(a) standard BM

(b) maximum of $B M$

(c) difference

Elastic Brownian motion (3): $f^{\prime}(0)=c f(0)$

Set of zeros is Cantor-like.
σ (local time) measures time spent at the boundary.

Summary (and something new)

- In the boundary condition

$$
\frac{1}{2} p f^{\prime \prime}(0)-(1-p) f^{\prime}(0)+c f(0)=0
$$

- the larger the $p \in[0,1]$ the more sticky the boundary,
- the smaller the $p \in[0,1]$ the more rigid the boundary,
- the larger the $c \geq 0$ the more probability mass escapes through $x=0$

Summary (and something new)

- In the boundary condition

$$
\frac{1}{2} p f^{\prime \prime}(0)-(1-p) f^{\prime}(0)+c f(0)=0
$$

- the larger the $p \in[0,1]$ the more sticky the boundary,
- the smaller the $p \in[0,1]$ the more rigid the boundary,
- the larger the $c \geq 0$ the more probability mass escapes through $x=0$
- In

$$
\frac{1}{2} p f^{\prime \prime}(0)-(1-p) f^{\prime}(0)+c f(0)=d \int_{(0, \infty)} f \mathrm{dP}
$$

where P - probability measure,

- $d \leq c$ specifies the probability of starting anew after escaping through $x=0$,
- P is the distribution of the starting anew position.

Semi-permeable membranes (snapping out BM)

Test functions:

Transmission conditions ($\mu, \nu \geq 0$ - permeability coefficients):

$$
f^{\prime}(0+)=\mu(f(0+)-f(0-)), \quad f^{\prime}(0-)=\nu(f(0+)-f(0-)) .
$$

Semi-permeable membranes (snapping out BM)

Test functions:

Transmission conditions ($\mu, \nu \geq 0$ - permeability coefficients):

$$
f^{\prime}(0+)=n \mu(f(0+)-f(0-)), \quad f^{\prime}(0-)=n \nu(f(0+)-f(0-)) .
$$

As $n \rightarrow \infty$, the membrane 'disappears',

Semi-permeable membranes (snapping out BM)

Test functions:

Transmission conditions ($\mu, \nu \geq 0$ - permeability coefficients):

$$
f^{\prime}(0+)=n \mu(f(0+)-f(0-)), \quad f^{\prime}(0-)=n \nu(f(0+)-f(0-)) .
$$

As $n \rightarrow \infty$, the membrane 'disappears', and yet asymmetry remains

$$
\mu f^{\prime}(0-)=\nu f^{\prime}(0+), \quad f(0+)=f(0-) .
$$

Technicalities

- Convergence of semigroups
- In L^{1} and C
- Weak convergence of processes
- Convergence of cosine families - uniform with respect to time!
- Generalizations: graphs.

Is it permeable or not?

$$
\mu f^{\prime}(0-)=\nu f^{\prime}(0+), \quad f(0+)=f(0-) .
$$

Orwell 'Animal Farm':
All animals are equal but some animals are more equal than others.

What is the limit process like?

- Approximating processes well described (snapping out BM) ...
- but rather complicated
- What about the limit process?

What is the limit process like?

- Approximating processes well described (snapping out BM) ...
- but rather complicated
- What about the limit process?

Transmission conditions:

$$
f(0+)=f(0-), \quad \nu f^{\prime}(0+)=\mu f^{\prime}(0-)
$$

What is the limit process like?

- Approximating processes well described (snapping out BM) ...
- but rather complicated
- What about the limit process?

Transmission conditions:

$$
f(0+)=f(0-), \quad \nu f^{\prime}(0+)=\mu f^{\prime}(0-)
$$

Key parameter

$$
\alpha:=\frac{\nu}{\nu+\mu} \in[0,1] .
$$

Construction of skew BM

$\alpha:=\frac{\nu}{\nu+\mu}-$ probability of not reflecting excursion downwards

A number of generalizations

Walsh's spider, see also Portenko, Lejay.

Kinetic model with interface

Kinetic model with interface

Kinetic model with interface

Kinetic model with interface

Kinetic model with interface

Kinetic model with interface

Diffusion approximation

- intensity of jumps - $\frac{1}{\epsilon^{2}}$
- particle's velocity $-\frac{1}{\epsilon}$

Kinetic model with interface

Diffusion approximation

- intensity of jumps - $\frac{1}{\epsilon^{2}}$
- particle's velocity $-\frac{1}{\epsilon}$

Without interface, classical result (S. Goldstein, Kac, Griego-Hersh, Pinsky) \longrightarrow BM ('smaller' state-space).

Kinetic model with interface

Diffusion approximation

- intensity of jumps $-\frac{1}{\epsilon^{2}}$
- particle's velocity $-\frac{1}{\epsilon}$

Without interface, classical result (S. Goldstein, Kac, Griego-Hersh, Pinsky) \longrightarrow BM ('smaller' state-space).
With interface
\longrightarrow skew $\mathrm{BM} p f^{\prime}(0+)=q f^{\prime}(0-) \longrightarrow \alpha=\frac{p}{p+q}$.

Model kinetyczny — podsumowanie

Interface modifies the limit BM:
by turning it into skew BM with probability of not reflecting excursions

$$
\alpha=\frac{p}{p+q} .
$$

Thank you

