A Priori Bounds and Degeneration of Herman Rings

Willie Rush Lim

Email: willie.lim@stonybrook.edu

Stony Brook University
Advisor: Dzmitry Dudko

Rotation domains

Let $f \in$ Rat $_{d}$. A maximal invariant domain $U \subset \widehat{\mathbb{C}}$ is a rotation domain if $\left.f\right|_{U}$ is conjugate to a rigid rotation. There are 2 types:
(1) U is simply connected, i.e. a Siegel disk;
(2) U is an annulus, i.e. a Herman ring.

Rotation domains

Let $f \in$ Rat $_{d}$. A maximal invariant domain $U \subset \widehat{\mathbb{C}}$ is a rotation domain if $\left.f\right|_{u}$ is conjugate to a rigid rotation. There are 2 types:
(1) U is simply connected, i.e. a Siegel disk;
(2) U is an annulus, i.e. a Herman ring.

The two can be converted into one another via quasiconformal surgery. (Shishikura '87)

Bounded type rotation domains

Assume from now on that $\theta \in(0,1)$ is an irrational number of bounded type, i.e. there is some $B \in \mathbb{N}$ such that $\sup _{n} a_{n} \leq B$ where $\theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}$.

Bounded type rotation domains

Assume from now on that $\theta \in(0,1)$ is an irrational number of bounded type,
i.e. there is some $B \in \mathbb{N}$ such that $\sup _{n} a_{n} \leq B$ where $\theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}$.

Theorem (Zhang '11)
Every invariant Siegel disk of a map $f \in R a t_{d}$ with rotation number θ is a $K(d, B)$-quasidisk containing a critical point on the boundary.

Bounded type rotation domains

Assume from now on that $\theta \in(0,1)$ is an irrational number of bounded type,
i.e. there is some $B \in \mathbb{N}$ such that $\sup _{n} a_{n} \leq B$ where $\theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}$.

Theorem (Zhang '11)

Every invariant Siegel disk of a map $f \in R a t_{d}$ with rotation number θ is a $K(d, B)$-quasidisk containing a critical point on the boundary.

Applying Shishikura's surgery, we have:

Corollary

Every boundary component of an invariant Herman ring of a map $f \in R a t_{d}$ with rotation number θ and modulus μ is a $K(d, B, \mu)$-quasicircle containing a critical point.

$\mathcal{H}_{d_{0}, d_{\infty}, \theta}$

Denote by $\mathcal{H}_{d_{0}, d_{\infty}, \theta}$ the space of all maps $f \in \operatorname{Rat}_{d_{0}+d_{\infty}-1}$ such that
(I) the only non-repelling periodic points are superattracting fixed points 0 and ∞ of criticalities $d_{0} \geq 2$ and $d_{\infty} \geq 2$ respectively;
(II) f has an invariant Herman ring \mathbb{H} of rotation number θ;
(III) \mathbb{H} separates 0 and ∞;
(IV) every critical point of f other than 0 and ∞ lies on $\partial \mathbb{H}$.

$\mathcal{H}_{d_{0}, d_{\infty}, \theta}$

Denote by $\mathcal{H}_{d_{0}, d_{\infty}, \theta}$ the space of all maps $f \in \operatorname{Rat}_{d_{0}+d_{\infty}-1}$ such that
(I) the only non-repelling periodic points are superattracting fixed points 0 and ∞ of criticalities $d_{0} \geq 2$ and $d_{\infty} \geq 2$ respectively;
(II) f has an invariant Herman ring \mathbb{H} of rotation number θ;
(III) \mathbb{H} separates 0 and ∞;
(IV) every critical point of f other than 0 and ∞ lies on $\partial \mathbb{H}$.

Proposition

$\mathcal{H}_{d_{0}, d_{\infty}, \theta}$ consists of all rational maps that can be obtained from Shishikura surgery out of a pair of polynomials P_{0}, P_{∞} such that for $\star \in\{0, \infty\}$,

- $\operatorname{deg}\left(P_{\star}\right)=d_{\star}$;
- P_{\star} has an invariant Siegel disk Z_{\star};
- $\operatorname{rot}\left(Z_{0}\right)=\theta$ and $\operatorname{rot}\left(Z_{\infty}\right)=1-\theta$;
- all free critical points of P_{\star} lie in ∂Z_{\star}.

A priori bounds

It turns out that for $\mathcal{H}_{d_{0}, d_{\infty}, \theta}$, we can remove the dependence on the modulus μ.

Theorem (WRL)

The boundary components of the Herman ring of every rational map in $\mathcal{H}_{d_{0}, d_{\infty}, \theta}$ are $K\left(d_{0}, d_{\infty}, B\right)$-quasicircles.

Herman curves

Definition

A Herman curve \mathbf{H} of a rational map f is a forward invariant Jordan curve where
(1) $\left.f\right|_{\boldsymbol{H}}$ is conjugate to an irrational rotation, and
(2) H is not contained in the closure of any rotation domain.

Additionally, \mathbf{H} is called a Herman quasicircle if it is a quasicircle.

Herman curves

Definition

A Herman curve \mathbf{H} of a rational map f is a forward invariant Jordan curve where
(1) $\left.f\right|_{\mathrm{H}}$ is conjugate to an irrational rotation, and
(2) \mathbf{H} is not contained in the closure of any rotation domain.

Additionally, \mathbf{H} is called a Herman quasicircle if it is a quasicircle.

Trivial example:
There is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle \mathbb{T} is a Herman curve of rotation number θ for the map

$$
f_{\theta}(z)=\zeta_{\theta} z^{2} \frac{z-3}{1-3 z}
$$

Herman curves

Definition

A Herman curve \mathbf{H} of a rational map f is a forward invariant Jordan curve where
(1) $\left.f\right|_{\mathrm{H}}$ is conjugate to an irrational rotation, and
(2) \mathbf{H} is not contained in the closure of any rotation domain.

Additionally, \mathbf{H} is called a Herman quasicircle if it is a quasicircle.

Trivial example:
There is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle \mathbb{T} is a Herman curve of rotation number θ for the map

$$
f_{\theta}(z)=\zeta_{\theta} z^{2} \frac{z-3}{1-3 z} .
$$

Question: Can non-trivial Herman curves exist?

Degeneration of Herman rings

Consider the limit space

$$
\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}:=\overline{\mathcal{H}_{d_{0}, d_{\infty}, \theta}} \backslash \mathcal{H}_{d_{0}, d_{\infty}, \theta} \subset \operatorname{Rat}_{d_{0}+d_{\infty}-1}
$$

Degeneration of Herman rings

Consider the limit space

$$
\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}:=\overline{\mathcal{H}_{d_{0}, d_{\infty}, \theta}} \backslash \mathcal{H}_{d_{0}, d_{\infty}, \theta} \subset \operatorname{Rat}_{d_{0}+d_{\infty}-1}
$$

Corollary

Every $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ has a Herman quasicircle of rotation number θ.

Degeneration of Herman rings

Consider the limit space

$$
\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}:=\overline{\mathcal{H}_{d_{0}, d_{\infty}, \theta}} \backslash \mathcal{H}_{d_{0}, d_{\infty}, \theta} \subset \operatorname{Rat}_{d_{0}+d_{\infty}-1}
$$

Corollary

Every $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ has a Herman quasicircle of rotation number θ.

Herman ring of $f \in \mathcal{H}_{4,3, \theta}$

Herman quasicircle of $f \in \mathcal{H}_{4,3, \theta}^{\partial}$

Existence

Let $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$. Endow its Herman quasicircle \mathbf{H} with the combinatorial metric, i.e. the pullback of the normalized Euclidean metric under the linearization of f.

The combinatorics of $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ is determined by the criticality and the relative combinatorial position of its free critical points along \mathbf{H}.

Existence

Let $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$. Endow its Herman quasicircle \mathbf{H} with the combinatorial metric, i.e. the pullback of the normalized Euclidean metric under the linearization of f.

The combinatorics of $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ is determined by the criticality and the relative combinatorial position of its free critical points along \mathbf{H}.

Theorem (WRL)

Given any prescribed combinatorics, there exists a rational map in $\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ that realizes such combinatorics.

Existence

Let $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$. Endow its Herman quasicircle \mathbf{H} with the combinatorial metric, i.e. the pullback of the normalized Euclidean metric under the linearization of f.

The combinatorics of $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ is determined by the criticality and the relative combinatorial position of its free critical points along \mathbf{H}.

Theorem (WRL)

Given any prescribed combinatorics, there exists a rational map in $\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ that realizes such combinatorics.

Sketch of proof:

| 1. | Thurston-type result for
 Herman rings (Wang '12) | \Rightarrow | $\exists f_{1} \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$ having a Herman ring with
 combinatorics similar to the chosen one; |
| :---: | :---: | :--- | :---: | :---: |
| 2. | QC deformation | \Rightarrow | \exists a normalized family $\left\{f_{t}\right\}_{0<t \leq 1}$ in $\mathcal{H}_{d_{0}, d_{\infty}, \theta}$
 with the same combinatorics but mod $\rightarrow 0$ |
| 3. | a priori bounds | \Rightarrow | $\exists f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ such that
 $f_{t} \rightarrow f$ subsequentially as $t \rightarrow 0$. |

Non-trivial examples of golden mean Herman curves

How to prove a priori bounds?

Let H be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$. Endow H with the combinatorial metric.

How to prove a priori bounds?

Let H be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$. Endow H with the combinatorial metric.
$I=$ an interval in H of (combinatorial) length $|I|<0.1$. $10 I=$ the interval of length $10|I|$ having the same midpoint as I. $W_{10}(I)=$ the extremal width of curves connecting I and $H \backslash 10 I$.

How to prove a priori bounds?

Let H be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$. Endow H with the combinatorial metric.
$I=$ an interval in H of (combinatorial) length $|I|<0.1$.
$10 I=$ the interval of length $10|I|$ having the same midpoint as I. $W_{10}(I)=$ the extremal width of curves connecting I and $H \backslash 10 I$.

How to prove a priori bounds?

Let H be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$. Endow H with the combinatorial metric.
$I=$ an interval in H of (combinatorial) length $|I|<0.1$.
$10 I=$ the interval of length $10|I|$ having the same midpoint as I.
$W_{10}(I)=$ the extremal width of curves connecting I and $H \backslash 10 I$.

To prove a priori bounds, it is sufficient to find some $K=K\left(d_{0}, d_{\infty}, B\right)>0$ such that every interval $I \subset H$ satisfies $W_{10}(I)<K$.

Amplification

Our goal is reduced to showing:

Theorem

There is some $K>0$ and $0<\epsilon<1$ depending only on d_{0}, d_{∞}, B such that if there is an interval $I \subset H$ with length $|I|<\epsilon$ and width $W_{10}(I) \geq K$, then
there is another interval $J \subset H$ with length $|J|<\epsilon$ and width $W_{10}(J) \geq 2 W_{10}(I)$.

Amplification

Our goal is reduced to showing:

Theorem

There is some $K>0$ and $0<\epsilon<1$ depending only on d_{0}, d_{∞}, B such that if there is an interval $I \subset H$ with length $|I|<\epsilon$ and width $W_{10}(I) \geq K$, then
there is another interval $J \subset H$ with length $|J|<\epsilon$ and width $W_{10}(J) \geq 2 W_{10}(I)$.

The proof of such uses the near-degenerate regime ${ }^{1}$. Many of our steps are inspired by Kahn-Lyubich '05, Kahn '06, and D. Dudko-Lyubich '22.

[^0]
Amplification

Our goal is reduced to showing:

Theorem

There is some $K>0$ and $0<\epsilon<1$ depending only on d_{0}, d_{∞}, B such that if there is an interval $I \subset H$ with length $|I|<\epsilon$ and width $W_{10}(I) \geq K$, then
there is another interval $J \subset H$ with length $|J|<\epsilon$ and width $W_{10}(J) \geq 2 W_{10}(I)$.

The proof of such uses the near-degenerate regime ${ }^{1}$. Many of our steps are inspired by Kahn-Lyubich '05, Kahn '06, and D. Dudko-Lyubich '22.

Main challenges:

- Both sides of H are dynamically nontrivial (unlike the boundary of Siegel disks);
- Lack of positive entropy (unlike primitively renormalizable quadratic maps);
- Intervals in H are not perfectly invariant (unlike little Julia sets in PL renorm.);
- Arbitrary number of critical points and combinatorics.

[^1]
Open questions

(1) For $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$, is it true that $\operatorname{Leb} J(f)=0$? $\operatorname{dim}_{H} J(f)=2$?

Open questions

(1) For $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$, is it true that $\operatorname{Leb} J(f)=0$? $\operatorname{dim}_{H} J(f)=2$?
(3) Can we describe $\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ when θ is of unbounded type?

Open questions

(1) For $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$, is it true that $\operatorname{Leb} J(f)=0$? $\operatorname{dim}_{H} J(f)=2$?
(3) Can we describe $\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ when θ is of unbounded type?
\Rightarrow For $d_{0}=d_{\infty}=2$ and high type θ, we have smooth Herman curves by Fei Yang.

Open questions

(1) For $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$, is it true that $\operatorname{Leb} J(f)=0$? $\operatorname{dim}_{H} J(f)=2$?
(2) Can we describe $\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ when θ is of unbounded type?
\Rightarrow For $d_{0}=d_{\infty}=2$ and high type θ, we have smooth Herman curves by Fei Yang.

- Is a limit of degenerating Herman rings always a Herman curve?

Open questions

(1) For $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$, is it true that $\operatorname{Leb} J(f)=0$? $\operatorname{dim}_{H} J(f)=2$?
(3) Can we describe $\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ when θ is of unbounded type?
\Rightarrow For $d_{0}=d_{\infty}=2$ and high type θ, we have smooth Herman curves by Fei Yang.

- Is a limit of degenerating Herman rings always a Herman curve?
- Is every Herman curve a limit of degenerating Herman rings?

Open questions

(1) For $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$, is it true that $\operatorname{Leb} J(f)=0$? $\operatorname{dim}_{H} J(f)=2$?
(3) Can we describe $\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ when θ is of unbounded type?
\Rightarrow For $d_{0}=d_{\infty}=2$ and high type θ, we have smooth Herman curves by Fei Yang.

- Is a limit of degenerating Herman rings always a Herman curve?
- Is every Herman curve a limit of degenerating Herman rings?
\Rightarrow For $\mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$, this follows from combinatorial rigidity. (in progress)

Thank you!

[^0]: ${ }^{1}$ This includes the non-intersecting principle, quasi-additivity law, covering lemma, and canonical weighted arc diagrams.

[^1]: ${ }^{1}$ This includes the non-intersecting principle, quasi-additivity law, covering lemma, and canonical weighted arc diagrams.

