When Fourier analysis meets ergodic theory and additive combinatorics

Mariusz Mirek

Baby Steps Beyond the Horizon - School for Students

August 30, 2022

Supported by the NSF grant DMS-2154712.

Erdös-Turán conjecture (1936)

In 1936 Erdös and Turán realized that it ought to be possible to find arithmetic progressions of length k in any sufficiently dense set of integers.

- A set $E \subseteq \mathbb{N}$ is said to have positive upper Banach density if

$$
d(E)=\limsup _{N \rightarrow \infty} \frac{\#(E \cap[1, N])}{N}>0
$$

Conjecture (Erdös-Turán conjecture (1936))

Suppose that $E \subseteq \mathbb{N}$ has a positive upper Banach density. Then for any integer $k \geq 2$, there exist infinitely many arithmetic progressions:

$$
\{x, x+n, x+2 n, \ldots, x+k n\} \subset E
$$

Examples:
$\rightarrow d(q \mathbb{N}+r)=1 / q$, for some $q \in \mathbb{N}$ and $r \in\{0, \ldots, q-1\}$.
$\checkmark d(\mathbb{P})=0$, if \mathbb{P} is the set of primes, since $\#(\mathbb{P} \cap[1, N]) \sim \frac{N}{\log N}$.
$\checkmark d(E)=\frac{6}{\pi^{2}}>0$, if E is the set of all square-free integers, that is integers which are divisible by no perfect square other than 1 .

- $10=2 \cdot 5$ is square-free,
- $12=3 \cdot 4$ is not square-free, since $4=2^{2}$.

Szemerédi theorem

Theorem (Szemerédi theorem (1974))

Suppose that $E \subseteq \mathbb{N}$ has a positive upper Banach density. Then for any integer $k \geq 2$, there exist infinitely many arithmetic progressions:

$$
\{x, x+n, x+2 n, \ldots, x+k n\} \subset E .
$$

- In 1953 Roth proved Erdös-Turán conjecture for $k=3$ using classical Fourier methods.
- In 1974 Szemerédi proved Erdös-Turán conjecture for arbitrary integer $k \in \mathbb{N}$ using intricate arguments from combinatorics and graph theory.
- In 1977 Furstenberg used ergodic methods to give a conceptually new proof of Szemerédi's theorem using the multiple recurrence theorem.
- In 2001 Gowers gave a new quantitative proof of Szemerédi's theorem. Gowers developed the so-called higher order Fourier analysis.

Quantitative formulation of Szemerédi’s theorem

Definition

Let $r_{k}(N)$ denote the size of the largest subset of $\{1, \ldots, N\}$ containing no configuration of the form $\{x, x+n, x+2 n, \ldots, x+(k-1) n\}$ with $n \neq 0$. Theorem (Roth (1953), classical Fourier methods)
One has that

$$
r_{3}(N) \lesssim \frac{N}{\log \log N} .
$$

Theorem (Szemerédi (1974) and Furstenberg (1977))
Szemerédi's theorem as well as Furstenberg's theorem give only

$$
r_{k}(N)=o(N), \quad k \in \mathbb{N} .
$$

Theorem (Gowers (2001), higher order Fourier analysis)
For every $k \in \mathbb{N}$ there is $\gamma_{k}>0$ such that

$$
r_{k}(N) \lesssim \frac{N}{(\log \log N)^{\gamma_{k}}} .
$$

Finitary version of Roth theorem

Theorem (Roth's theorem (1953))
For every $\delta \in(0,1]$ there is $N \in \mathbb{N}$ such that every $A \subseteq \mathbb{Z}_{N}$ satisfying $\# A \geq \delta N$ contains (AP3) an arithmetic progression of length three.
Proof:
Let $\widehat{f}(\xi)=N^{-1} \sum_{m \in \mathbb{Z}_{N}} e^{-2 \pi i m \xi} f(m)$ denote the finite Fourier transform of a function $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ on \mathbb{Z}_{N}. Setting $\alpha=\widehat{\mathbb{1}_{A}}(0) \geq \delta$, one has

$$
\begin{aligned}
N^{-2} \#\left\{(a, d) \in \mathbb{Z}_{N}^{2}\right. & : a, a+d, a+2 d \in A\} \\
& =N^{-2} \sum_{x+y=2 z} \mathbb{1}_{A}(x) \mathbb{1}_{A}(y) \mathbb{1}_{A}(z) \\
& =\alpha^{3}+\sum_{\xi \in \mathbb{Z}_{N} \backslash\{0\}} \widehat{\mathbb{1}_{A}}(\xi)^{2} \widehat{\mathbb{1}_{A}}(-2 \xi) .
\end{aligned}
$$

- The left-hand side is the probability that x, y, z all belong to A if you choose them randomly to satisfy the equation $x+y=2 z$.
- Without the constraint that $x+y=2 z$ this probability would be α^{3}, since each of x, y and z would have a probability α of belonging to A.
- So the term α^{3} on the right-hand side can be thought of as "what one would expect", whereas the remainder is a measure of the effect of the dependence of x, y and z on each other.

The current state of the art

Author / Authors	$r_{3}(N) \lesssim$
Roth (1953)	$\frac{N}{\log \log N}$
Heath-Brown (1987) and Szemerédi (1990)	$\frac{N}{(\log N)^{c} \text { for } \operatorname{some} c>0}$
Bourgain (1999)	$\frac{N}{(\log N)^{1 / 2-o(1)}}$
Bourgain (2008)	$\frac{N}{(\log N)^{2 / 3-o(1)}}$
Sanders (2010)	$\frac{N}{(\log N)^{3 / 4-o(1)}}$
Sanders (2010)	$\frac{(\log \log N)^{6} N}{\log N}$
Bloom (2014)	$\frac{(\log \log N)^{4} N}{\log N}$
Schoen (2020)	$\frac{(\log \log N)^{3+o(1)} N}{\log N}$
Bloom and Sisask (2020)	$\frac{N}{(\log N)^{1+c} \text { for some } c>0}$

By Behrend (1946) we know that $r_{3}(N) \gtrsim N \exp \left(-c(\log N)^{1 / 2}\right)$ for some absolute $c>0$, so these results still leave much to be desired.

Measure-preserving systems

A measure-preserving system $(X, \mathcal{B}(X), \mu, T)$ is a σ-finite measure space $(X, \mathcal{B}(X), \mu)$ endowed with a measurable mapping $T: X \rightarrow X$, which preserves the measure μ, i.e. $\mu\left(T^{-1}[E]\right)=\mu(E)$ for all $E \in \mathcal{B}(X)$.

1. The integer shift system $(\mathbb{Z}, \mathbf{P}(\mathbb{Z}),|\cdot|, S)$ with $S: \mathbb{Z} \rightarrow \mathbb{Z}$ given by

$$
S(x):=x+1 .
$$

2. The circle rotation system $\left(\mathbb{T}, \mathcal{L}(\mathbb{T}), \mathrm{d} x, R_{\alpha}\right)$ with the rotation map $R_{\alpha}: \mathbb{T} \rightarrow \mathbb{T}$ by $R_{\alpha}(x):=x+\alpha(\bmod 1)$ for $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.
3. The circle-doubling system $\left(\mathbb{T}, \mathcal{L}(\mathbb{T}), \mathrm{d} x, D_{2}\right)$ with the doubling map $D_{2}: \mathbb{T} \rightarrow \mathbb{T}$ given by $D_{2}(x):=2 x(\bmod 1)$.
4. The continued fraction system $([0,1), \mathcal{L}([0,1)), \mu, T)$ with the Gauss measure

$$
\mu(A):=\frac{1}{\log 2} \int_{A} \frac{\mathrm{~d} x}{1+x},
$$

and continued fraction map $T:[0,1) \rightarrow[0,1)$ given by $T(0):=0$ and

$$
T(x):=\frac{1}{x} \quad(\bmod 1), \quad \text { when } x \neq 0
$$

Furstenberg's ideas and recurrence theorems

Theorem (Poincaré recurrence theorem (1890))
Given $(X, \mathcal{B}(X), \mu, T)$ if $\mu(X)<\infty$ and $E \in \mathcal{B}(X)$ with $\mu(E)>0$ then

$$
\mu\left(E \cap T^{-n}[E]\right)>0 \quad \text { for infinitely many } \quad n \in \mathbb{N} .
$$

- If a cloud of gas initially confined in the left compartment of a vessel is released into the right empty compartment, then after a sufficiently long time, the gas particles will return to the left compartment.
- Furstenberg's multiple recurrence theorem asserts that for every $k \in \mathbb{N}$

$$
\mu\left(E \cap T^{-n}[E] \cap T^{-2 n}[E] \cap \ldots \cap T^{-k n}[E]\right)>0 \quad \text { for some } \quad n \in \mathbb{N} .
$$

- Suppose that $E \subseteq \mathbb{N}$ has a positive upper Banach density. Then for any integer $k \geq 2$, we are looking for the configurations

$$
\{x, x+n, x+2 n, \ldots, x+k n\}=\left\{x, S^{n}(x), S^{2 n}(x), \ldots, S^{k n}(x)\right\} \subset E .
$$

where $S: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $S(x)=x+1$ for all $x \in \mathbb{Z}$.

- It is easy to see that it suffices to show that

$$
E \cap S^{-n}[E] \cap S^{-2 n}[E] \cap \ldots \cap S^{-k n}[E] \neq \emptyset
$$

Furtsenberg's proof of Szemerédi's theorem

Theorem (Furtsenberg theorem (1977))

Let (X, \mathcal{B}, μ, T) be a probability measure-preserving system $\mu(X)=1$ and $E \in \mathcal{B}(X)$ with $\mu(E)>0$ then for every $k \in \mathbb{N}$ we have

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(E \cap T^{-n}[E] \cap T^{-2 n}[E] \cap \ldots \cap T^{-k n}[E]\right)>0
$$

In particular, for every $k \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that

$$
\mu\left(E \cap T^{-n}[E] \cap T^{-2 n}[E] \cap \ldots \cap T^{-k n}[E]\right)>0
$$

Theorem (Furtsenberg correspondence principle)
Given $A \subseteq \mathbb{N}$ with $d(A)>0$ there exists a probability measure-preserving system (X, \mathcal{B}, μ, T) and a set $E \in \mathcal{B}(X)$ such that $\mu(E)=d(A)$ and

$$
\begin{aligned}
& 0<\mu\left(E \cap T^{-n}[E] \cap T^{-2 n}[E] \cap \ldots \cap T^{-k n}[E]\right) \\
& \leq d\left(A \cap S^{-n}[A] \cap S^{-2 n}[A] \cap \ldots \cap S^{-k n}[A]\right), \quad k \in \mathbb{N},
\end{aligned}
$$

where $S: \mathbb{Z} \rightarrow \mathbb{Z}$ is the shift operator defined by $S(x)=x+1$ for all $x \in \mathbb{Z}$.

Bergelson-Leibman theorem

Furstenberg's proof of Szemerédi's theorem was a major breakthrough in modern ergodic theory, which had also transformed the area of additive number theory and combinatorics as well as ergodic theory itself:

- partly because of the difficulty of Szemerédi's original proof;
- and partly because Furstenberg's proof has many natural extensions, which do not seem to follow from Szemerédi's approach. These include a polynomial Szemerédi theorem of Bergelson and Leibman:

Theorem (Bergelson and Leibman theorem (1996))

Given polynomials $P_{1}, \ldots, P_{k} \in \mathbb{Z}[\mathrm{n}]$ each with zero constant term suppose that $\mu(X)=1$ and $E \in \mathcal{B}(X)$ with $\mu(E)>0$, then one has

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(E \cap T^{-P_{1}(n)}[E] \cap T^{-P_{2}(n)}[E] \cap \ldots \cap T^{-P_{k}(n)}[E]\right)>0
$$

In particular, the subsets of integers with nonvanishing Banach density contain polynomial patterns of the form

$$
x, x+P_{1}(n), x+P_{2}(n), \ldots, x+P_{k}(n)
$$

Green-Tao theorem

Furstenberg's ergodic-theoretic proof of Szemerédi theorem was also the departure point for the modern additive combinatorics, where quantitative bounds for Szemerédi-type theorems play a central role.

- This line of investigations had been initiated by Gowers who introduced new ideas of the so-called higher order Fourier analysis.
- The latter concepts, in contrast to the ergodic qualitative approach, turned out to be very effective in obtaining quantitative bounds for long arithmetic progressions and resulted in many deep theorems:

Theorem (Green and Tao theorem (2004))

Suppose that $E \subseteq \mathbb{P}$ has a positive upper Banach density in the primes \mathbb{P}, i.e.

$$
\limsup _{N \rightarrow \infty} \frac{\#(E \cap[1, N])}{\#(\mathbb{P} \cap[1, N])}>0
$$

Then for any integer $k \geq 2$, there exist infinitely many arithmetic progressions:

$$
\{x, x+n, x+2 n, \ldots, x+k n\} \subset E
$$

The longest known arithmetic progression in the primes

- The longest and largest known AP- k is an AP-27, it was found on September 23, 2019 by Rob Gahan with an AMD R9 290 GPU.

$$
a_{n}=224584605939537911+81292139 \cdot 223092870 \cdot n
$$

where $n=0,1, \ldots, 26$.

- The first known AP-26 was found on April 12, 2010 by Benoãt Perichon on a PlayStation 3 with software by Jarosław Wróblewski and Geoff Reynolds:

$$
a_{n}=43142746595714191+23681770 \cdot 223092870 \cdot n
$$

where $n=0,1, \ldots, 25$.

- However, on January 18, 2007 Jarosław Wróblewski:

$$
a_{n}=468395662504823+205619 \cdot 223092870 \cdot n
$$

where $n=0,1, \ldots, 23$ found the first AP-24. For this Wróblewski used a total of 75 computers: 15: 64-bit Athlons; 15: dual core 64-bit Pentium D 805; 30: 32-bit Athlons 2500; and 15: Durons 900.

(AP3) in the Piatetski-Shapiro primes

- In 1953 Piatetski-Shapiro considered the following subset of the primes

$$
\mathbb{P}_{\gamma}=\mathbb{P} \cap\left\{\left\lfloor n^{1 / \gamma}\right\rfloor: n \in \mathbb{N}\right\}
$$

and established the following asymptotic formula

$$
\#\left(\mathbb{P}_{\gamma} \cap[1, N]\right) \sim \frac{N^{\gamma}}{\log N}, \quad \text { as } \quad N \rightarrow \infty
$$

$$
\text { for } \gamma \in\left(\frac{11}{12}, 1\right), \text { where }\left(\frac{11}{12} \approx 0,916 \ldots\right)
$$

Theorem (Roth's theorem for \mathbb{P}_{γ}, (M.M. 2015))
Assume that $\gamma \in(71 / 72,1),(71 / 72 \approx 0,9861 \ldots)$. Then every $A \subseteq \mathbb{P}_{\gamma}$ with positive relative upper density, i.e.

$$
\limsup _{n \rightarrow \infty} \frac{|A \cap[1, n]|}{\left|\mathbb{P}_{\gamma} \cap[1, n]\right|}>0
$$

contains a non-trivial three-term arithmetic progression.

- Green-Tao theorem does not settle whether \mathbb{P}_{γ} contains non-trivial arithmetic progressions of length at least three, since

$$
\limsup _{N \rightarrow \infty} \frac{\#\left(\mathbb{P}_{\gamma} \cap[1, N]\right)}{\#(\mathbb{P} \cap[1, N])}=\limsup _{N \rightarrow \infty} \frac{N^{\gamma}}{\log N} \cdot \frac{\log N}{N}=\limsup _{N \rightarrow \infty} N^{\gamma-1}=0
$$

Ergodic averages as a tool to detect recurrent points

For a measurable function $f \in L^{0}(X)$ define the ergodic average by

$$
A_{N} f(x):=\frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n} x\right), \quad \text { for } \quad x \in X
$$

- If we set $f(x)=\mathbb{1}_{E}(x)$, then

$$
A_{N} \mathbb{1}_{E}(x)=\frac{1}{N} \#\left\{0 \leq n<N: T^{n} x \in E\right\}
$$

- Norm or pointwise convergence of $A_{N} f$ can be used to reprove the Poincaré recurrence theorem: if $\mu(X)=1$, and $\mu(E)>0$, then

$$
\mu\left(E \cap T^{-n}[E]\right)>0 \quad \text { for some } \quad n \in \mathbb{N} .
$$

- In the early 1930's von Neumann and Birkhoff proved that for every $1 \leq p<\infty$ and every $f \in L^{p}(X)$ there exists $f^{*} \in L^{p}(X)$ such that

$$
\lim _{N \rightarrow \infty} A_{N} f(x)=f^{*}(x)
$$

for almost every $x \in X$ and in $L^{p}(X)$ norm.

Birkhoff's ergodic theorem

To establish that for every $1 \leq p<\infty$ and every $f \in L^{p}(X)$ there exists $f^{*} \in L^{p}(X)$ such that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} A_{N} f(x)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right)=f^{*}(x) \tag{1}
\end{equation*}
$$

one can proceed in two steps:

- Step 1. Quantitative version of ergodic theorem

$$
\begin{equation*}
\left\|\sup _{N \in \mathbb{N}}\left|A_{N} f\right|\right\|_{L^{p}(X)} \lesssim\|f\|_{L^{p}(X)} \quad \text { for } \quad p \in(1, \infty] \tag{2}
\end{equation*}
$$

The bounds in (2) follow from the Hardy-Littlewood maximal inequality

$$
\left\|\sup _{N \in \mathbb{N}}\left|\frac{1}{N} \sum_{n=1}^{N} f(x-n)\right|\right\|_{\ell^{p}(\mathbb{Z})} \lesssim\|f\|_{\ell^{p}(X)}, \quad \text { for } \quad p \in(1, \infty]
$$

which is $A_{N} f$ with the shift operator $T(x)=x-1$ in (1).

- Step 2. Pointwise convergence on a dense class of functions in $L^{p}(X)$.

Convergence on a dense class

$$
A_{N} f(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right)
$$

- $\mathbf{I}_{T}=\left\{f \in L^{2}(X): f \circ T=f\right\}$. If $f \in \mathbf{I}_{T}$, then

$$
A_{N} f=f
$$

μ-almost everywhere.

- $\mathbf{J}_{T}=\left\{g \circ T-g: g \in L^{2}(X) \cap L^{\infty}(X)\right\}$. If $f \in \mathbf{J}_{T}$, then by telescoping

$$
\left|A_{N} f(x)\right|=\frac{1}{N}\left|\sum_{n=1}^{N} g\left(T^{n+1} x\right)-g\left(T^{n} x\right)\right|=\frac{1}{N}\left|g\left(T^{N+1} x\right)-g(T x)\right|_{N \rightarrow \infty}^{\longrightarrow} 0
$$

- $\mathbf{I}_{T} \oplus \mathbf{J}_{T}$ is dense in $L^{2}(X)$.

Bourgain's pointwise ergodic theorem

In the early 1980's Bellow and Furstenberg asked independently about the poinwise convergence for polynomial ergodic averages

$$
A_{N}^{P} f(x):=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{P(n)} x\right) \quad \text { for } \quad x \in X
$$

where $P \in \mathbb{Z}[\mathrm{n}]$ is a polynomial of degree >1.

- Furstenberg was motivated by the result of Sárközy: $S \subseteq \mathbb{Z}$ has positive upper Banach density, then there are $x, n \in \mathbb{N}$ such that $x, x+n^{2} \in S$.
- Furstenberg proved norm convergence for $A_{N}^{P} f$ and deduced the polynomial Poincaré recurrence theorem: if $\mu(X)<\infty$ and $E \in \mathcal{B}(X)$ with $\mu(E)>0$, then $\mu\left(E \cap T^{-P(n)}[E]\right)>0$ for some $n \in \mathbb{N}$.
Bellow and Furstenberg question was very hard. Even for $P(n)=n^{2}$, since $(n+1)^{2}-n^{2}=2 n+1$. For overcoming this problem, Bourgain used the ideas from the circle method of Hardy and Littlewood to show:
- $L^{p}(X)$ boundedness of the maximal function for any $1<p \leq \infty$.
- Given an increasing sequence $\left(N_{j}: j \in \mathbb{N}\right)$, for each $J \in \mathbb{N}$ one has

$$
\left(\sum_{j=0}^{J}\left\|\sup _{N_{j} \leq N<N_{j+1}}\left|A_{N}^{P} f-A_{N_{j}}^{P} f\right|\right\|_{L^{2}(X)}^{2}\right)^{1 / 2} \leq o\left(J^{1 / 2}\right)\|f\|_{L^{2}(X)}
$$

The current state of the art

Let $(X, \mathcal{B}(X), \mu, T)$ be a probability measure-preserving system $\mu(X)=1$. Let $P_{1}, \ldots, P_{k} \in \mathbb{Z}[\mathbf{n}]$, and $f_{1}, \ldots, f_{k} \in L^{\infty}(X)$. Recall that

$$
\begin{equation*}
A_{N}^{P_{1}, \ldots, P_{k}}\left(f_{1}, \ldots, f_{k}\right)(x)=\frac{1}{N} \sum_{n=1}^{N} f_{1}\left(T^{P_{1}(n)} x\right) \ldots f_{k}\left(T^{P_{k}(n)} x\right) \tag{3}
\end{equation*}
$$

Norm convergence of (3) on $L^{2}(X)$:

- Furstenberg (1977): $k=2$ with $P_{1}(n)=a n, P_{2}(n)=b n, a, b \in \mathbb{Z}$.
- Furstenberg-Weiss (1996): $k=2$ with $P_{1}(n)=n$ and $P_{2}(n)=n^{2}$.
- Host and Kra (2002) and independently Ziegler (2004): any $k \in \mathbb{N}$ and arbitrary linear polynomials $P_{i}(n)=a_{i} n$ with $a_{1}, \ldots, a_{k} \in \mathbb{Z}$.
- Leibman (2005): for any $k \in \mathbb{N}$ and arbitrary $P_{1}, \ldots, P_{k} \in \mathbb{Z}[\mathbf{n}]$.

Pointwise convergence of (3) on $L^{p}(X)$:

- Bourgain (1990): for $k=2$ with $P_{1}(n)=a n, P_{2}(n)=b n, a, b \in \mathbb{Z}$.

Furstenberg-Bergelson-Leibman conjecture

One of the central open problems in pointwise ergodic theory (from the mid 1980's) is a conjecture of Furstenberg-Bergelson-Leibman:

Theorem (Furstenberg-Bergelson-Leibman conjecture)

Let \mathbb{G} be a nilpotent group of measure preserving transformations of a probability space $(X, \mathcal{B}(X), \mu)$. Let $P_{j, i} \in \mathbb{Z}[\mathrm{n}]$ be polynomials and $T_{1}, \ldots, T_{d} \in \mathbb{G}$ and $f_{1}, \ldots, f_{m} \in L^{\infty}(X)$. Does the limit of the averages

$$
\begin{equation*}
\frac{1}{N} \sum_{n=1}^{N} f_{1}\left(T_{1}^{P_{1,1}(n)} \cdots T_{d}^{P_{1, d}(n)} x\right) \cdot \ldots \cdot f_{m}\left(T_{1}^{P_{m, 1}(n)} \cdots T_{d}^{P_{m, d}(n)} x\right) \tag{4}
\end{equation*}
$$

exist μ-almost everywhere on X as $N \rightarrow \infty$?

- The norm convergence in $L^{2}(X)$ for the averages (4) was established in the nilpotent setting by M. Walsh in 2012 .
- Bergelson and Leibman showed that $L^{2}(X)$ norm convergence for (4) may fail if \mathbb{G} is a solvable group.
- The nilpotent setting is probably the most general setting where the conjecture of Furstenberg-Bergelson-Leibman might be true.

Recent contribution to the nilpotent setting

Linear and nilpotent variant of the Furstenberg-Bergelson-Leibman problem can be summarize as follows:

Theorem (M., Ionescu, Magyar, and Szarek (2021))

Let $(X, \mathcal{B}(X), \mu)$ be a σ-finite space and let $T_{1}, \ldots, T_{d}: X \rightarrow X$ be a family of invertible and measure preserving transformations satisfying

$$
\left[\left[T_{i}, T_{j}\right], T_{k}\right]=\text { Id } \quad \text { for all } \quad 1 \leq i \leq j \leq k \leq d .
$$

Then for every polynomials $P_{1}, \ldots, P_{d} \in \mathbb{Z}[\mathrm{n}]$ and every $f \in L^{p}(X)$ with $1<p<\infty$ the averages

$$
\frac{1}{N} \sum_{n=1}^{N} f\left(T_{1}^{P_{1}(n)} \cdots T_{d}^{P_{d}(n)} x\right)
$$

converge for μ-almost every $x \in X$ and in $L^{p}(X)$ norm as $N \rightarrow \infty$.

- One can think that T_{1}, \ldots, T_{d} belong to a nilpotent group of step two of measure preserving mappings of a σ-finite space $(X, \mathcal{B}(X), \mu)$.

Recent contribution to the bilinear setting

Thirty years after Bourgain's pointwise bilinear ergodic theorem for the averages with linear orbits

$$
A_{N}^{a \mathrm{n}, b \mathrm{n}}(f, g)(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{a n} x\right) g\left(T^{b n} x\right) \quad a, b \in \mathbb{Z}
$$

jointly with Ben Kruse and Terry Tao we established the following theorem. Theorem (M., Krause, and Tao, (2020))
Let $(X, \mathcal{B}(X), \mu, T)$ be an invertibe σ-finite measure-preserving system, let $P \in \mathbb{Z}[\mathrm{n}]$ with $\operatorname{deg}(P) \geq 2$, and let $f \in L^{p_{1}}(X)$ and $g \in L^{p_{2}}(X)$ for some $p_{1}, p_{2} \in(1, \infty)$ with

$$
\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p} \leq 1 .
$$

Then the Furstenberg-Weiss averages

$$
A_{N}^{\mathrm{n}, P(\mathrm{n})}(f, g)(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right) g\left(T^{P(n)} x\right)
$$

converge for μ-almost every $x \in X$ and in $L^{p}(X)$ norm as $N \rightarrow \infty$.

Key ideas

The proof of pointwise convergence for

$$
A_{N}^{\mathrm{n}, P(\mathrm{n})}(f, g)(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right) g\left(T^{P(n)} x\right)
$$

is quite intricate, and relies on several deep results in the literature:

- the Ionescu-Wainger multiplier theorem (discrete Littlewood-Paley theory and paraproduct theory) - (HA)\&(NT);
- The circle method of Hardy and Littlewood - (NT);
- the inverse theory of Peluse and Prendeville - (CO)\&(NT);
- Hahn-Banach separation theorem - (FA);
- L^{p}-improving estimates of Han-Kovač-Lacey-Madrid-Yang (derived from the Vinogradov mean value theorem) - (HA)\&(NT);
- Rademacher-Menshov argument combined with Khinchine's inequality - (HA) \& (FA) \& (PR);
- $L^{p}(\mathbb{R})$ bounds for a shifted square function - (HA);
- bounded metric entropy argument from Banach space theory(CO) \& (FA) \& (PR);
- van der Corput type estimates in the p-adic fields - (HA)\&(NT).

Inverse theorem of Peluse and Prendiville

An important ingredient in the proof is the inverse theorem of Peluse, which can be thought of as a counterpart of Weyl's inequality:

Theorem (Peluse, (2019/2020))

Let $m \geq 2$ and $P_{1}, \ldots, P_{m} \in \mathbb{Z}[\mathrm{n}]$ each having zero constant term such that $\operatorname{deg} P_{1}<\ldots<\operatorname{deg} P_{m}$. Let $N \in \mathbb{N}$ and $\delta \in(0,1)$ and assume that functions $f_{0}, f_{1}, \ldots, f_{m}: \mathbb{Z} \rightarrow \mathbb{C}$ are supported on $\left[-N_{0}, N_{0}\right]$ for some $N_{0} \simeq N^{\operatorname{deg} P_{m}}$, and $\left\|f_{0}\right\|_{L^{\infty}(\mathbb{Z})},\left\|f_{1}\right\|_{L^{\infty}(\mathbb{Z})}, \ldots,\left\|f_{m}\right\|_{L^{\infty}(\mathbb{Z})} \leq 1$, and suppose that

$$
\left\|\frac{1}{N} \sum_{n=1}^{N} f_{0}(x) f_{1}\left(x-P_{1}(n)\right) \cdots f_{m}\left(x-P_{m}(n)\right)\right\|_{L_{x}^{1}(\mathbb{Z})} \geq \delta N^{\operatorname{deg} P_{m}}
$$

Then there are $1 \leq q \lesssim \delta^{-O(1)}$ and $\delta^{O(1)} N^{\operatorname{deg} P_{1}} \lesssim M \leq N^{\operatorname{deg} P_{1}}$ such that

$$
\left\|\frac{1}{M} \sum_{y=1}^{M} f_{1}(x+q y)\right\|_{L_{x}^{1}(\mathbb{Z})} \gtrsim \delta^{O(1)} N^{\operatorname{deg} P_{m}}
$$

provided that $N \gtrsim \delta^{-O(1)}$.

Quantitative polynomial Szemerédi's

Let $r_{P_{1}, \ldots, P_{m}}(N)$ denote the size of the largest subset of $\{1, \ldots, N\}$ containing no configuration of the form $x, x+P_{1}(n), \ldots, x+P_{m}(n)$ with $n \neq 0$.

- Berglson and Leibman showed proving polynomial multiple recurrence theorem that

$$
r_{P_{1}, \ldots, P_{m}}(N)=o_{P_{1}, \ldots, P_{m}}(N),
$$

whenever $P_{1}, \ldots, P_{m} \in \mathbb{Z}[\mathrm{n}]$ and each having zero constant term.
Theorem (Gowers (2001), higher order Fourier analysis)
If $P_{1}(n)=n, \ldots, P_{m}(n)=(m-1) n$ for every $m \in \mathbb{N}$ then there is $\gamma_{m}>0$ such that

$$
r_{P_{1}, \ldots, P_{m}}(N) \lesssim \frac{N}{(\log \log N)^{\gamma_{m}}} .
$$

- No bounds were known in general for the polynomial Szemerédi's theorem until a series of recent papers of Peluse and Prendiville.
- Peluse showed that there is a constant $\gamma_{P_{1}, \ldots, P_{m}}>0$ such that

$$
r_{P_{1}, \ldots, P_{m}}(N) \lesssim P_{P_{1}, \ldots, P_{m}} \frac{N}{(\log \log N)^{\gamma_{P_{1}}, \ldots, P_{m}}}
$$

answering a question posed by Gowers.

Commutative Furstenberg-Bergelson-Leibman conjecture

Ongoing project (Krause, M., Peluse, and Wright (2021))

Let $(X, \mathcal{B}(X), \mu)$ be a probability space equipped with commuting invertible measure-preserving maps $T_{1}, \ldots, T_{k}: X \rightarrow X$. Consider $P_{1}, \ldots, P_{k} \in \mathbb{Z}[\mathrm{n}]$ with distinct degrees and $f_{1}, \ldots, f_{k} \in L^{\infty}(X)$. It is expected that the averages

$$
A_{N}^{P_{1}, \ldots, P_{k}}\left(f_{1}, \ldots, f_{k}\right)(x)=\frac{1}{N} \sum_{n=1}^{N} f_{1}\left(T_{1}^{P_{1}(n)} x\right) \ldots f_{k}\left(T_{k}^{P_{k}(n)} x\right)
$$

converge for μ-almost every $x \in X$.

- There is some hope in the case when $T_{1}=\ldots=T_{k}=T$.
- We also have some promising thoughts for the following averages

$$
\frac{1}{N} \sum_{n=1}^{N} f\left(T_{1}^{n} x\right) g\left(T_{2}^{n^{2}} x\right)
$$

that correspond to the configurations: $(x, y),(x+n, y),\left(x, y+n^{2}\right) \in \mathbb{Z}^{2}$.

Thank you!

