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What is random matrix theory (RMT)?

I A random matrix is a matrix valued random variable.

I A matrix ensemble is a set of matrices + a probablity measure.

I RMT = Randomized linear algebra.

I Linear algebra becomes probabilistic. Sample question: How the
eigenvalues or eigenvectors of a random matrix are distributed?

I Usually interested in: Large N limits of eigenvalue distributions and
their correlations when N= size of our matrices goes to infinity, and
universality classes. Compare with law of large numbers and the
central limit theorem in standard probability theory.
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Origins in nuclear physics (Eugen Wigner)

I Eigenvalue problem of quantum mechanics:

Hψ = Eψ

Hamiltonian H is a Hermitian operator, E = energy. Too difficult to
solve!

I Wigner’s idea (1950’s): no good information on H for the nuclei of
heavy atoms, so assume H = (hij) is a random Hermitian N × N
matrix, with hij centered iid random variables for i ≤ j (Wigner’s
ensemble).

I Simplest Wigner ensemble: Gaussian unitary ensemble (GUE) with
probabiity density

P(H) =
1

ZN
e−NTr H
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Origins in agriculture and statistics (Wishart)

I Wishart ensemble (1928): Consider the map Mp×n(R)→ Mp×p(R)

X 7→ C =
1

n
XX t

where columns of X are independent Gaussian vectors ∼ N (0,V ).
The set of all C (covariance matrices) under the pushforward
measure is the Wishart ensemble.

I Let n, p →∞ with p
n → λ. Marchenko-Pastur law gives the limiting

eigenvalue distribution of C (used in data analysis, machine learning,
finance.)



Origins in agriculture and statistics (Wishart)

I Wishart ensemble (1928): Consider the map Mp×n(R)→ Mp×p(R)

X 7→ C =
1

n
XX t

where columns of X are independent Gaussian vectors ∼ N (0,V ).
The set of all C (covariance matrices) under the pushforward
measure is the Wishart ensemble.

I Let n, p →∞ with p
n → λ. Marchenko-Pastur law gives the limiting

eigenvalue distribution of C (used in data analysis, machine learning,
finance.)



Warmup: Wigner’s surmise, eigenvalue repulsion

I Let A be a random real symmetric 2× 2 matrix sampled from the
probability distribution (GOE)

P(A) =
1

Z
e−

1
2Tr(A

2)

I Find the eigenvalue spacing distribution of A, s = λ2 − λ1. This is
given by

p(s) =
1

Z

∫
e−

1
2Tr(A

2)δ(s − (λ2 − λ1))dA

I A simple calculation shows (Wigner’s surmise 1950’s):

p(s) =
s

2
e−s

2/4, s ≥ 0

and p(s) = 0 for s < 0. This shows that eigenvalues are not
independent (eigenvalue repulsion).
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Unitary invariant ensembles, eigenvalue repulsion

I Using Weyl integration formula, the integral

Z =

∫
HN

e−NTr(V (H))dH,

can be reduced to integration over eigenvalues and gives the jpdf of
eigenvalues

dρ(λ1, · · · , λN) =
∏

1≤i<j≤N

|λj − λi |2
N∏
i=1

(
e−NV (λi )dλi

)

I Vandermonde determinant indicates eigenvalue repulsion.



Universality classes: Unitary Invariant and Wigner
ensembles, Dyson 3-fold way (GUE, GOE, GSE)

I Two (almost exclusive) classes of ensembles on HN :

I (1) Unitary invariant ensembles, with µ = 1
Z dH,

Z =

∫
HN

eF (H)dH,

F (H) is a unitary invariant function, dH = Lebesgue measure on
HN , and the unitary group UN acts by conjugation on HN .

I (2) Wigner ensembles.

(1) ∩ (2) = Gaussian unitary ensemble (GUE),

with µ = 1
Z e
−NTr(H2)dH, and Z =

∫
HN

e−NTr(H2)dH.
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Eigenvalue distributions

I Eigenvalue density function: a probability distribution valued random
variable:

µN(H) =
1

N

N∑
i=1

δ(x − λi (H))

I Mean density function:

ρN(x) = 〈µN〉 =

∫
HN

µN(H)P(H)dH

I Large N limit
ρ = lim ρN , N →∞

I In practice one computes (scaling) limits of tracial moments

lim〈 1

N
tr(Ak)〉 N →∞
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Wigner semicircle law for Wigner matrices

Figure: Histogram, sampled from a 3000x 3000 GUE matrix

I Wigner semicircle law (1950’s), universality for Wigner ensembles:

ρ(x) =
1

2π

√
4− x2, |x | ≤ 2



Proof of semicircle law

I Moments of GUE are Gaussian integrals and easy to compute via
Wick’s theorem.

〈hijhkl〉 =
1

N
δilδjk

I Wick’s theorem:

〈 1

N
Tr(H2k)〉 =

∑∏
〈hijhkl〉

where the summation is over the set of indices
i1, i2, . . . , i2k = 1, . . . , 2k and the product is over the pairings of
these indices. The odd moments are zero by symmetry.

I Feynman’s theorem: summation can be reduced to summing over
gluings of a 2k gon



Genus expansion

I Using polygon gluings, we obtain

〈 1

N
Tr(H2k)〉 =

∑
σ

Nv(σ)−k−1 =
∞∑
g=0

εg (k)N−2g

where the first sum is over the set of 1-face maps and g is the genus
of corresponding oriented closed surface.

I It can be shown that the leading term

ε0(k) = number of planar gluings of a 2k gon

is equal to the number of non-crossing gluings which is equal to the
k-th Catalan number

ε0(k) = Ck =
1

k + 1

(
2k

k

)



Large N limit

I From genus expansion it follows that

lim
N→∞

〈 1

N
Tr(H2k)〉 = ε0(k) =

1

k + 1

(
2k

k

)
I The moments of the semincircle distribution

〈x2k〉ρ =
1

2π

∫ 2

−2
x2k
√

4− x2dx =
1

k + 1

(
2k

k

)
I It follows that

lim
N→∞

〈 1

N
Tr(H2k)〉 = 〈x2k〉ρ

And this is the simplest version of the Wigner semicircle law.



Genus expansion in general: summing over discrete
surfaces (’t Hooft, Brezin-Itzykson-Parisi-Zuber)

I Fix a polynomial V (x) =
∑ tk

k x
k . Consider the formal matrix

integral

ZN =

∫
HN

e−NTr(V (H))dH,

I Topological expansion of FN = logZN

FN =
∑
g≥0

(N)2−2gFg , Fg =
∑

[M]∈Mg
∅

weight(M)

where Mg
∅ = set of isomorphism classes of the Feynman weighted

connected closed maps of genus g .
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Figure: A polygonalization of a genus 2 surface (S. Azarfar and M K. Random
finite noncommutative geometries and topological recursion, arXiv:1906.09362)

Genus expansion leads to a quick proof of the Wigner law, links with
geometry of moduli spaces of curves, topological recursion
(Eynard-Orantin), 2d gravity, recursion formula for volumes of moduli
spaces of Riemann surfaces (Mirzakhani recursion).


