The entropy of the 1×2 LEGO brick

Søren Eilers
eilers@math.ku.dk
Department of Mathematical Sciences
University of Copenhagen
August 30, 2022
Baby Steps Beyond the Horizon

Content

(2) 2×4 asymptotics
(3) $2 \times 1^{d-1}$ in \mathbb{R}^{d}
(4) $d=1$

LEGOland 2002

LEGO Company profile 2004

LEGO facts and figures

- It would take 40,000,000,000 LEGO bricks stacked on top of each other to reach from the Earth to the Moon.
- A LEGO set is sold across the counter somewhere in the world every 7 seconds.
- The eight robots in the LEGO Warehouse in Billund can move 660 crates of LEGO bricks an hour.
- Children all over the world spend 5 billion hours a vear playing with LEGO bricks.
- There are $102,981,500$ different ways of combining six eight-stud bricks of the same colour.
- On average each person on earth owns 52 LEGO bricks.

Formalizing the question

Definition

Let b_{n} denote the number of contiguous buildings that can be constructed with $n 2 \times 4$ LEGO bricks, all sides parallel to the axes, and identified up to rotation in the $X Y$-plane and translation in all of \mathbb{R}^{3}.

Let t_{n} denote the number of those buildings that are "towers", i.e. of height n.

Contiguous means that if you lift one brick, the whole building follows suit.

The number 102981500

Counting towers
$t_{n}=\frac{1}{2}\left(46^{n-1}-2^{n-1}\right)+2^{n-1}$

Observation
$\frac{1}{2}\left(46^{5}-2^{5}\right)+2^{5}=102981504$

Forgotten buildings!

2004 computations

$b_{1}=1$	
$b_{2}=24$	Kirk Christiansen
$b_{3}=1560$	Anonymous
$b_{4}=119580$	E
$b_{5}=10116403$	E
$b_{6}=915103765$	

LEGO Company profile 2006

Selected LEGO statistics

- More than $400,000,000$ children and adults will play with LEGO bricks this year.
- LEGO products are on sale in more than 130 countries.
- If you built a column of about $40,000,000,000$ LEGO bricks, it would reach the moon.
- Approx. four LEGO sets are sold each second.

There are $915,103,765$ different ways of combining six eight-stud bricks of the same colour.

- On average every person on earth has 52 LEGO bricks.
- With a production of about 306 million tyres a year, the LEGO Group is the world's largest tyre manufacturer.
- If all the LEGO sets sold over the past 10 years were placed end to end, they would reach from London, England, to Perth, Australia.

LEGO House

 1

A112389

$b_{1}=1$	
$b_{2}=24$	
$b_{3}=1560$	E 2004
$b_{4}=119580$	E 2004
$b_{5}=10116403$	E 2004
$b_{6}=915103765$	Abrahamsen-E 2005
$b_{7}=85747377755$	Abrahamsen-E 2005
$b_{8}=8274075616387$	Nilsson 2014
$b_{9}=816630819554486$	Simon 2018
$b_{10}=82052796578652749$	

Content

(1) History

(2) 2×4 asymptotics
(3) $2 \times 1^{d-1}$ in \mathbb{R}^{d}
(4) $d=1$

How does $\left(b_{n}\right)_{n \in \mathbb{N}}$ grow?

- Does

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}
$$

exist in \mathbb{R} ? If so, what is the limit?

- Does

$$
\lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}}
$$

exist in \mathbb{R} ? If so, what is the limit?

- Can one choose α, β, γ so that

$$
\lim _{n \rightarrow \infty} \frac{b_{n}}{\alpha n^{\beta} \gamma^{n}}=1 ?
$$

Fixed buildings

Definition

Let b_{n} denote the number of buildings that can be constructed with $n 2 \times 4$ LEGO bricks, identified up to rotation in the $X Y$-plane and translation in all of \mathbb{R}^{3}.

Definition

Let f_{n} denote the number of buildings that can be constructed containing a base brick $[0,2] \times[0,4] \times[0,1]$ along with n other 2×4 LEGO bricks, in such a way that only the base brick intersects $\mathbb{R}^{2} \times(-\infty, 1)$

A112389 vs A123830

$b_{1}=1$	
$b_{2}=24$	$f_{1}=46$
$b_{3}=1560$	$f_{2}=2596$
$b_{4}=119580$	$f_{3}=194834$
$b_{5}=10116403$	$f_{4}=15834801$
$b_{6}=915103765$	$f_{5}=1395436949$
$b_{7}=85747377755$	$f_{6}=128352319891$
$b_{8}=8274075616387$	$f_{7}=12224079725173$
$b_{9}=816630819554486$	$f_{8}=1193967045643245$
$b_{10}=82052796578652749$	$f_{9}=118973723976420310$

$$
\begin{gathered}
b_{n} \leq f_{n+1} \leq 4 b_{n+1} \\
f_{n} f_{m} \leq f_{n+m}
\end{gathered}
$$

$$
\begin{gathered}
b_{n} \leq f_{n+1} \leq 4 b_{n+1} \\
f_{n} f_{m} \leq f_{n+m}
\end{gathered}
$$

Proposition [Durhuus-E]

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{f_{n}} \in[0, \infty]
$$

app-code C-569-026-918
insert 0 into 5 from Above perpenDicularly 05AD
insert 3 into 0 from Above parallElly 30AEmove Forward to next brickmove Forward to next brickinsert 2 into 4 from Above parallEllymove Forward to next brickinsert 0 into 6 from Above parallEllymove Forward to next brick
insert 3 into 0 from Above parallElly 30AE
move Forward to next brick F

We see that any building counted by f_{n} can be described in $5 n$ hexadecimal digits.

Proposition

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{f_{n}} \leq \lim _{n \rightarrow \infty} \sqrt[n]{16^{5 n}}=16^{5}=1048576
$$

In fact, compressing the specification using

0	1	2	3	4	5	6	7
Stud			A/B	Hole			D / E

we see that $5 n / 2$ hexadecimal digits suffice.

Proposition

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{f_{n}} \leq \lim _{n \rightarrow \infty} \sqrt[n]{16^{5 n / 2}}=16^{5 / 2}=1024
$$

Theorem [Durhuus-E]

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{f_{n}}=\gamma \in[78,177]
$$

- Upper bounds by Klarner-Rivest branches and twigs.
- Lower bounds by computer counts of "fat" buildings.

Content

(1) History

(2) 2×4 asymptotics
(3) $2 \times 1^{d-1}$ in \mathbb{R}^{d}
(4) $d=1$

Smallest nontrivial brick in arbitrary dimension

Let $d \geq 2$. A $2 \times 1^{d-1}$ brick in \mathbb{R}^{d} is a cuboid

$$
[\mathbf{x}, \mathbf{y}]=\left[x_{1}, y_{1}\right] \times\left[x_{2}, y_{2}\right] \times\left[x_{d}, y_{d}\right]=\left[\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right] \times\left[x_{d}, y_{d}\right]
$$

where for some $i_{0} \in\{1, \ldots, d-1\}$, we have

$$
y_{i_{0}}-x_{i_{0}}=2
$$

and for all $i \in\{1, \ldots, d\} \backslash\left\{i_{0}\right\}$

$$
y_{i}-x_{i}=1
$$

Arbitrary dimension

A building with n such bricks is a collection

$$
\left[\mathbf{x}^{1}, \mathbf{y}^{1}\right], \ldots,\left[\mathbf{x}^{n}, \mathbf{y}^{n}\right]
$$

satisfying

- $x^{i} \in \mathbb{Z}^{d}$
- $\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right) \cap\left(\mathbf{x}^{j}, \mathbf{y}^{j}\right)=\emptyset$ when $i \neq j$
- $\bigcup_{i=1}^{n}\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right) \times\left[x_{d}^{i}, y_{d}^{i}\right]$ is connected.

It is fixed when it contains $[0,2] \times[0,1]^{d-1}$ and that is the only brick intersecting $\mathbb{R}^{d-1} \times(-\infty, 1)$.

Question

Definition

Let $b_{n}^{(d)}$ denote the number of buildings of $n 2 \times 1^{d-1}$ bricks, identified up to isometries on \mathbb{R}^{d-1} and translations in all of \mathbb{R}^{d}.

Definition

Let $f_{n}^{(d)}$ denote the number of fixed buildings of $n+12 \times 1^{d-1}$ bricks.

Observation

$$
\gamma_{d}=\lim _{n \rightarrow \infty} \sqrt[n]{f_{n}^{(d)}}=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}^{(d)}}
$$

exists.

Questions

- What is γ_{d} ?

Crude bounds are $2 d-1 \leq \gamma_{d} \leq 16 d-14$.

- Does γ_{d} grow like $c d+O(1 / d)$? If so, what is c ?
- Is

$$
\lim _{n \rightarrow \infty} \frac{f_{n+1}^{(d)}}{f_{n}^{(d)}}=\gamma_{d} ?
$$

- Can one choose α_{d}, β_{d} so that

$$
\lim _{n \rightarrow \infty} \frac{f_{n}^{(d)}}{\alpha_{d} n^{\beta_{d}} \gamma_{d}^{n}}=1 ?
$$

Least squares, but how?

If $f_{n}=\alpha n^{\beta} \gamma^{n}$, we have

$$
\frac{f_{n+1}}{f_{n}}=\frac{\alpha(n+1)^{\beta} \gamma^{(n+1)}}{\alpha n^{\beta} \gamma^{n}}=\gamma\left(1+\frac{1}{n}\right)^{\beta}
$$

Content

(1) History

(2) 2×4 asymptotics
(3) $2 \times 1^{d-1}$ in \mathbb{R}^{d}
(4) $d=1$

A building counted by $b_{n}^{(1)}$ is strict when no pair of bricks are connected though two studs and holes.
A building counted by $f_{n}^{(1)}$ is a pyramid when all bricks rest, directly or indirectly, on the base brick.

Definitions

- $\dot{b}_{n}^{(1)}$ counts the strict buildings up to isometries in \mathbb{R} and translation in \mathbb{R}^{2}.
- $f_{n}^{(1), \Delta}$ counts the (fixed) pyramids.
- $\dot{f}_{n}^{(1), \Delta}$ counts the (fixed) strict pyramids.

$$
\dot{b}_{4}^{(1)}=10, \dot{f}_{3}^{(1), \Delta}=13
$$

$$
\dot{b}_{5}^{(1)}=33, \dot{f}_{4}^{(1), \Delta}=35
$$

Theorem [Bousquet-Melou, Rechnitzer]

$$
f_{n}^{(1), \Delta}=\binom{2 n+1}{n+1}
$$

- A1700
- $\lim _{n \rightarrow \infty} \sqrt[n]{f_{n}^{(1), \Delta}}=\lim _{n \rightarrow \infty} f_{n+1}^{(1), \Delta} / f_{n}^{(1), \Delta}=4$
- $\sum_{n=0}^{\infty} f_{n}^{(1), \Delta} x^{n}=\frac{2}{1-4 x+\sqrt{1-4 x}}$
- $\lim _{n \rightarrow \infty} \frac{f_{n}^{(1), \triangle}}{\frac{2}{\sqrt{\pi}} n^{-1 / 24^{n}}}=1$

Purely positive string

\square
$\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}$

Purely positive string

$\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}$

Purely positive string

$\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}$

Purely positive string

\square
$\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}$

Purely positive string

\square
$\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}$

Purely positive string

\square

Durhuus-E, mixed case

$\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1\end{array}$

Durhuus-E, mixed case

$\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1\end{array}$

Durhuus-E, mixed case

Durhuus-E, mixed case

Durhuus-E, mixed case

Durhuus-E, mixed case

\square

Durhuus-E, mixed case

\square

Translation in the strict case

$\dot{b}_{4}^{(1)}=10, \dot{f}_{3}^{(1), \triangle}=13$

Tetris

Theorem [Dhar et al]

$$
\dot{f}_{n}^{(1), \Delta}=\sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k}\binom{2 k+1}{k+1}
$$

- A5773
- $\lim _{n \rightarrow \infty} \sqrt[n]{\dot{f}_{n}^{(1), \Delta}}=\lim _{n \rightarrow \infty} \dot{f}_{n+1}^{(1), \Delta} / \dot{f}_{n}^{(1), \Delta}=3$
- $\sum_{n=0}^{\infty} \dot{f}_{n}^{(1), \Delta} x^{n}=\frac{2 x}{3 x-1+\sqrt{1-2 x-3 x^{2}}}$
- $\lim _{n \rightarrow \infty} \frac{\dot{f}_{n}^{(1), \Delta}}{\frac{1}{\sqrt{3 \pi}} n^{-1 / 2} 3^{n}}=1$

Observation

With p_{n} the number of free polyominoes, we have

$$
p_{n} \leq \dot{b}_{n}^{(1)} \leq 8 p_{n}
$$

- A105
- $\lim _{n \rightarrow \infty} \sqrt[n]{\dot{b}_{n}^{(1)}}=\lim _{n \rightarrow \infty} \dot{b}_{n+1}^{(1)} / \dot{b}_{n}^{(1)}=\lambda$ [Klarner, Madras].
- $4.00253 \leq \lambda \leq 4.5252$
- Widely accepted estimate: $\lambda \approx 4.0626$
- Widely expected asymptotics: $0.3169 \lambda^{n} / n$.

Wild speculation

γ^{\square}	\triangle	
\cdot	3	λ
	4	$\gamma^{(1)}$

Durhuus-E

Might $\gamma^{(1)}=5$? Might $\gamma^{(1)}=\lambda+1$?

Wild speculation

Probably not. Mølck Nilsson computed $f_{n}^{(1)}$ up to $n=25$ using transfer matrix methods, and used Guttmann's differential approximant method to estimate

$$
\gamma^{(1)} \approx 5.20295
$$

