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Why random walks?

How behaves a gas molecule in the air?

In 1827 Robert Brown described behaviour of pollen of some plants
immersed in water.

In 1904/5 Marian Smoluchowski and Albert Einstein modeled
the motion of individual particles.

Stock market fluctuations: S&P 500 Index

All these examples led to a mathematical model of Brownian motion, which is a
random process Bt with continuous trajectories, independent and stationary
increments. Brownian motion has various surprising properties...

One way to better understand all these phenomena
is to introduce a simpler model: random walks
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What are random walks? Simple random walk (SRW):

We need to define the process in a mathematical language:

X0 = 0, Xn+1 = Xn ± 1, Xn = Y1 + . . .+ Yn,

where {Yk}k∈N are independent and P[Y = 1] = p = 1− P[Y = −1].
Fundamental questions:

I Does the process return to 0? (recurrence/transience),

I What is the rate of convergence to +∞ if p > 1/2? (law of large numbers)

I What it the typical distance of the process from its mean (from 0 if p = 1/2)?
(central limit theorem)

Random walk can be defined on more general structures (on graphs), but today we
will discuss only random walks on Z.
Is this model the right one? Does it describe the real word correctly?

In many practical cases the environment in which the particle moves is highly irregular,
due to factors such as defects, impurities, fluctuations, porosity etc.

How to model mathematically these defects?
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Random walk in random environment (RWRE) (Solomon; Kesten, Kozlov, Spitzer,
1970’s)

0 1 2−1−2

ω = {pk}k∈Z is a given environment, pk ∈ (0, 1) are iid.

X = {Xn}n∈N is a random walk in random environment (RWRE)

Pω[Xn+1 = k + 1 |Xn = k] = pk

Pω[Xn+1 = k − 1 |Xn = k] = 1− pk .

Pω – quenched probability. Define the annealed probability P viz.

P[X ∈ A, ω ∈ B] =

∫
B
Pω[X ∈ A] P(dω).

There are two ways to observe the process:

I quenched, under Pω , then {Xn} is a Markov chain;

I annealed, under P, then {Xn} is not a Markov chain.
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Theorem [Solomon ’75, Recurrence and transience]. Let ρ = 1−p
p

I If E log ρ = 0, then lim inf Xn = −∞, lim supXn =∞ , P a.s.

I If E log ρ < 0, then Xn →∞, P a.s.

Let us simulate SRW and RWRE

SRW with p > 1/2
RWRE with E log ρ < 0 and P(ρ > 1) > 0

How to measure the force that pushes the walker to +∞? Let us consider
n 7→

∑n
k=1 log ρk
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SRW RWRE
pk = p > 1/2 is constant {pk} are i.i.d., E log ρ < 0 and P[ρ > 1] > 0

Law of Large Numbers

Xn
n
→ v > 0 a.s. Xn

n
→ v ≥ 0 a.s.

Central Limit Theorem

Xn−nv
σ
√
n

d→ N(0, 1) Xn−nv
aα,n

d→ Lα

[depending on α, aα,n =
√
n, nα, n1/α ]

Large deviations

P(|Xn/n − v | ≥ ε) is exp. small P(Xn < (v − ε)n) is polyn. small

Many walkers

3 walkers meet i.o. arbitrary many walkers meet i.o.



Limit theorems for sums of independent and identically distributed random variables:

I CLT: if EY 2 <∞, then Y1+···+Yn−nEX
VarY·

√
n

d→ N(0, 1)

I stable laws (particular case): if Y > 0, P[Y > t]tα → C for some α < 2, then
Y1+···+Yn−nv

n1/α

d→ Lα.

Recall ρ = 1−p
p

Theorem [Kesten, Kozlov, Spitzer ’75, Central Limit Theorem for RWRE] Assume
RWRE is transient (E[log ρ] < 0) and Eρα = 1 for some α, then

Xn − vn

an
⇒ Lα.

If α > 2, then an =
√
n and Lα = N(1, σ2). Otherwise the limit and normalization are

related to the parameter α and the corresponding stable law Lα.
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Let ρ = 1−p
p

.

Theorem (Kesten, Kozlov, Spitzer ‘75)
Central limit theorem

Xn − vn

an
⇒ Lα

Let Tn = inf{k : Xk = n}. One needs to prove

Tn − (1/v)n

n1/α
⇒ Lα

Tn =# of steps during [0,Tn)

= # of steps to the right during [0,Tn)

+ # of steps to the left during [0,Tn)

= n + 2 ·# of steps to the left during [0,Tn)

= n + 2 · Un

Goal: prove limit theorems for Un (the number of steps to the left during [0,Tn))
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{Zn} is branching process in random environment with one immigrant, that is Zn is
the population at time n.

Z0 = 0, Zk =
∑Zk−1+1

j=1 V k
j ,

where V k
j ∼ Geom(pk ).

Goal: find limit theorems for Z1 + . . .+ Zn

I τ1 = inf{n ≥ 1 : Zn = 0} - the first extinction time;

I W1 =
∑τ1

j=1 Zj - total population before the first extinction time;

I τk - the kth extinction time; Wk =
∑τk

j=τk−1+1 Zj .

Then Z1 + . . .+ Zn ≈W1 + . . .Wn/Eτ and {Wk} are i.i.d.

How to estimate the size of Wk? Let Rn = EωZn, recall ρ = 1−p
p

, then EωV k
j = ρk .

Rn = EωZn = ρn(EωZn−1 + 1) = ρn(Rn−1 + 1) random difference equation (RDE).

Let ν be the stationary measure of Rn, that is if R ∼ ν, then R
d
= ρ(R + 1).

It turns out that P[W > t] ∼ P[R > t] ∼ Ct−α, where α is the parameter such that
Eρα = 1.

Therefore if α < 2, then Z1+...+Zn

n1/α ∼
W1+...Wn/Eτ

n1/α

d→ Lα.

Summarizing: RWRE ↔ BPREI ↔ RDE
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In 2017 Matzavinos, Roitershtein and Seol introduced random walk in sparse random
environment (RWSRE)

Parameters: {pk}k∈Z iid, pk ∈ (0, 1), {ξk}k∈Z iid, ξk ∈ N,

Lemma: If E log ρ < 0 (for ρ = 1−p
p

) and E log ξ <∞, then Xn → +∞.

Theorem [B, Dyszewski, Iksanov, Marynych, Roitershtein]:

If P(ξ > x) ∼ x−β , β ∈ (0, 1) and Eρα < 1 for β/2 < α, then

Xn√
n
⇒ χ

Work in progress: understand the role of randomness ... (joint with P. Dyszewski
and A. Ko lodziejska):

1. Quenched limit theorem for RWSRE. We fix the environment. Then for α < 2
(Eρα = 1) the limit in distribution of Tn does not exists, but one can consider
the limit in a weaker sense ...

2. Large deviations for RWSRE.
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