▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The entropy of the 1×2 LEGO brick

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

August 30, 2022 Baby Steps Beyond the Horizon

Content			
History ●00000000	2×4 asymptotics	$2 imes 1^{d-1}$ in \mathbb{R}^d 000000	

2 2×4 asymptotics

3 $2 \times 1^{d-1}$ in \mathbb{R}^d

d = 1

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ● ● ● ●

History o●oooooooo

2 × 4 asymptotics 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

LEGOland 2002

History 00●0000000 2 × 4 asymptotic 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

LEGO Company profile 2004

LEGO facts and figures

- It would take 40,000,000,000 LEGO bricks stacked on top of each other to reach from the Earth to the Moon.
- A LEGO set is sold across the counter somewhere in the world every 7 seconds.
- The eight robots in the LEGO Warehouse in Billund can move 660 crates of LEGO bricks an hour.
- Children all over the world spend 5 billion hours a year playing with LEGO bricks.
- There are 102,981,500 different ways of combining six eight-stud bricks of the same colour.
- On average each person on earth owns 52 LEGO bricks.

2 × 4 asymptotic 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

d = 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Formalizing the question

Definition

Let b_n denote the number of contiguous buildings that can be constructed with $n \ 2 \times 4$ LEGO bricks, all sides parallel to the axes, and identified up to rotation in the *XY*-plane and translation in all of \mathbb{R}^3 .

Let t_n denote the number of those buildings that are "towers", i.e. of height n.

Contiguous means that if you lift one brick, the whole building follows suit.

2 × 4 asymptotics 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

d=1

The number 102981500

Counting towers

$$t_n = \frac{1}{2}(46^{n-1} - 2^{n-1}) + 2^{n-1}$$

Observation

$$\frac{1}{2}(46^5 - 2^5) + 2^5 = 102981504$$

History 00000●0000

2 × 4 asymptotic 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

Forgotten buildings!

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

History <u>oo</u>oooooooo

2 × 4 asymptotics 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

2004 computations

$b_1 = 1$	
$b_2 = 24$	Kirk Christiansen
$b_3 = 1560$	Anonymous
$b_4 = 119580$	E
$b_5 = 10116403$	E
$b_6 = 915103765$	E

2 × 4 asymptotic 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

LEGO Company profile 2006

Selected LEGO statistics

- More than 400,000,000 children and adults will play with LEGO bricks this year.
- LEGO products are on sale in more than 130 countries.
- If you built a column of about 40,000,000,000 LEGO bricks, it would reach the moon.
- Approx. four LEGO sets are sold each second.

- There are 915,103,765 different ways of combining six eight-stud bricks of the same colour.
- On average every person on earth has 52 LEGO bricks.
- With a production of about 306 million tyres a year, the LEGO Group is the world's largest tyre manufacturer.
- If all the LEGO sets sold over the past 10 years were placed end to end, they would reach from London, England, to Perth, Australia.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

History 00000000●0

2 × 4 asymptotic 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

d = 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

LEGO House

History	
000000000	

2 × 4 asymptotic 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

d=1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Λ	1	1	0	2	0	0
А	L	Т	. ∠	.J	0	9

$b_1 = 1$	
$b_2 = 24$	
$b_3 = 1560$	
$b_4 = 119580$	E 2004
$b_5 = 10116403$	E 2004
$b_6 = 915103765$	E 2004
$b_7 = 85747377755$	Abrahamsen-E 2005
$b_8 = 8274075616387$	Abrahamsen-E 2005
$b_9 = 816630819554486$	Nilsson 2014
$b_{10} = 82052796578652749$	Simon 2018

000000000	0000000	000000	000000000000000000000000000000000000000
Contont			

\bigcirc 2 × 1^{*d*-1} in \mathbb{R}^d

 $4 \quad d=1$

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ● ● ● ●

Does

 $\lim_{n\to\infty}\sqrt[n]{b_n}$

exist in \mathbb{R} ? If so, what is the limit?

Does

$$\lim_{n\to\infty}\frac{b_{n+1}}{b_n}$$

exist in \mathbb{R} ? If so, what is the limit?

• Can one choose α, β, γ so that

$$\lim_{n\to\infty}\frac{b_n}{\alpha n^\beta \gamma^n}=1?$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fixed buildings

Definition

Let b_n denote the number of buildings that can be constructed with $n \ 2 \times 4$ LEGO bricks, identified up to rotation in the XY-plane and translation in all of \mathbb{R}^3 .

Definition

Let f_n denote the number of buildings that can be constructed containing a base brick $[0,2] \times [0,4] \times [0,1]$ along with n other 2×4 LEGO bricks, in such a way that only the base brick intersects $\mathbb{R}^2 \times (-\infty, 1)$

・ロト・日本・日本・日本・日本

History	2×4 asymptotics
	00000000

 $2 \times 1^{d-1}$ in \mathbb{R}^d

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A112389 vs A123830

$b_1 = 1$	
$b_2 = 24$	$f_1 = 46$
$b_3 = 1560$	$f_2 = 2596$
$b_4 = 119580$	$f_3 = 194834$
$b_5 = 10116403$	$f_4 = 15834801$
$b_6 = 915103765$	$f_5 = 1395436949$
$b_7 = 85747377755$	$f_6 = 128352319891$
$b_8 = 8274075616387$	$f_7 = 12224079725173$
$b_9 = 816630819554486$	$f_8 = 1193967045643245$
$b_{10} = 82052796578652749$	$f_9 = 118973723976420310$

$$b_n \leq f_{n+1} \leq 4b_{n+1}$$
$$f_n f_m \leq f_{n+m}$$

History	2×4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	
	0000000		

$$b_n \le f_{n+1} \le 4b_{n+1}$$
$$f_n f_m < f_{n+m}$$

Proposition [Durhuus-E]

$$\lim_{n\to\infty}\sqrt[n]{b_n} = \lim_{n\to\infty}\sqrt[n]{f_n} \in [0,\infty]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

insert 0 into 5 from Above perpenDicularly	05AD
insert 3 into 0 from Above parallElly	30AE
move Forward to next brick	F
move Forward to next brick	F
insert 2 into 4 from Above parallElly	24AE
move Forward to next brick	F
insert 0 into 6 from Above parallElly	06AE
move Forward to next brick	F
insert 3 into 0 from Above parallElly	30AE
move Forward to next brick	F
	- 《曰》《卽》《臣》《臣》 [臣]

We see that any building counted by f_n can be described in 5n hexadecimal digits.

Proposition

$$\lim_{n \to \infty} \sqrt[n]{b_n} = \lim_{n \to \infty} \sqrt[n]{f_n} \le \lim_{n \to \infty} \sqrt[n]{16^{5n}} = 16^5 = 1048576$$

In fact, compressing the specification using

0	1	2	3	4	5	6	7
0.	Stud		A/B		Hole	5	D/E

we see that 5n/2 hexadecimal digits suffice.

Proposition
$$\lim_{n \to \infty} \sqrt[n]{b_n} = \lim_{n \to \infty} \sqrt[n]{f_n} \le \lim_{n \to \infty} \sqrt[n]{16^{5n/2}} = 16^{5/2} = 1024$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

History	2×4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	
	0000000		

Theorem [Durhuus-E]

$$\lim_{n\to\infty}\sqrt[n]{b_n} = \lim_{n\to\infty}\sqrt[n]{f_n} = \gamma \in [78, 177]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Upper bounds by Klarner-Rivest branches and twigs.
- Lower bounds by computer counts of "fat" buildings.

Content			
History 000000000	2 × 4 asymptotics 00000000	$2 \times 1^{d-1}$ in \mathbb{R}^d	d=1

2 2×4 asymptotics

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ のへで

Let d > 2. A $2 \times 1^{d-1}$ brick in \mathbb{R}^d is a cuboid

 $[\mathbf{x}, \mathbf{y}] = [x_1, y_1] \times [x_2, y_2] \times [x_d, y_d] = [\mathbf{x}', \mathbf{y}'] \times [x_d, y_d]$

where for some $i_0 \in \{1, \ldots, d-1\}$, we have

$$y_{i_0}-x_{i_0}=2$$

and for all $i \in \{1, \ldots, d\} \setminus \{i_0\}$

$$y_i - x_i = 1$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

A **building** with *n* such bricks is a collection

$$[\mathbf{x}^1, \mathbf{y}^1], \dots, [\mathbf{x}^n, \mathbf{y}^n]$$

satisfying

• $\mathbf{x}^i \in \mathbb{Z}^d$ • $(\mathbf{x}^i, \mathbf{y}^i) \cap (\mathbf{x}^j, \mathbf{y}^j) = \emptyset$ when $i \neq j$ • $\bigcup_{i=1}^n (\mathbf{x}^i, \mathbf{y}^i) \times [\mathbf{x}^i_d, \mathbf{y}^i_d]$ is connected.

It is **fixed** when it contains $[0, 2] \times [0, 1]^{d-1}$ and that is the only brick intersecting $\mathbb{R}^{d-1} \times (-\infty, 1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question			
History 000000000	2×4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d 000000	

Definition

Let $b_n^{(d)}$ denote the number of buildings of $n \ 2 \times 1^{d-1}$ bricks, identified up to isometries on \mathbb{R}^{d-1} and translations in all of \mathbb{R}^d .

Definition

Let $f_n^{(d)}$ denote the number of fixed buildings of $n + 1 \ 2 \times 1^{d-1}$ bricks.

Observation

$$\gamma_d = \lim_{n \to \infty} \sqrt[n]{f_n^{(d)}} = \lim_{n \to \infty} \sqrt[n]{b_n^{(d)}}$$

exists.

Questions			
History	2 × 4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	
000000000	00000000	000000	

• What is γ_d ?

Crude bounds are $2d - 1 \leq \gamma_d \leq 16d - 14$.

- Does γ_d grow like cd + O(1/d)? If so, what is c?
- Is

$$\lim_{n\to\infty}\frac{f_{n+1}^{(d)}}{f_n^{(d)}}=\gamma_d?$$

• Can one choose α_d, β_d so that

$$\lim_{n\to\infty}\frac{f_n^{(d)}}{\alpha_d n^{\beta_d}\gamma_d^n}=1?$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

History 000000000	2×4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d 000000	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Least squares, but how?

lf

$$f_n = lpha n^eta \gamma^n$$
, we have $rac{f_{n+1}}{f_n} = rac{lpha (n+1)^eta \gamma^{(n+1)}}{lpha n^eta \gamma^n} = \gamma \left(1 + rac{1}{n}
ight)^eta$

Content			
History ooooooooo	2 × 4 asymptotics 00000000	$2 imes 1^{d-1}$ in \mathbb{R}^d 000000	d=1

2 2×4 asymptotics

\bigcirc 2 × 1^{*d*-1} in \mathbb{R}^d

d = 1

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

History	2 imes 4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	d = 1
			000000000000000000000000000000000000000

A building counted by $b_n^{(1)}$ is **strict** when no pair of bricks are connected though two studs and holes. A building counted by $f_n^{(1)}$ is a **pyramid** when all bricks rest, directly or indirectly, on the base brick.

Definitions

• $\dot{b}_n^{(1)}$ counts the strict buildings up to isometries in \mathbb{R} and translation in \mathbb{R}^2 .

- $f_n^{(1),\triangle}$ counts the (fixed) pyramids.
- $\dot{f}_n^{(1),\triangle}$ counts the (fixed) strict pyramids.

2 × 4 asymptotic 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

2 × 4 asymptotic 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

History	2 imes 4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	d = 1
			000000000000000000000000000000000000000

Theorem [Bousquet-Melou, Rechnitzer]

$$f_n^{(1),\triangle} = \binom{2n+1}{n+1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• A1700
•
$$\lim_{n \to \infty} \sqrt[n]{f_n^{(1),\triangle}} = \lim_{n \to \infty} f_{n+1}^{(1),\triangle} / f_n^{(1),\triangle} = 4$$
•
$$\sum_{n=0}^{\infty} f_n^{(1),\triangle} x^n = \frac{2}{1 - 4x + \sqrt{1 - 4x}}$$
•
$$\lim_{n \to \infty} \frac{f_n^{(1),\triangle}}{\frac{2}{\sqrt{\pi}} n^{-1/2} 4^n} = 1$$

History 000000000	2 × 4 asymptotics 00000000	$2 \times 1^{a-1}$ in \mathbb{R}^a	d=1
Purely posit	ive string		

History 0000000000	2 × 4 asymptotics 0000000	$2 \times 1^{a-1}$ in \mathbb{R}^a 000000	d=1
Purely pos	sitive string		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Purely pos	sitive string		
History 000000000	2 × 4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	d=1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Purely pos	itive string		
History 000000000	2×4 asymptotics 00000000	$2 \times 1^{d-1}$ in \mathbb{R}^d 000000	d=1

History 2×4 asymptotics $2 \times 1^{d-1}$ in \mathbb{R}^d $d = 1$ 000	Dunaluma			
	History 0000000000	2×4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	d=1

シック 単 (中本)(中本)(日)(日)

History	2×4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	d = 1
			000000000000000000000000000000000000000

Purely positive string

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

History	2×4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	d = 1
			000000000000000000000000000000000000000

Durhuus-E, mixed case

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

History 000000000	2×4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d 000000	d=1

Durhuus-E, mixed case

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

History	2 × 4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	d=1
000000000	0000000	000000	

History 000000000	2×4 asymptotics	$2 imes 1^{d-1}$ in \mathbb{R}^d	d=1

Durhuus-E, mixed case

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

History 000000000	2×4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d 000000	d=1

Durhuus-E, mixed case

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

History

2 × 4 asymptotic 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

Durhuus-E, mixed case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

History

2 × 4 asymptotic 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

d = 1

Durhuus-E, mixed case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

History	2 × 4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	d=1
000000000	00000000	000000	

Translation in the strict case

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

2 × 4 asymptoti 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

2 × 4 asymptoti 00000000 $2 \times 1^{d-1}$ in \mathbb{R}^d

d = 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

History	2 imes 4 asymptotics	$2 \times 1^{d-1}$ in \mathbb{R}^d	d = 1
			000000000000000000000000000000000000000

Theorem [Dhar et al]

$$\dot{f}_n^{(1), riangle} = \sum_{k=0}^n (-1)^{n+k} \binom{n}{k} \binom{2k+1}{k+1}$$

• A5773 • $\lim_{n \to \infty} \sqrt[n]{\dot{f}_n^{(1),\triangle}} = \lim_{n \to \infty} \dot{f}_{n+1}^{(1),\triangle} / \dot{f}_n^{(1),\triangle} = 3$ • $\sum_{n=0}^{\infty} \dot{f}_n^{(1),\triangle} x^n = \frac{2x}{3x - 1 + \sqrt{1 - 2x - 3x^2}}$ • $\lim_{n \to \infty} \frac{\dot{f}_n^{(1),\triangle}}{\frac{1}{\sqrt{3\pi}} n^{-1/2} 3^n} = 1$

History	2×4 asymptotics	$2 imes 1^{d-1}$ in \mathbb{R}^d	d = 1
			000000000000000000000000000000000000000

Observation

With p_n the number of free polyominoes, we have

$$p_n \leq \dot{b}_n^{(1)} \leq 8p_n$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

• A105

- $\lim_{n \to \infty} \sqrt[n]{\dot{b}_n^{(1)}} = \lim_{n \to \infty} \dot{b}_{n+1}^{(1)} / \dot{b}_n^{(1)} = \lambda$ [Klarner, Madras].
- 4.00253 $\leq\lambda\leq$ 4.5252
- Widely accepted estimate: $\lambda \approx 4.0626$
- Widely expected asymptotics: $0.3169\lambda^n/n$.

Wild specul	ation		
History 000000000	2×4 asymptotics	$2 imes 1^{d-1}$ in \mathbb{R}^d 000000	d=1

γ^{\Box}	\triangle	
•	3	λ
	4	$\gamma^{(1)}$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Durhuus-E

Might
$$\gamma^{(1)} = 5$$
? Might $\gamma^{(1)} = \lambda + 1$?

Probably not. Mølck Nilsson computed $f_n^{(1)}$ up to n = 25 using transfer matrix methods, and used Guttmann's differential approximant method to estimate

$$\gamma^{(1)} \approx 5.20295$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで