On skew Brownian motion and its approximations

Adam Bobrowski

Lublin University of Technology

Baby Steps Beyond the Horizon 2022

Outline

- Brownian motion and its variants in $[0, \infty)$
- Semi-permeable membranes
- Skew Brownian motion
- A kinetic model

Usually defined as a family w(t), $t \ge 0$ of random variables such that

- w(0) = 0,
- ② increments are independent: $w(t_n) w(t_{n-1}), ..., w(t_1) w(t_0)$ independent for $t_n > t_{n-1} > ... > t_0 \ge 0$
- **3** $w(t) w(s) \sim \mathcal{N}(0, t s)$,

Usually defined as a family w(t), $t \ge 0$ of random variables such that

- w(0) = 0,
- ② increments are independent: $w(t_n) w(t_{n-1}), ..., w(t_1) w(t_0)$ independent for $t_n > t_{n-1} > ... > t_0 \ge 0$
- **3** $w(t) w(s) \sim \mathcal{N}(0, t s)$,
- **1** $t \mapsto w(t, \omega)$ is continuous for (almost) all $\omega \in \Omega$. !!

Usually defined as a family w(t), $t \ge 0$ of random variables such that

- w(0) = 0,
- ② increments are independent: $w(t_n) w(t_{n-1}), ..., w(t_1) w(t_0)$ independent for $t_n > t_{n-1} > ... > t_0 \ge 0$
- **3** $w(t) w(s) \sim \mathcal{N}(0, t s)$,
- **1** $t \mapsto w(t, \omega)$ is continuous for (almost) all $\omega \in \Omega$. !!

A BM starting at $x \in \mathbb{R}$: $x + w(t), t \ge 0$.

Usually defined as a family w(t), $t \ge 0$ of random variables such that

- w(0) = 0,
- ② increments are independent: $w(t_n) w(t_{n-1}), ..., w(t_1) w(t_0)$ independent for $t_n > t_{n-1} > ... > t_0 \ge 0$
- **3** $w(t) w(s) \sim \mathcal{N}(0, t s)$,
- $t \mapsto w(t, \omega)$ is continuous for (almost) all $\omega \in \Omega$. !!

A BM starting at $x \in \mathbb{R}$: $x + w(t), t \ge 0$.

Described by a single operator: $f \mapsto \frac{1}{2}f''$

Adam Bobrowski (LUT)

Reflected (reflecting) Brownian motion

RBM

a process with values in $[0,\infty)$

$$|x+w(t)|$$
.

Unrestricted BM

Reflecting BM

Reflected (reflecting) Brownian motion

RBM

a process with values in $[0,\infty)$

$$|x+w(t)|$$
.

Unrestricted BM

Reflecting BM

'Same' operator restricted to f such that f'(0) = 0.

Stopped Brownian motion

SBM

a process with values in $[0, \infty)$

$$= \begin{cases} x + w(t), & t < \tau_x, \\ 0, & t \ge \tau_x, \end{cases}$$

where $\tau_x = \inf\{t \ge 0; x + w(t) = 0\}.$

Stopped BM

Stopped Brownian motion

SBM

a process with values in $[0,\infty)$

$$= \begin{cases} x + w(t), & t < \tau_x, \\ 0, & t \ge \tau_x, \end{cases}$$

where $\tau_x = \inf\{t \ge 0; x + w(t) = 0\}.$

'Same' operator restricted to f such that f''(0) = 0.

Minimal Brownian motion

MBM

a process with values in $(0, \infty)$

$$= \begin{cases} x + w(t), & t < \tau_x, \\ \text{undefined}, & t \ge \tau_x, \end{cases}$$

where
$$\tau_x = \inf\{t \ge 0; x + w(t) = 0\}.$$

Minimal BM

Minimal Brownian motion

MBM

a process with values in $(0, \infty)$

$$= \begin{cases} x + w(t), & t < \tau_x, \\ \text{undefined}, & t \ge \tau_x, \end{cases}$$

where
$$\tau_x = \inf\{t \ge 0; x + w(t) = 0\}.$$

Minimal BM

'Same' operator restricted to f such that f(0) = 0.

Three extreme cases of boundary conditions

type of BM	minimal	reflecting	stopped
boundary condition	f(0)=0	f'(0)=0	f''(0)=0
particle	removed	reflected	captured

Three extreme cases of boundary conditions

type of BM	minimal	reflecting	stopped
boundary condition	f(0) = 0	f'(0)=0	f''(0)=0
particle	removed	reflected	captured

For processes in $[0, \infty)$, combination of these three:

$$\frac{1}{2}pf''(0) - (1-p)f'(0) + cf(0) = 0,$$

$$p\in[0,1],c\geq0.$$

Three extreme cases of boundary conditions

type of BM	minimal	reflecting	stopped
boundary condition	f(0) = 0	f'(0)=0	f''(0)=0
particle	removed	reflected	captured

For processes in $[0, \infty)$, combination of these three:

$$\frac{1}{2}pf''(0) - (1-p)f'(0) + cf(0) = 0,$$

 $p\in[0,1],c\geq0.$

Below,

- p = 1 elementary exit
- p = 0 elastic.

Elementary exit BM: $\frac{1}{2}f''(0) + cf(0) = 0$

EEBM

$$= \begin{cases} x + w(t), & t < \tau_x, \\ 0, & \tau \le t < T + \tau_x, \\ \text{undefined}, & t \ge T + \tau_x, \end{cases}$$

$$au_x = \inf\{t \geq 0; x + w(t) = 0\}, \ T - \text{ind., } \Pr(T > s) = e^{-cs}, s \geq 0.$$

Unrestricted BM

Elementary exit BM

Elementary exit BM: $\frac{1}{2}f''(0) + cf(0) = 0$

EEBM

$$= egin{cases} x+w(t), & t< au_x, \ 0, & au_x \leq t < T+ au_x, \ ext{undefined}, & t \geq T+ au_x, \end{cases}$$

$$au_x = \inf\{t \geq 0; x + w(t) = 0\}, \ T - \mathrm{ind., } \Pr(T > s) = \mathrm{e}^{-cs}, s \geq 0.$$

Elementary exit BM

c — rate of probability mass escape

Elastic Brownian motion (1): f'(0) = cf(0)

'How many zeros' of RBM?

Amazingly,

$$\widetilde{w}(t) \coloneqq m(t) - w(t), \text{ where } m(t) \coloneqq \max_{s \in [0,t]} w(t), \qquad t \ge 0$$

is also a reflecting Brownian motion (starting at x = 0).

Elastic Brownian motion (2): f'(0) = cf(0)

Adam Bobrowski (LUT)

Elastic Brownian motion (3): f'(0) = cf(0)

Set of zeros is Cantor-like. σ (local time) measures time spent at the boundary.

 $\sigma > T \longrightarrow \mathsf{EBM}$ undefined

Summary (and something new)

In the boundary condition

$$\frac{1}{2}pf''(0)-(1-p)f'(0)+cf(0)=0,$$

- the larger the $p \in [0,1]$ the more sticky the boundary,
- the smaller the $p \in [0,1]$ the more rigid the boundary,
- the larger the $c \ge 0$ the more probability mass escapes through x=0

Summary (and something new)

• In the boundary condition

$$\frac{1}{2}pf''(0) - (1-p)f'(0) + cf(0) = 0,$$

- the larger the $p \in [0,1]$ the more sticky the boundary,
- the smaller the $p \in [0,1]$ the more rigid the boundary,
- the larger the $c \ge 0$ the more probability mass escapes through x = 0
- In

$$\frac{1}{2}pf''(0) - (1-p)f'(0) + cf(0) = \left| \frac{d}{d} \int_{(0,\infty)} f \, dP \right|,$$

where P - probability measure,

- $d \le c$ specifies the probability of starting anew after escaping through x = 0,
- P is the distribution of the starting anew position.

Semi-permeable membranes (snapping out BM)

Test functions:

Transmission conditions ($\mu, \nu \geq 0$ — permeability coefficients):

$$f'(0+) = \mu(f(0+) - f(0-)), \qquad f'(0-) = \nu(f(0+) - f(0-)).$$

Adam Bobrowski (LUT)

Semi-permeable membranes (snapping out BM)

Test functions:

Transmission conditions ($\mu, \nu \geq 0$ — permeability coefficients):

$$f'(0+) = n\mu(f(0+) - f(0-)), \qquad f'(0-) = n\nu(f(0+) - f(0-)).$$

As $n \to \infty$, the membrane 'disappears',

Adam Bobrowski (LUT)

Semi-permeable membranes (snapping out BM)

Test functions:

Transmission conditions ($\mu, \nu \geq 0$ — permeability coefficients):

$$f'(0+) = n\mu(f(0+) - f(0-)), \qquad f'(0-) = n\nu(f(0+) - f(0-)).$$

As $n \to \infty$, the membrane 'disappears', and yet asymmetry remains

$$\mu f'(0-) = \nu f'(0+), \qquad f(0+) = f(0-).$$

Adam Bobrowski (LUT) 1.09.22 14/23

Technicalities

- Convergence of semigroups
- In L^1 and C
- Weak convergence of processes
- Convergence of cosine families uniform with respect to time!
- Generalizations: graphs.

Is it permeable or not?

$$\mu f'(0-) = \nu f'(0+), \qquad f(0+) = f(0-).$$

Orwell 'Animal Farm':

All animals are equal but some animals are more equal than others.

What is the limit process like?

- Approximating processes well described (snapping out BM) ...
- but rather complicated
- What about the limit process?

What is the limit process like?

- Approximating processes well described (snapping out BM) ...
- but rather complicated
- What about the limit process?

Transmission conditions:

$$f(0+) = f(0-), \qquad \nu f'(0+) = \mu f'(0-).$$

What is the limit process like?

- Approximating processes well described (snapping out BM) ...
- but rather complicated
- What about the limit process?

Transmission conditions:

$$f(0+) = f(0-), \qquad \nu f'(0+) = \mu f'(0-).$$

Key parameter

$$\alpha \coloneqq \frac{\nu}{\nu + \mu} \in [0, 1].$$

Construction of skew BM

 $\alpha \coloneqq \frac{\nu}{\nu + \mu}$ — probability of not reflecting excursion downwards

A number of generalizations

Walsh's spider, see also Portenko, Lejay.

Diffusion approximation

- intensity of jumps $\frac{1}{\epsilon^2}$
- particle's velocity $\frac{1}{\epsilon}$

Diffusion approximation

- intensity of jumps $\frac{1}{\epsilon^2}$
- particle's velocity $\frac{1}{\epsilon}$

Without interface, classical result (S. Goldstein, Kac, Griego–Hersh, Pinsky) \longrightarrow BM ('smaller' state-space).

Diffusion approximation

- intensity of jumps $\frac{1}{\epsilon^2}$
- particle's velocity $\frac{1}{\epsilon}$

Without interface, classical result (S. Goldstein, Kac, Griego–Hersh, Pinsky) \longrightarrow BM ('smaller' state-space).

With interface

$$\longrightarrow$$
 skew BM $pf'(0+) = qf'(0-) \longrightarrow \alpha = \frac{p}{p+q}$.

Adam Bobrowski (LUT)

Model kinetyczny — podsumowanie

Interface modifies the limit BM:

by turning it into skew BM with probability of not reflecting excursions

$$\alpha = \frac{p}{p+q}.$$

