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RMT = PROBABILITY THEORY
+ ALGEBRA
+ ANALISYS (real, complex, functional)
+ Free probability theory
+ Combinatorics, graph theory
+ Convex geometry, Topology, Supersymmetry ...
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Main regimes:
® asymptotic, n — 00,

global,
local,

® non-asymptotic, 1 < n < co.
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Basic questions:

Convergence of the counting measures of eigenvalues
N,(A):={j: N\ e A}|/n= %Z}; Ineny, VAER.

IN: N, —~— N as.?
n—o00
i.e. for any bounded continuous function ¢ with probability 1
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fluctuations and CLT for linear eigenvalue statistics:

v S25(p () — Ep(X) —= & ~ N(0, Var[g])?

local laws, spacing distribution, bulk statistics, edge statistics,
correlation functions,

invertibility of random matrices,

quantitative estimates for the smallest and largest singular values,
delocalization of eigenvectors...



Applications of random matrices

Physics: nuclear physics, quantum chaology, quantum field theory,
condensed matter, statistical physics, wave propagation...

Statistics: multivariate statistics, principal component analysis, data
compression, image processing...

Mathematics: number theory, combinatorics, integrable systems, graph
theory...

Information Theory: signal processing, wireless communications, quantum
information theory, telecommunications, neural networks...

Biology: sequences matching, RNA folding, gene expressions network...

Economics and Finances: quantitative finances, time series analysis...



The origins of RMT

P. Diakonis and P. J. Forrester*: “Hurwitz’s paper “Uber die Erzeugung der
Invarianten durch Integration.” [Gétt. Nachrichten (1897), 71-90] should
be regarded as the origin of random matrix theory in mathematics.

Here Hurwitz introduced and
developed the notion of an
invariant measure for the
matrix groups SO(N) and
U(N)... Hurwitz’s ideas and
methods show themselves in
the subsequent work of Weyl,
Dyson and others on founda-
tional studies in random ma-
trix theory...”

*Diaconis, Persi, and Peter J. Forrester. "Hurwitz and the origins of random matrix theory in
mathematics." Random Matrices: Theory and Applications 6.01 (2017): 1730001.
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The origins of RMT: multivariate statistics

Wishart, The generalized product moment distribution in samples from a
normal multivariate population, Biometrika 20A (1928), 32-43.

THE GENERALISED PRODUCT MOMENT DISTRIBUTION
IN SAMPLES FROM A NORMAL MULTIVARIATE POPU-
LATION.

By JOHN WISHART, M.A,, BSc. Statistical Department, Rothamsted
Experimental Station.

1. Introduction

For some years prio to 1915, various wrters struggled with the problems that
arise when sumples are taken from uni-variate and bi-variate populations, assumed
in most cases for simplicity to be normal. Thus “Student,” in 1908, by considering
the first four moments, was led by K. Pearson's methods to infor the distribution
of standard deviations, in samples from & normal population. His results, for com-
s ith otk to be deded ater, will b st i the o

dp——(”—r)A

where 1V ia the size of the sample, and
A= Fgrr 4= &,
o being the standard deviation of the sumpled population, and + that estimated
from the sample. Thus,f 5, , .. ay ar the sunple values,
Ne= ? (2),

and Vo= @-2y.

When bi-variate populations were considered, other problems arose,
distribution of the correlation coefficient and of the regression co
samples. These problems, taken by themselves, were found to be difficult, and
only approximative results had been reached, when, in 1915, R. A. Fishert gave a
formula for the simultancous distribution of the three quadratic statistical deriva-
tives, namely the two variances (squared standard deviations) and the product
‘moment coeffcient, Thus, let , , ... y represent the sample values of the
a-variate, and gy, Yo, -y the corresponding values for the y-variate, let o, and o,
be the standard deviations of the sampled population and p the correlation
between z and y. We then calculate the following statistical derivatives from the
sample:

John Wishart wamdo )

¥ X
Nep=2(a-2) Vo= 2(-77

I
Nrsw= (e=2) (=T

* Biometrika, Vol. vi. 190, pp. 5.

+ Blometrika, Vol x. 1915, p. 10.
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One of the basic problems in the multivariate statistics is by sampling from a
high-dimensional distribution to estimate its covariance matrix ..

LetX € R", EX =0, ¥ = EXX’, and let

X1 Xim
X =1 : s, Xy = be i.i.d. copies of X.
an Xnm
Let B, = [Xl X, .. Xm] . Then the Sample Covariance Matrix

m
Sp=m"'BBl =m~ "> XX,

a=1

is an unbiased estimator of ..

The Wishart matrix S corresponds to X,..., X, ~ N(0,1,).

pdfAY . ) = cem TR M2 AT AT I - Ml
j=1 j<k



The origins of RMT: nuclear physics

Wigner: “...it is tantalizing not to know what the probability of a certain
spacing of the energy levels is.”

g &

Eugene Paul Wigner

**Th () =885 b/atom

=100 COUNTS )

(1 DIVISION

ENERGY (eV)

Figure 1.1. Slow neutron resonance cross-sections on thorium 232 and uranium 238 nuclei.
Reprinted with permission from The American Physical Society, Rahn et al., Neutron resonance
spectroscopy, X, Phys. Rev. C 6, 1854—1869 (1972).

This figure was copied from Mehta’s book [1]

In the 50s Wigner proposed to construct a statistical theory of energy levels.

Dyson: “We picture a complex nucleus as a "black box" in which a large
number of particles are interacting according to unknown laws... The
statistical theory will not predict the detailed level sequence of any one
nucleus, but it will describe the general appearance of the level structure... ”
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Example* (The spacing distribution and Wigner surmise)

Letn =2, M = ;Cl ? ),wherexl,xsz(O,l),X3~N(O,1/2).
30X

Eigenvalues /\],2 = <X1 +x & (X] —XQ)Z —|—4.X%)/2, AL > A
Spacing S := A; — Xy = \/(x1 —x2)2 +4xZ, p(s) := LP(S <s5)-?

///d dxydes ’/ze_x%/ze_xga( ( )2 +422), 5> 0
s) = X1dX2dx S—a/ (X1 —x2)° +4x3), s>
p(s) 1axp 3\/%\/2—77\/7? 1 2 3

X| — X2 =rcosp, 2x3 =rsing, xi +x =y

1 o0 271'
ps)zi/ drr(i(s—r)/ dyo
( 873/2 Jo 0
IS (o) (o) 2 |

dye = %e“vz/“

—00

*Livan, G., Novaes, M. and Vivo, P., 2018. Introduction to random matrices theory and
practice. Monograph Award, p.63.



Wigner surmise: p(s) = Se

P(X)

X

Fig. NIB1-1, Probability of a level spacing X.

Eugene Wigner and Edward Teller
https://djalil.chafai.net/

Original picture in Wigner’s proceedings
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1. A1,..., A\, are eigenvalues of a symmetric random matrix with independent
Gaussian entries: p(s) was computed by Gaudin and Mehta (60’s)
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1. A1,..., A\, are eigenvalues of a symmetric random matrix with independent
Gaussian entries: p(s) was computed by Gaudin and Mehta (60’s)

2.x1,..., X% areiid. U[0,1]: p(s) =e*

3. The Wigner-Dyson-Gaudin-Mehta universality conjecture asserts that the
local eigenvalue statistics of large random matrices depends only on the sym-
metry class of the matrix ensemble.



Wigner surmise: p(s) = e

[S1E

P(X)

Fig, MBI-1. Probability of a level spacing X

Eugene Wigner and Edward Teller

Original picture in Wigner’s proceedings hutps/djalil.chafai.net/

1. A1,..., A\, are eigenvalues of a symmetric random matrix with independent
Gaussian entries: p(s) was computed by Gaudin and Mehta (60’s)

2.x1,..., X% areiid. U[0,1]: p(s) =e*

3. The Wigner-Dyson-Gaudin-Mehta universality conjecture asserts that the
local eigenvalue statistics of large random matrices depends only on the sym-
metry class of the matrix ensemble.

4. The same spacing distribution have: eigenvalues of large Hermitian ran-
dom matrices, resonances of various heavy nuclei, zeroes of the Riemann zeta
function, bus arrival times, birds perching on an electric wire...
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Wigner real symmetric matrices

W11 W]n
1 1 . .

SR

M, : ;
Wnl cee Wnn
* Wi =W, eR,

® (Wi)i<j<k<n and (Wj;)1<j<, are two independent families of i.i.d. zero
mean random variables

*EW;=11<j<k<n
In particular, if all entries of M,, are independent Gaussian random variables,

V‘/jkNN(Ovl""(sjk)v lgjgkgn,

then we say that M, belongs to the Gaussian Orthogonal Ensemble (GOE).
In this case

ipF((Mi)<x) = 4 exp{~nTr M2 /4}



Wigner’s Semicircle Law (1955)
eigenvalues,

Theorem. Let M, belongs to GOE, and N,, be the counting measure of its

1 .. 1

No(B) == N €AY = > Iineay, VACR.
J

Then almost surely

Nn L> Nsc:
n—oo
where Ny (dX) = pee(A)dA,

po(\) = %,/(4 ),

.5 =1

Normalised empirical eigenvalue distribution for a 100 X 100 GUE matrix
(Image by Alan Edelman)
In other words, for any bounded continuous function ¢, with probability 1,
lim
n—oo

2
PN, (A) = / (NP (VA
R -2

[m]

=



Note that
1 1
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L, [] is a linear eigenvalue statistic corresponding to a test function ¢.

The Wigner’s theorem on convergence to the semicircle law,
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can be considered as an analog of the Law of Large Numbers.
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Note that

1 1
Ll i= [ oOON@N) = 2 3 ) = S Tro(01,)
J
L, [] is a linear eigenvalue statistic corresponding to a test function ¢.

The Wigner’s theorem on convergence to the semicircle law,

L1
}ﬂngﬂw—/

2
©(A)psc(N)dA (1)
2

can be considered as an analog of the Law of Large Numbers.
Moment method: To prove (1) it is enough to consider ¢(\) = M, k € N.

Method of Stielties transform: To prove (1) it is enough to consider

oA =AN—-2)"", zeC\R.



Stielties transform and convergence to the Marchenko-Pastur law

Marchenko, V., Pastur, L. (1967). The eigenvalue distribution in some
ensembles of random matrices. Math. USSR Sbornik, 1, 457-483.

16 NATENATISIECKIR CROPIIK T 0w, %

VAK 51921

B HeKoTOpHX

o e

Vladimir Marchenko and Leonid Pastur
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Stieltjes transform of a non-negative finite measure m:

s(z)z/Rn;\(d/\z), Sz#0

® the Stieltjes - Perron inversion formula:

e—=0t T

1
m(A) = lim f/A%s()\—l—is)d)\;

® There is a one-to-one correspondence between finite non-negative
measures and their Stieltjes transforms. This correspondence is
continuous if we use the uniform convergence of analytic functions on
compact subsets of C \ R for Stieltjes transforms and the vague
convergence of measures.

® For the counting measure of eigenvalues we have
N,(dX
e [ B
R )\ — 2

sn(z) = s(z) & N, = N = /RA@



Convergence of the empirical eigenvalue distributions of the sample
covariance matrices

Let

Xll le
Xj=1|: s s Xy = be i.i.d. random vectors.
an an

The sample covariance matrix:

S, = B,B! = ZXQXL B,=[Xi X .. X,].
a=1

We suppose that m = m(n) and that

m—oo,m/n—c>1 as n— oo



Marchenko-Pastur distribution

Marchenko-Pastur distibution

0w

Theorem (MP’67). Let M, = " _ X, X,
where {X, }o are Li.d. copies of X € R" s.1. gont il

EX=0, EXX'=-],
n

and the components of X are i.i.d. )

Then as m,n — oo, m/n — ¢ > 1,

we have a.s.:

Ny % Nyp,  Nup(d\) = pup(N)dA,

pup(X) = O a;7)r()\a+ - )\))+> -l N

H

djalil.chafai.net



Following Pajor, A. and Pastur, L. (2009). On the limiting empirical measure of
eigenvalues of the sum of rank one matrices with log-concave distribution, Studia
Math., 195(1), 11-29., we prove theorem not supposing that the coordinates of
X are independent. Instead we suppose that for any deterministic n X n
matrix A,

Var{(A,X, X)} < HA,,ngé,,, oy =o0(1), n — occ.
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Following Pajor, A. and Pastur, L. (2009). On the limiting empirical measure of
eigenvalues of the sum of rank one matrices with log-concave distribution, Studia
Math., 195(1), 11-29., we prove theorem not supposing that the coordinates of
X are independent. Instead we suppose that for any deterministic n X n
matrix A,

Var{(A,X, X)} < HA,,ngé,,, oy =o0(1), n — occ.

Main steps of the proof ( N, — Nyp in probability)
Notations:

1T G,

n

M, = Zg:l Xﬁxg’ G(z) = (M, — Z)ila Sn =
Mg =30 XpXh =M, — X XI,  G(z) = (Mg —2)7' sy =1TrG®

Note that [|G(2)lop < [S2 7" [su(2)] < [S27', s =50 + O(n ™).

Step 1: Vars, = o(1), n — occ.
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* Ep =g + BT - 1+ (G"X4,Xs) 1+Es, ol
_ G*X. X!, G* = !

*G-0 = —mexixy 7 (KXo =1 - mex s

® :G(z) =—1+G(2M = -1+ Y"_, GX,X],



Step 2: s—7 :
e EXX! =

Es, = %E TrG —s. = pup(\) = %limsﬁo Ss(A + ie).
11, = E(G°X4,Xa) = tETIG™ = Es, + O(n™")

o Var{(4,X, X)} = o(1) = Var(G°X,, X4) = o(1)

oEl—

°* G-G

1 1

§—E¢ _
we teeEi e = By 1+ (G°X,,X,) 1+Es, +o(l)
a G*X. X!, G* _ 1
= TIF G XaXa) (GXa, Xa) =1- TG Xa Xa)

* :G(z) = —I1+G@M=—-1+>"_, GX, X!, =

1
Es, = —ETr(zG) = —1 ETrGX, X!
s p r(zG) = + - Z s

ozfl

m 1= 1 m 1

1
=1-——-- _ =14+ —— - _ 1).
n l’la 1+(GOCYCHYQ) * n n;1+Esn+0()



Step 2: s—7 :
e EXX! =

Es, = %E TrG —s. = pup(\) = %limsﬁo Ss(A + ie).
11, = E(G°X4,Xa) = tETIG™ = Es, + O(n™")

o Var{(4,X, X)} = o(1) = Var(G°X,, X4) = o(1)

1 1

. ¢—E¢ =

* Ep =g + BT - 1+ (G"X4,Xs) 1+Es, ol
_ G*X. X!, G* = !

*G-0 = —mexixy 7 (KXo =1 - mex s

* :G(z) = —I1+G@M=—-1+>"_, GX, X!, =

1
Es, = —ETr(zG) = —1 ETrGX, X!
s p r(zG) = + - Z s

ozfl

m 1=

1
—1-Z2_"SE— -+ 2SNy o).
n o n 14+ (G*Ya,¥a) Jrn n;1+Esn+O()

Hence, zs(z

)= —1+c—c(l1+s(z))" L.
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Convergence of empirical spectral distributions: as n — oo, for any bounded
continuous ¢ we have with probability 1:

[ ey =3 o) > [ epan

This is an analog of the Law of Large Numbers.

What can be said about fluctuations (CLT)?

Uy - Z(p()\,) —Ep(N)) = Z ~ N(0,V) in distribution?

J=1



The CLT for Linear Eigenvalue Statistics for Wigner Random Matrices
Theorem (AL, Pastur’09). Let M, = n1/2 (W k) k=1 be a Wigner matrix,

® Wy = Wy € R, j <k, are independent,

© E{Wi} =0, E{W:i}=(1+ ),

® L34 = E{ij boRa = =3,

® pc 7‘[5/2.
Then as n — 00, 3 (¢(N) — Ep())) — Z ~ N(0, V[i]) in distribution,

// < )\2> (4 — M Ap)dAd),
Vel = 22 Y VA= N/4 - )

. 2 2

K4 2—pu

o i |
+33 (/_zw(u) " u)



Circular law

Let now M, = n~'/2{M}!._,, where (My); ; are i.i.d. copies of &,

E(=0, Var{ =1,

and let Aq,..., A, € C be the eigenvalues M,,.
The density of the empirical spectral distribution of M,,:

1 n
po, (A) = DA =N
j=1
It was conjectured in the 1950s, that 1), converges to the density of the
uniform probability measure on the unit disk:
g, — ™ p dxdy, where D = {|z| < 1}.

Problem: Neither the method moment nor the Stieltjes transform method
work in this setting!



The hermitization trick (Girko, 1984)

1
/ I |A = 2, (A)dA = > In|N(M,) — 2]
C -
J
1
=-In | TI (M) = 2)]
J
! In | det(M, — z)|
n
1
= —1 n— *_ %
o ndet(M, — z)(M;, —2)

_ %Zm&((m —2)(M] —2))

1 o0
= 5/ () f(a1, —2y 1z —=) (1)at.
0

Need to estimate the smallest singular value s,,;,(M,, — zI) of M,, — zI!



History and references:

M, = n='2(My)},_,, (My); are i.id. copies of & EE =0, Varé = 1.

Mehta (1967): £ is a standard complex Gaussian variable (using the joint
density function of the eigenvalues, discovered by Ginibre (1965))

Girko (1984): E |£]>*¢ < oo (but the proof has gaps)
Edelman (1997): £ is a standard real Gaussian variable

Bai (1997): ¢ has bounded density and bounded 6th moment (later improved
to (2 + €)-moment in his book with Silverstein (2010))

Girko (2004): E |¢[*T¢ < oo (no density conditions!)
Pan, Zhou (2010): E |¢[* < oo

Tao, Vu (2008): E [£]*7¢ < oo

Gotze, Tikhomirov (2010): E |£]*(In |¢))® < oo

Tao, Vu (2010): Universality: No additional conditions!

Many recent works on matrices with non i.i.d. entries. In particular, for
sparse matrices: Gotze—Tikhomirov, Tao—Vu, Basak—Rudelson.



Circular law for regular graphs
(Based on a joint work with: A. Litvak, K. Tikhomirov,
N. Tomczak-Jaegermann, P. Youssef)

G € D, 4 < every vertex of G has exactly d in-neighbors and d
out-neighbors

T
P{GeTl} = 5 Irc ,Z)n7 .
Gl = ‘
M e Mn.d Aad

Mo — if there is an edge from i to j;
v 0, otherwise.

> My=> M;=d
i=1 j=1

A closely related model: Erdos-Renyi graphs.






Quantitative estimates for the smallest singular value

N.Cook, 2017: Letd > Cln'' n. Then

P(smin > l/nc(ln")/lnd> >1-Cln’? n/\/;1

Theorem (LLTTP, 2017). Let C < d < n/ In® n. Then
IP’(smin > 1/n6) >1-Cln?d/Va.

Conjecture: Smin & Vd /n.

Proof: Need to estimate

P(smin(A) < §) = P(xei?}jl 1 Ax]|> < 5) = P<3x €5 JlAxl: < 5)

® c-net argument,
® anti-concentration inequalities,
® study of normal vectors of hyperplanes spanned by the rows of A,,.



Circular law for adjacency matrices

Let M be uniformly distributed in the set of n X n matrices with 0/1 entries,
such that sums in rows and in columns are equal to d.

N.Cook, 2017: The circular law holds for d—1/2M provided that d > In*® n.

Theorem (LLTTP, 2018). The circular law holds for d—'/2M provided that
d=d(n) — oo as n — co.

Conjecture (complex Kesten—McKay distribution): For every fixed d, as
n — oo the normalized counting measures of eigenvalues of M € M,, 4
converge to the probability measure (called the Kesten—McKay distribution)
with the density

1 d*(d—1)

(@ = [ Ml <vaydxdy.



