Introduction to Random Matrix Theory

Masoud Khalkhali

University of Western Ontario, Canada

Baby Steps Beyond the Horizon

Banach Center, Sept 2022, Poland

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What is random matrix theory (RMT)?

- A random matrix is a matrix valued random variable.
- ► A matrix ensemble is a set of matrices + a probablity measure.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ RMT = Randomized linear algebra.

What is random matrix theory (RMT)?

- A random matrix is a matrix valued random variable.
- ► A matrix ensemble is a set of matrices + a probablity measure.
- ► RMT = Randomized linear algebra.
- Linear algebra becomes probabilistic. Sample question: How the eigenvalues or eigenvectors of a random matrix are distributed?

What is random matrix theory (RMT)?

- A random matrix is a matrix valued random variable.
- ► A matrix ensemble is a set of matrices + a probablity measure.
- ► RMT = Randomized linear algebra.
- Linear algebra becomes probabilistic. Sample question: How the eigenvalues or eigenvectors of a random matrix are distributed?
- ► Usually interested in: Large N limits of eigenvalue distributions and their correlations when N= size of our matrices goes to infinity, and universality classes. Compare with law of large numbers and the central limit theorem in standard probability theory.

Origins in nuclear physics (Eugen Wigner)

Eigenvalue problem of quantum mechanics:

$$H\psi = E\psi$$

Hamiltonian H is a Hermitian operator, E = energy. Too difficult to solve!

Origins in nuclear physics (Eugen Wigner)

Eigenvalue problem of quantum mechanics:

 $H\psi = E\psi$

Hamiltonian H is a Hermitian operator, E = energy. Too difficult to solve!

▶ Wigner's idea (1950's): no good information on *H* for the nuclei of heavy atoms, so assume *H* = (*h_{ij}*) is a random Hermitian *N* × *N* matrix, with *h_{ij}* centered iid random variables for *i* ≤ *j* (Wigner's ensemble).

Origins in nuclear physics (Eugen Wigner)

Eigenvalue problem of quantum mechanics:

 $H\psi = E\psi$

Hamiltonian H is a Hermitian operator, E = energy. Too difficult to solve!

- ▶ Wigner's idea (1950's): no good information on *H* for the nuclei of heavy atoms, so assume *H* = (*h_{ij}*) is a random Hermitian *N* × *N* matrix, with *h_{ij}* centered iid random variables for *i* ≤ *j* (Wigner's ensemble).
- Simplest Wigner ensemble: Gaussian unitary ensemble (GUE) with probability density

$$P(H) = \frac{1}{Z_N} e^{-N \operatorname{Tr} \frac{H^2}{2}}$$

Origins in agriculture and statistics (Wishart)

▶ Wishart ensemble (1928): Consider the map $M_{p \times n}(\mathbb{R}) \to M_{p \times p}(\mathbb{R})$

$$X\mapsto C=\frac{1}{n}XX^t$$

where columns of X are independent Gaussian vectors $\sim \mathcal{N}(0, V)$. The set of all C (covariance matrices) under the pushforward measure is the Wishart ensemble.

Origins in agriculture and statistics (Wishart)

▶ Wishart ensemble (1928): Consider the map $M_{p \times n}(\mathbb{R}) \to M_{p \times p}(\mathbb{R})$

$$X\mapsto C=\frac{1}{n}XX^t$$

where columns of X are independent Gaussian vectors $\sim \mathcal{N}(0, V)$. The set of all C (covariance matrices) under the pushforward measure is the Wishart ensemble.

▶ Let $n, p \to \infty$ with $\frac{p}{n} \to \lambda$. Marchenko-Pastur law gives the limiting eigenvalue distribution of *C* (used in data analysis, machine learning, finance.)

Warmup: Wigner's surmise, eigenvalue repulsion

 Let A be a random real symmetric 2 × 2 matrix sampled from the probability distribution (GOE)

$$P(A) = \frac{1}{Z}e^{-\frac{1}{2}\operatorname{Tr}(A^2)}$$

► Find the eigenvalue spacing distribution of A, s = λ₂ - λ₁. This is given by

$$p(s) = \frac{1}{Z} \int e^{-\frac{1}{2}\operatorname{Tr}(A^2)} \delta(s - (\lambda_2 - \lambda_1)) dA$$

Warmup: Wigner's surmise, eigenvalue repulsion

 Let A be a random real symmetric 2 × 2 matrix sampled from the probability distribution (GOE)

$$P(A) = \frac{1}{Z}e^{-\frac{1}{2}\operatorname{Tr}(A^2)}$$

► Find the eigenvalue spacing distribution of A, s = λ₂ − λ₁. This is given by

$$p(s) = rac{1}{Z}\int e^{-rac{1}{2}\operatorname{Tr}(\mathcal{A}^2)}\delta(s-(\lambda_2-\lambda_1))dA$$

► A simple calculation shows (Wigner's surmise 1950's):

$$p(s)=\frac{s}{2}e^{-s^2/4}, \qquad s\geq 0$$

and p(s) = 0 for s < 0. This shows that eigenvalues are not independent (eigenvalue repulsion).

Unitary invariant ensembles, eigenvalue repulsion

Using Weyl integration formula, the integral

$$Z = \int_{\mathcal{H}_N} e^{-N \operatorname{Tr}(V(H))} dH,$$

can be reduced to integration over eigenvalues and gives the jpdf of eigenvalues

$$d\rho(\lambda_1, \cdots, \lambda_N) = \prod_{1 \le i < j \le N} |\lambda_j - \lambda_i|^2 \prod_{i=1}^N \left(e^{-NV(\lambda_i)} d\lambda_i \right)$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Vandermonde determinant indicates eigenvalue repulsion.

Universality classes: Unitary Invariant and Wigner ensembles, Dyson 3-fold way (GUE, GOE, GSE)

• Two (almost exclusive) classes of ensembles on \mathcal{H}_N :

• (1) Unitary invariant ensembles, with $\mu = \frac{1}{Z} dH$,

$$Z=\int_{\mathcal{H}_N}e^{F(H)}dH,$$

F(H) is a unitary invariant function, dH = Lebesgue measure on \mathcal{H}_N , and the unitary group U_N acts by conjugation on H_N .

► (2) Wigner ensembles.

Universality classes: Unitary Invariant and Wigner ensembles, Dyson 3-fold way (GUE, GOE, GSE)

• Two (almost exclusive) classes of ensembles on \mathcal{H}_N :

• (1) Unitary invariant ensembles, with $\mu = \frac{1}{Z} dH$,

$$Z=\int_{\mathcal{H}_N}e^{F(H)}dH,$$

F(H) is a unitary invariant function, dH = Lebesgue measure on \mathcal{H}_N , and the unitary group U_N acts by conjugation on H_N .

► (2) Wigner ensembles.

(1) \cap (2) = Gaussian unitary ensemble (GUE), with $\mu = \frac{1}{Z}e^{-N\text{Tr}(H^2)}dH$, and $Z = \int_{\mathcal{H}_N} e^{-N\text{Tr}(H^2)}dH$.

Eigenvalue distributions

Eigenvalue density function: a probability distribution valued random variable:

$$\mu_N(H) = \frac{1}{N} \sum_{i=1}^N \delta(x - \lambda_i(H))$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Eigenvalue distributions

Eigenvalue density function: a probability distribution valued random variable:

$$\mu_N(H) = \frac{1}{N} \sum_{i=1}^N \delta(x - \lambda_i(H))$$

Mean density function:

$$\rho_N(\mathbf{x}) = \langle \mu_N \rangle = \int_{\mathcal{H}_N} \mu_N(H) P(H) dH$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Eigenvalue distributions

Eigenvalue density function: a probability distribution valued random variable:

$$\mu_N(H) = \frac{1}{N} \sum_{i=1}^N \delta(x - \lambda_i(H))$$

Mean density function:

$$\rho_N(x) = \langle \mu_N \rangle = \int_{\mathcal{H}_N} \mu_N(H) P(H) dH$$

► Large N limit

$$\rho = \lim \rho_N, \quad N \to \infty$$

In practice one computes (scaling) limits of tracial moments

$$\lim \langle \frac{1}{N} \operatorname{tr}(A^k) \rangle \quad N \to \infty$$

Wigner semicircle law for Wigner matrices

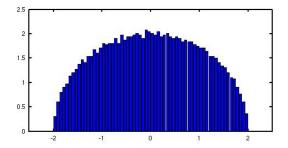


Figure: Histogram, sampled from a 3000x 3000 GUE matrix

▶ Wigner semicircle law (1950's), universality for Wigner ensembles:

$$\rho(x) = \frac{1}{2\pi}\sqrt{4-x^2}, \quad |x| \le 2$$

Proof of semicircle law

Moments of GUE are Gaussian integrals and easy to compute via Wick's theorem.

$$\langle h_{ij}h_{kl}\rangle = \frac{1}{N}\delta_{il}\delta_{jk}$$

Wick's theorem:

$$\langle \frac{1}{N} \operatorname{Tr}(H^{2k}) \rangle = \sum \prod \langle h_{ij} h_{kl} \rangle$$

where the summation is over the set of indices $i_1, i_2, \ldots, i_{2k} = 1, \ldots, 2k$ and the product is over the pairings of these indices. The odd moments are zero by symmetry.

 Feynman's theorem: summation can be reduced to summing over gluings of a 2k gon

Genus expansion

Using polygon gluings, we obtain

$$\langle \frac{1}{N} \operatorname{Tr}(H^{2k}) \rangle = \sum_{\sigma} N^{\nu(\sigma)-k-1} = \sum_{g=0}^{\infty} \varepsilon_g(k) N^{-2g}$$

where the first sum is over the set of 1-face maps and g is the genus of corresponding oriented closed surface.

It can be shown that the leading term

 $\varepsilon_0(k) =$ number of planar gluings of a 2k gon

is equal to the number of non-crossing gluings which is equal to the k-th Catalan number

$$\varepsilon_0(k) = C_k = \frac{1}{k+1} \binom{2k}{k}$$

Large N limit

From genus expansion it follows that

$$\lim_{N \to \infty} \langle \frac{1}{N} \mathsf{Tr}(H^{2k}) \rangle = \varepsilon_0(k) = \frac{1}{k+1} \binom{2k}{k}$$

The moments of the semincircle distribution

$$\langle x^{2k} \rangle_{\rho} = \frac{1}{2\pi} \int_{-2}^{2} x^{2k} \sqrt{4 - x^2} dx = \frac{1}{k + 1} \binom{2k}{k}$$

It follows that

$$\lim_{N\to\infty} \langle \frac{1}{N} \mathrm{Tr}(H^{2k}) \rangle = \langle x^{2k} \rangle_{\rho}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

And this is the simplest version of the Wigner semicircle law.

Genus expansion in general: summing over discrete surfaces ('t Hooft, Brezin-Itzykson-Parisi-Zuber)

Fix a polynomial $V(x) = \sum \frac{t_k}{k} x^k$. Consider the formal matrix integral

$$Z_N = \int_{\mathcal{H}_N} e^{-N \operatorname{Tr}(V(H))} dH,$$

Genus expansion in general: summing over discrete surfaces ('t Hooft, Brezin-Itzykson-Parisi-Zuber)

• Fix a polynomial $V(x) = \sum \frac{t_k}{k} x^k$. Consider the formal matrix integral

$$Z_N = \int_{\mathcal{H}_N} e^{-N \operatorname{Tr}(V(H))} dH,$$

• Topological expansion of $F_N = \log Z_N$

$$F_N = \sum_{g \ge 0} (N)^{2-2g} F_g , \qquad F_g = \sum_{[\mathcal{M}] \in \mathbb{M}_{\emptyset}^g} \mathsf{weight}(\mathcal{M})$$

where $\mathbb{M}_{\emptyset}^{g}$ = set of isomorphism classes of the Feynman weighted connected closed maps of genus g.

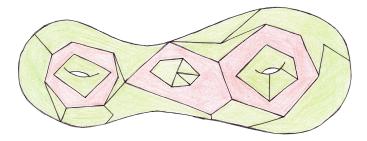


Figure: A polygonalization of a genus 2 surface (S. Azarfar and M K. Random finite noncommutative geometries and topological recursion, arXiv:1906.09362)

Genus expansion leads to a quick proof of the Wigner law, links with geometry of moduli spaces of curves, topological recursion (Eynard-Orantin), 2d gravity, recursion formula for volumes of moduli spaces of Riemann surfaces (Mirzakhani recursion).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ