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LASSO (Least Absolute Shrinkage and Selection Operator)

SLOPE (Sorted L-One Penalized Estimator)
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Motivation: Paris Hospital, TraumaBase Group Data

Traumabase R© data:
20000 major trauma patients × 250 measurements..

Accident type Age Sex Blood Lactate Temperature Platelet
pressure (G/L)

Falling 50 M 140 NA 35.6 150
Fire 28 F NA 4.8 36.7 250
Knife 30 M 120 1.2 NA 270
Tra�c accident 23 M 110 3.6 35.8 170
Knife 33 M 106 NA 36.3 230
Tra�c accident 58 F 150 NA 38.2 400

Objective:

Develop models to help emergency doctors make decisions.

Measurements
Predict−→ Platelet ⇒ X = (X1, . . . ,Xp)

Regression−→ Y

Challenge :

How to select relevant measurements ?
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Model selection in high-dimension

Linear regression model:

y = (yi ): vector of response of length n (platelets' counts)

X = (Xij): a design matrix of dimension n × p (values of
explanatory variables)

β = (βj): vector of regression coe�cients of length p

ε ∼ (0, σ2In)

for i ∈ {1, . . . , n}, yi =

p∑
j=1

Xijβj + εi

y = Xβ + ε,

Assumptions:

high-dimension: p large ( comparable or larger than n)
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Multiple regression model when n > p

β̂LS = argminβ∈Rp ||Y − Xβ||2

Ŷ = X β̂LS : orthogonal projection of Y on colsp(X )

If rank(X ) = p then Ŷ = X (X ′X )−1X ′Y

β̂LS = (X ′X )−1X ′Y

Y ∼ N(Xβ, σ2In)

β̂LS ∼ N(β, σ2(X ′X )−1)

β̂LS minimizes MSE = E ||β̂ − β||2 among all unbiased linear
estimators.
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Selection of important variables

Z-tests,

Zi =
β̂i

σ
√

(X ′X )−1[i , i ]

When βi = 0 then Zi ∼ N(0, 1).

At the signi�cance level 0.05 we conclude that βi 6= 0 if
|Zi | > Φ−1(0.975) = 1.96.

Problem - typically elements on the diagonal of (X ′X )−1 become
large as p increases.

If elements of X are iid from N(0, 1) then X ′X has a Wishart
distribution and the elements on its diagonal have the expected
value equal to n.

But (X ′X )−1 has the inverse Wishart distribution and the expected
values of the elements on the diagonal are equal to 1

n−p−1 and
increase as p approaches n.
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In�ation of MSE

n = 500, MSE = E (β̂i − βi )2
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Loss of Power
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Model selection

Model selection in multiple regression - identi�cation of important
variables

The residual error RSS = ||Y − Ŷ ||2 never increases when new
variables are added into the model. Thus, minimization of RSS is
not a good criterion for model selection.

Also, RSS is not a good measure of the prediction error.
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Training and prediction error

Let's consider a new sample

Y ∗ = Xβ + ε∗ ,

where ε∗ is independent on the noise term ε in the training sample

We use our training sample to build a good predictive model, i.e.
the model which minimizes

PE = E ||Y ∗ − Ŷ ||2

If µ = E (Y ) = Xβ, then

PE = E ||µ+ ε∗ − Ŷ ||2 = E ||µ− Ŷ ||2 + nσ2

RSS = ||Y − Ŷ ||2
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Prediction error of linear operators

If Ŷ = µ̂ = Mn×nY then
PE = E (RSS) + 2σ2Tr(M)

In least squares estimation

M = X (X ′X )−1X ′

is the matrix of the orthogonal projection on the space spanned by
columns of X and Tr(M) = rank(X ).

If rank(X ) = p then the unbiased estimator of the prediction error
is equal to

P̂E = RSS + 2σ2p .

Minimizing P̂E coincides with Akaike Information Criterion (AIC,
1974) which suggests selecting the model for which RSS + 2σ2p is
minimal.
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If Ŷ = µ̂ = Mn×nY then
PE = E (RSS) + 2σ2Tr(M)
In least squares estimation

M = X (X ′X )−1X ′

is the matrix of the orthogonal projection on the space spanned by
columns of X and Tr(M) = rank(X ).

If rank(X ) = p then the unbiased estimator of the prediction error
is equal to

P̂E = RSS + 2σ2p .

Minimizing P̂E coincides with Akaike Information Criterion (AIC,
1974) which suggests selecting the model for which RSS + 2σ2p is
minimal.

Malgorzata Bogdan Regularization



Ridge regression (1)

Number of all possible regression models - 2p

Identifying the model which optimizes AIC in NP-hard.

Solution - use a convex penalty function

Ridge regression:

β̂ = argminb∈RpL(b) ,where L(b) = ||Y − Xb||2 + γ||b||2

∂L(b)

∂b
= −2X ′(Y − Xb) + 2γb = 0

−X ′Y + (X ′X + γI )b = 0 ⇔ b = (X ′X + γI )−1X ′Y
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Ridge regression (2)

β̂R = (X ′X + γI )−1X ′Y , where γ > 0

E (β̂R) = (X ′X + γI )−1X ′Xβ

When E ||β̂R − β||2 < E ||β̂LS − β||2 ?

X ′X = I , β̂ =
1

1 + γ
β̂LS

Ridge is always better than LS when ||β||2 < pσ2

Otherwise, when

γ <
2pσ2

||β||2 − pσ2
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Least Absolute Shrinkage and Selection Operator (LASSO)

BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)

β̂L = argminb∈Rp ||y − Xb||22 + λ||b||1

For a convex function f : Rp → R we de�ne the subdi�erential as

∂f (b) = {v ∈ Rp : f (z)− f (b) ≥ v ′(z − b) ∀z ∈ Rp}.

∂|x |(x0) =


1 for x0 > 0
−1 for x0 < 0

< −1, 1 > for x0 = 0

The convex function f (x) attains a minimum at x0 if and only if
0 ∈ ∂f (x0)

.
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For a convex function f : Rp → R we de�ne the subdi�erential as

∂f (b) = {v ∈ Rp : f (z)− f (b) ≥ v ′(z − b) ∀z ∈ Rp}.

∂|x |(x0) =


1 for x0 > 0
−1 for x0 < 0

< −1, 1 > for x0 = 0

The convex function f (x) attains a minimum at x0 if and only if
0 ∈ ∂f (x0)

.
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LASSO for the orthogonal design X ′X = I

βLS = Y ′X , ||Y − Xb||2 + λ||b||1 = Y ′Y +

p∑
i=1

fi (bi )

fi (x) = x2 − 2βLSi x + λ|x |

∂fi (x0) = 2x0 − 2βLSi + λ∂|x |(x0)

∂fi (0) =< −2βLSi − λ,−2βLSi + λ >

,

β̂Li =


βLSi − λ/2 when βLSi > λ/2

−βLSi + λ/2 when βLSi < −λ/2

0 when |βLSi | < λ/2
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Regularized estimators vs OLS
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Irrepresentability condition

The sign vector of β is de�ned as
S(β) = (S(β1), . . . ,S(βp)) ∈ {−1, 0, 1}p,
where for x ∈ R, S(x) = 1x>0 − 1x<0

Let I := {i ∈ {1, . . . , p} | βi 6= 0}
Let I = {1, . . . , p} \ I
Irrepresentability condition:

ker(XI ) = {0} and ‖X ′
I
XI (X

′
IXI )

−1S(βI )‖∞ ≤ 1

In the noisless case (i.e. when Y = Xβ) IR is su�cient and

necessary for the sign recovery of the su�ciently strong signal.

IR with a sharp inequality is su�cient and necessary for the sign
recovery for the su�ciently large signal to noise ratio mini∈I |βi |

σ (see
e.g. Wainwright, 2009).

Malgorzata Bogdan Regularization



Irrepresentability condition

The sign vector of β is de�ned as
S(β) = (S(β1), . . . ,S(βp)) ∈ {−1, 0, 1}p,
where for x ∈ R, S(x) = 1x>0 − 1x<0

Let I := {i ∈ {1, . . . , p} | βi 6= 0}

Let I = {1, . . . , p} \ I
Irrepresentability condition:

ker(XI ) = {0} and ‖X ′
I
XI (X

′
IXI )

−1S(βI )‖∞ ≤ 1

In the noisless case (i.e. when Y = Xβ) IR is su�cient and

necessary for the sign recovery of the su�ciently strong signal.

IR with a sharp inequality is su�cient and necessary for the sign
recovery for the su�ciently large signal to noise ratio mini∈I |βi |

σ (see
e.g. Wainwright, 2009).

Malgorzata Bogdan Regularization



Irrepresentability condition

The sign vector of β is de�ned as
S(β) = (S(β1), . . . ,S(βp)) ∈ {−1, 0, 1}p,
where for x ∈ R, S(x) = 1x>0 − 1x<0

Let I := {i ∈ {1, . . . , p} | βi 6= 0}
Let I = {1, . . . , p} \ I

Irrepresentability condition:

ker(XI ) = {0} and ‖X ′
I
XI (X

′
IXI )

−1S(βI )‖∞ ≤ 1

In the noisless case (i.e. when Y = Xβ) IR is su�cient and

necessary for the sign recovery of the su�ciently strong signal.

IR with a sharp inequality is su�cient and necessary for the sign
recovery for the su�ciently large signal to noise ratio mini∈I |βi |

σ (see
e.g. Wainwright, 2009).

Malgorzata Bogdan Regularization



Irrepresentability condition

The sign vector of β is de�ned as
S(β) = (S(β1), . . . ,S(βp)) ∈ {−1, 0, 1}p,
where for x ∈ R, S(x) = 1x>0 − 1x<0

Let I := {i ∈ {1, . . . , p} | βi 6= 0}
Let I = {1, . . . , p} \ I
Irrepresentability condition:

ker(XI ) = {0} and ‖X ′
I
XI (X

′
IXI )

−1S(βI )‖∞ ≤ 1

In the noisless case (i.e. when Y = Xβ) IR is su�cient and

necessary for the sign recovery of the su�ciently strong signal.

IR with a sharp inequality is su�cient and necessary for the sign
recovery for the su�ciently large signal to noise ratio mini∈I |βi |

σ (see
e.g. Wainwright, 2009).

Malgorzata Bogdan Regularization



Irrepresentability condition

The sign vector of β is de�ned as
S(β) = (S(β1), . . . ,S(βp)) ∈ {−1, 0, 1}p,
where for x ∈ R, S(x) = 1x>0 − 1x<0

Let I := {i ∈ {1, . . . , p} | βi 6= 0}
Let I = {1, . . . , p} \ I
Irrepresentability condition:

ker(XI ) = {0} and ‖X ′
I
XI (X

′
IXI )

−1S(βI )‖∞ ≤ 1

In the noisless case (i.e. when Y = Xβ) IR is su�cient and

necessary for the sign recovery of the su�ciently strong signal.

IR with a sharp inequality is su�cient and necessary for the sign
recovery for the su�ciently large signal to noise ratio mini∈I |βi |

σ (see
e.g. Wainwright, 2009).

Malgorzata Bogdan Regularization



Irrepresentability condition

The sign vector of β is de�ned as
S(β) = (S(β1), . . . ,S(βp)) ∈ {−1, 0, 1}p,
where for x ∈ R, S(x) = 1x>0 − 1x<0

Let I := {i ∈ {1, . . . , p} | βi 6= 0}
Let I = {1, . . . , p} \ I
Irrepresentability condition:

ker(XI ) = {0} and ‖X ′
I
XI (X

′
IXI )

−1S(βI )‖∞ ≤ 1

In the noisless case (i.e. when Y = Xβ) IR is su�cient and

necessary for the sign recovery of the su�ciently strong signal.

IR with a sharp inequality is su�cient and necessary for the sign
recovery for the su�ciently large signal to noise ratio mini∈I |βi |

σ (see
e.g. Wainwright, 2009).

Malgorzata Bogdan Regularization



Irrepresentablity vs identi�ability
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Figure: n = 100, p = 300, in the right panel ρ(Xi ,Xj) = 0.9, vertical lines
correspond to n/(2 log p) and the transition curve of Donoho and Tanner
(2009).
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Identi�ability condition

De�nition (Identi�ability)

Let X be a n × p matrix. The vector β ∈ Rp is said to be
identi�able with respect to the l norm if the following implication
holds

Xγ = Xβ and γ 6= β ⇒ ‖γ‖1 > ‖β‖1. (1)

Theorem (Tardivel, B., SJS 2022)

For any λ > 0 LASSO can separate well the causal and null

features if and only if vector β is identi�able with respect to l1
norm and mini∈I |βi | is su�ciently large.
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SLOPE

SLOPE (B., van den Berg, Su, Candès, arxiv 2013, B.,van den
Berg, Sabatti, Su, Candès, AoAS, 2015) penalizes larger
coe�cients more stringently

β̂sl = argminβ∈Rp
1

2
‖y − Xβ‖2 + σ

p∑
j=1

λj |β|(j),

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and
|β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(p).
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False discovery rate (FDR) control

Let β̃ be estimate of β
We de�ne:

the number of all discoveries, R :=
∣∣{i : β̃i 6= 0

}∣∣
the number of false discoveries,
V :=

∣∣{i : βi = 0, β̃i 6= 0
}∣∣

FDR := E
[

V

max{R, 1}

]

Theorem (B,van den Berg, Su and Candès (2013))

When XTX = I SLOPE with

λBHi := σΦ−1
(
1− i · q

2p

)
controls FDR at the level q p0

p
.
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Asymptotic optimality, Su and Candès (Annals of Statistics,
2016) and FDR control, Kos (2018)

Theorem

Let Xij ∼ N(0, 1). Fix 0 < q < 1 and choose λ = (1 + ε)λBH(q)
for some arbitrary constant 0 < ε < 1. Suppose k/p → 0 and
k log p

n → 0. Then

sup
||β||0≤k

P

(
n||β̂SL − β||2

2σ2k log(p/k)
> 1 + 3ε

)
→ 0

inf
β̂
sup||β||0≤kP

(
n||β̂ − β||2

2σ2k log(p/k)
> 1− ε

)
→ 1

(M. Kos, 2018) If additionally k2/n→ 0 then

FDRn ≤ ∆n → q
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Asymptotic optimality (2)

Minimax estimation/prediction rate [k log(p/k)
n ] under weighted

restricted eigenvalue condition (large collection of random matrices)

λi = ρ
√
2 log(p/i), ρ is larger than one

Bellec, Lecué, Tsybakov (2016,2017)

Extension to GLM by Abramovich and Grinshtein (2017)

LASSO rate of convergence - k log(p)
n
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Unit balls for di�erent SLOPE sequences by D.Brzyski

[(2,2,2)] [(2,0,0)]

[(3,2,1)]
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Clustering properties of SLOPE (2)

Schneider and Tardivel, arxive 2020 - class of models
attainable by SLOPE

B., Dupuis, Graczyk, Koªodziejek, Skalski, Tardivel,
Wilczy«ski, arxiv 2022: Necessary and su�cient condition for
SLOPE pattern recovery

Malgorzata Bogdan Regularization



SLOPE pattern (Schneider, Tardivel, 2020)

De�nition

For b ∈ Rp its SLOPE pattern patt(b) is de�ned in a following
way:

sign(patt(b)) = sign(b) (sign preservation),

|bi | = |bj | ⇒ |patt(b)i | = |patt(b)j | (clustering preservation),

|bi | > |bj | ⇒ |patt(b)i | > |patt(b)j | (hierarchy preservation).

Example

Let β = (4, 0,−1.5, 1.5,−4). Then patt(β) = (2, 0,−1, 1,−2).

Fact:

patt(b1) = patt(b2) ⇔ ∂Jλ(b1) = ∂Jλ(b2)
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SLOPE model matrix(1)

De�nition

Let m be a model for SLOPE in Rp where ‖m‖∞ = k (the number
of non-null clusters). The matrix Um ∈ Rp×k is de�ned as follows

∀i ∈ {1, . . . , p}, ∀j ∈ {1, . . . , k}, (Um)ij = sign(mi )1(|mi |=k+1−j).

By convention, when m = 0 we de�ne the null model matrix as
U0 := 0.
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Model matrix example

Let p = 8 and m = (3,−3, 2, 1, 2,−1, 0, 3). Here k = 3 and the
model matrix is

Um =



1 0 0
−1 0 0
0 1 0
0 0 1
0 1 0
0 0 −1
0 0 0
1 0 0


β1X1 + β2X2 + β8X8 = β1(X1 − X2 + X8)

X̃M = XUM - pattern-reduced X

λ̃M ∈ Rk : λ̃M(j) =

kj∑
i=kj−1+1

λi
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IR for SLOPE

SLOPE dual norm: J∗λ(x) = sup{x ′z |Jλ(z) ≤ 1}

J∗λ(x) := max

{
|x |(1)
λ1

, . . . ,

∑p
i=1 |x |(i)∑p
i=1 λi

}
, where|x |(1) ≥ . . . ≥ |x |(p)

When ker(X̃M) = {0}, the SLOPE IR condition takes a form

J∗λ

(
X ′X̃M(X̃ ′M X̃M)−1λ̃M

)
≤ 1.
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Noisless pattern recovery

Theorem (B.,Dupuis,Graczyk, Koªodziejek, Skalski, Tardivel,
Wilczy«ski (2022))

When Y = Xβ then SLOPE can properly identify a given SLOPE

pattern if and only if the irrepresentability condition is satis�ed and

the signal is strong enough.

In the presence of noise we need an additional condition:∣∣∣{i ∈ {1, . . . , p} :
∑i

j=1 |Π|(j) =
∑i

j=1 λj

}∣∣∣ = ‖M‖∞,

where Π = X ′X̃M(X̃ ′M X̃M)−1λ̃M .
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Asymptotic results

p - �xed, n→∞

1

n
X ′nXn

a.s.−→ C

In IR replace X ′X̃M(X̃ ′M X̃M)−1 with CUM(U ′MCUM)−1

The pattern of SLOPE estimator is consistent, i.e.

patt(β̂n)
P−→ patt(β),

if and only if Λ = αnΛ0 and

lim
n→∞

αn

n
= 0 and lim

n→∞

αn√
n

=∞.
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Identi�ability condition for SLOPE

De�nition (Identi�ability)

Let X be a n × p matrix. The vector β ∈ Rp is said to be
identi�able with respect to the SLOPE Jλ norm if the following
implication holds

Xγ = Xβ and γ 6= β ⇒ Jλ(γ) > Jλ(β). (2)

Theorem (Tardivel, Skalski, Graczyk, Schneider (2022))

For any sequence strictly decreasing positive sequence λ SLOPE

can properly order the elements of β̂ if and only if vector β is

identi�able with respect to Jλ norm and mini∈I |βi | is su�ciently

large.
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LASSO vs SLOPE, ρij = 0.9|i−j |, n = 100, p = 200, k = 30

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

36 38 40 42 44

36
38

40
42

44

Cluster

β

es
tim

at
or

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

LASSO
SLOPE

Malgorzata Bogdan Regularization



LASSO vs SLOPE, ρij = 0.9|i−j |, n = 100, p = 200,
k = 100

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●

0 10 20 30 40

0
20

40
60

80
10

0
12

0

Cluster

β

es
tim

at
or

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

LASSO
SLOPE

Malgorzata Bogdan Regularization



Clustering in �nancial applications

Kremer, Lee, B., Paterlini, Journal of Banking and Finance

110, 105687, 2020 - application for portfolio selection.

Kremer, Brzyski, B., Paterlini, Quantitative Finance, 2022 -
application for index tracking.
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Portfolio Optimization, (Kremmer et al, 2020, JBF)

Rt×k = (R1, . . . ,Rk) - asset returns,Cov(R) = Σ

P =
∑

wiRi ,
∑

wi = 1

Portfolio Risk: Var(P) = w ′Σw

min
w∈Rk

w ′Σw + Jλ(w) (3)

s.t.
k∑

i=1

wi = 1 (4)
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Evolution of Portfolio
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SLOPE clustering
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Applications in Genetics

Goal - identi�cation of genes in�uencing some important
characteristics (cholesterol level, daily number of drinks)

Explanatory variables - appropriately coded genotypes of
genetic markers

n in hundreds/thousands, p in hundred thousands

D. Brzyski, C.B. Peterson, P.Sobczyk, E.J. Candès, M.
Bogdan, C. Sabatti, "Controlling the rate of GWAS (Genome
Wide Association Studies) false discoveries"', Genetics, 205,
61�75, 2017

D. Brzyski, A. Gossmann, W.Su, M. Bogdan, "Group SLOPE -
adaptive selection of groups of predictors", Journal of the
American Statistical Association, 114(525), 419�433, 2019.
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Summaries

F. Frommlet, M. Bogdan and D. Ramsey, �Phenotypes and
genotypes: The Search for In�uential Genes�, Springer-Verlag,
London, 2016

M. Bogdan and F. Frommlet, �Identifying important predictors
in large data bases�multiple testing and model selection�, in
�Handbook of Multiple Comparisons�, Chapman Hall/CR,
2022.
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SLOPE packages in R

SLOPE by J.Larsson - also for Generalized Linear Models
(logistic, Poisson regression)

grpSLOPE by A. Gossmann

geneSLOPE by P. Sobczyk

SLOBE -adaptive SLOPE by S. Majewski and B. Miasojedow

W. Jiang, M. Bogdan, J. Josse, S. Majewski, B. Miasojedow,
V. Rockova, TraumaBase Group, �Adaptive Bayesian SLOPE �
High-dimensional Model Selection with Missing Values�,
Journal of Computational and Graphical Statistics, 31 (1),
113-137, 2022
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Motivating example
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Figure: Empirical distribution of prediction errors and of the number of
variables selected by di�erent methods.

100Platelets = −8.71Age− 10.52SI + 9.16Delta.hemo− 14.7Lactate +
14.2HR− 6.54VE− 11RBC.
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LASSO and SLOPE work

R. Riccobello, G. Bonaccolto, P. Kremer, S. Paterlini, M. Bogdan, �Sparse Graphical Modelling
for Minimum Variance Portfolios�, SSRN 4099586, 2022.

R. Riccobello, M. Bogdan, G. Bonaccolto, P.J. Kremer, S. Paterlini, P. Sobczyk, �Sparse
Graphical Modelling via the Sorted L1 Norm�, arXiv preprint arXiv:2204.10403, 2022.

M. Bogdan, X. Dupuis, P. Graczyk, B. Koªodziejek, T. Skalski, P. Tardivel, M. Wilczy«ski,
�Pattern recovery by SLOPE�, arXiv:2203.12086, 2022.

P.J. Kremer, D. Brzyski, M. Bogdan, S. Paterlini, �Sparse index clones via the sorted L1-Norm�,
Quantitative Finance 22 (2), 349-366, 2022.

W. Jiang, M. Bogdan, J. Josse, S. Majewski, B. Miasojedow, V. Rockova, TraumaBase Group,
�Adaptive Bayesian SLOPE � High-dimensional Model Selection with Missing Values�, Journal of
Computational and Graphical Statistics, 31 (1), 113-137, 2022.

P.Tardivel, M. Bogdan, �On the sign recovery by least absolute shrinkage and selection operator,
thresholded least absolute shrinkage and selection operator, and thresholded basis pursuit
denoising�, Scandinavian Journal of Statistics, 2022.

F. Frommlet, M. Bogdan, �Identifying important predictors in large data basesâ�Multiple testing
and model selection� in Handbook of Multiple Comparisons, pp. 139-182, 2022.

J. Larsson, M. Bogdan, J. Wallin, �The strong screening for SLOPE�, NeurIPS 2020.

P.J. Kremer, S. Lee, M. Bogdan, S. Paterlini, �Sparse portfolio selection via the sorted L1-Norm�,
Journal of Banking and Finance 110, 105687, 2020.

W. Rejchel, M. Bogdan, �Rank-based Lasso-e�cient methods for high-dimensional robust model
selection�, Journal of Machine Learning Research 21 (244), 1-47.
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LASSO and SLOPE work

M. Kos, M. Bogdan, �On the asymptotic properties of SLOPE�, Sankhya A 82 (2), 499-532,
2020.

A. Weinstein, W.J. Su, M. Bogdan, R.F. Barber, E.J. Candès, �A power analysis for knocko�s
with the lasso coe�cient-di�erence statistic�, arXiv 2020.

S.Lee, P.Sobczyk, M.Bogdan, �Structure Learning of Gaussian Markov Random Fields with False
Discovery Rate Control�, Symmetry 11 (10), 1311, 2019.

D. Brzyski, A. Gossmann, W.Su, M. Bogdan, "Group SLOPE - adaptive selection of groups of
predictors", Journal of the American Statistical Association, 114(525), 419�433, 2019.

W.Su, M. Bogdan, E.J. Candès, "False Discoveries Occur Early on the Lasso Path", Annals of
Statistics, 45 (5), 2133 � 2150, 2017.

D. Brzyski, C.B. Peterson, P.Sobczyk, E.J. Candès, M. Bogdan, C. Sabatti, "Controlling the rate
of GWAS false discoveries"', Genetics, 205, 61�75, 2017.

S. Lee, D. Brzyski, M. Bogdan, "Fast Saddle-Point Algorithm for Generalized Dantzig Selector
and FDR Control with the Ordered l1-Norm", Proceedings of the 19th International Conference
on Arti�cial Intelligence and Statistics, JMLR:W and CP vol.51, 780�789, 2016.

A. Virouleau, A. Guilloux, S. Gai�as, M. Bogdan, �High-dimensional robust regression and
outliers detection with slope�, arXiv:1712.02640, 2017.

W.Su, M. Bogdan, E.J.Candes, �False discoveries occur early on the lasso path�, Annals of
Statistics, 2133-2150, 2017.

D. Brzyski, C.B. Peterson, P. Sobczyk, E.J. Candes, M. Bogdan, C. Sabatti, �Controlling the
rate of GWAS false discoveries� Genetics 205 (1), 61-75, 2017.

S. Lee, D. Brzyski, M. Bogdan, �Fast saddle-point algorithm for generalized dantzig selector and
fdr control with ordered L1-norm�, Arti�cial Intelligence and Statistics, 780-789, 2016.

M. Bogdan, E. van den Berg, C. Sabatti, W. Su, E.J. Candes, �SLOPE - adaptive variable
selection via convex optimization�, Annals of applied statistics 9 (3), 1103, 2015.

M. Bogdan, E. van den Berg, W. Su, E. J. Candes, �Statistical estimation and testing via the
sorted L1 norm�, arXiv:1310.1969, 2013.
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