A Priori Bounds and Degeneration of Herman Rings

Willie Rush Lim

Email: willie.lim@stonybrook.edu

Stony Brook University

Advisor: Dzmitry Dudko

Rotation domains

Let $f \in \operatorname{Rat}_d$. A maximal invariant domain $U \subset \hat{\mathbb{C}}$ is a rotation domain if $f|_U$ is conjugate to a rigid rotation. There are 2 types:

- U is simply connected, i.e. a Siegel disk;
- **2** U is an annulus, i.e. a Herman ring.

Rotation domains

Let $f \in \operatorname{Rat}_d$. A maximal invariant domain $U \subset \hat{\mathbb{C}}$ is a rotation domain if $f|_U$ is conjugate to a rigid rotation. There are 2 types:

- U is simply connected, i.e. a Siegel disk;
- **2** U is an annulus, i.e. a Herman ring.

The two can be converted into one another via quasiconformal surgery. (Shishikura '87)

Bounded type rotation domains

Assume from now on that $\theta \in (0, 1)$ is an irrational number of bounded type, i.e. there is some $B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where $\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$.

Bounded type rotation domains

Assume from now on that $\theta \in (0, 1)$ is an irrational number of bounded type, i.e. there is some $B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where $\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$.

Theorem (Zhang '11)

Every invariant Siegel disk of a map $f \in Rat_d$ with rotation number θ is a K(d, B)-quasidisk containing a critical point on the boundary.

Assume from now on that $\theta \in (0, 1)$ is an irrational number of bounded type, i.e. there is some $B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where $\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$.

Theorem (Zhang '11)

Every invariant Siegel disk of a map $f \in Rat_d$ with rotation number θ is a K(d, B)-quasidisk containing a critical point on the boundary.

Applying Shishikura's surgery, we have:

Corollary

Every boundary component of an invariant Herman ring of a map $f \in Rat_d$ with rotation number θ and modulus μ is a $K(d, B, \mu)$ -quasicircle containing a critical point.

$\mathcal{H}_{d_0,d_\infty,\theta}$

Denote by $\mathcal{H}_{d_0,d_\infty,\theta}$ the space of all maps $f\in\mathsf{Rat}_{d_0+d_\infty-1}$ such that

- (1) the only non-repelling periodic points are superattracting fixed points 0 and ∞ of criticalities $d_0 \ge 2$ and $d_{\infty} \ge 2$ respectively;
- (II) *f* has an invariant Herman ring \mathbb{H} of rotation number θ ;
- (III) \mathbb{H} separates 0 and ∞ ;
- (IV) every critical point of f other than 0 and ∞ lies on $\partial \mathbb{H}$.

$\mathcal{H}_{d_0,d_\infty,\theta}$

Denote by $\mathcal{H}_{d_0,d_\infty, heta}$ the space of all maps $f\in \operatorname{Rat}_{d_0+d_\infty-1}$ such that

- (1) the only non-repelling periodic points are superattracting fixed points 0 and ∞ of criticalities $d_0 \ge 2$ and $d_{\infty} \ge 2$ respectively;
- (II) *f* has an invariant Herman ring \mathbb{H} of rotation number θ ;
- (III) \mathbb{H} separates 0 and ∞ ;
- (IV) every critical point of f other than 0 and ∞ lies on $\partial \mathbb{H}$.

Proposition

 $\mathcal{H}_{d_0,d_{\infty},\theta}$ consists of all rational maps that can be obtained from Shishikura surgery out of a pair of polynomials P_0 , P_{∞} such that for $\star \in \{0,\infty\}$,

- $deg(P_{\star}) = d_{\star};$
- P_{*} has an invariant Siegel disk Z_{*};
- $rot(Z_0) = \theta$ and $rot(Z_\infty) = 1 \theta$;
- all free critical points of P_{\star} lie in ∂Z_{\star} .

It turns out that for $\mathcal{H}_{d_0,d_\infty,\theta}$, we can remove the dependence on the modulus $\mu.$

Theorem (WRL)

The boundary components of the Herman ring of every rational map in $\mathcal{H}_{d_0,d_\infty,\theta}$ are $K(d_0,d_\infty,B)$ -quasicircles.

Definition

A Herman curve \mathbf{H} of a rational map f is a forward invariant Jordan curve where

- () $f|_{H}$ is conjugate to an irrational rotation, and
- **O H** is not contained in the closure of any rotation domain.

Additionally, **H** is called a Herman quasicircle if it is a quasicircle.

Definition

A Herman curve \mathbf{H} of a rational map f is a forward invariant Jordan curve where

- $f|_{H}$ is conjugate to an irrational rotation, and
- **O H** is not contained in the closure of any rotation domain.

Additionally, **H** is called a Herman quasicircle if it is a quasicircle.

Trivial example:

There is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle \mathbb{T} is a Herman curve of rotation number θ for the map

$$f_{\theta}(z) = \zeta_{\theta} z^2 \frac{z-3}{1-3z}.$$

Definition

A Herman curve \mathbf{H} of a rational map f is a forward invariant Jordan curve where

- $f|_{H}$ is conjugate to an irrational rotation, and
- **O H** is not contained in the closure of any rotation domain.

Additionally, **H** is called a Herman quasicircle if it is a quasicircle.

Trivial example:

There is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle \mathbb{T} is a Herman curve of rotation number θ for the map

$$f_{\theta}(z) = \zeta_{\theta} z^2 \frac{z-3}{1-3z}.$$

Question: Can non-trivial Herman curves exist?

Degeneration of Herman rings

Consider the limit space

$$\mathcal{H}^{\partial}_{d_0,d_{\infty},\theta} := \overline{\mathcal{H}_{d_0,d_{\infty},\theta}} \backslash \mathcal{H}_{d_0,d_{\infty},\theta} \subset \mathsf{Rat}_{d_0+d_{\infty}-1}.$$

Degeneration of Herman rings

Consider the limit space

$$\mathcal{H}^{\partial}_{d_0,d_{\infty},\theta} := \overline{\mathcal{H}_{d_0,d_{\infty},\theta}} \backslash \mathcal{H}_{d_0,d_{\infty},\theta} \subset \mathsf{Rat}_{d_0+d_{\infty}-1}.$$

Corollary

Every $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$ has a Herman quasicircle of rotation number θ .

Degeneration of Herman rings

Consider the limit space

$$\mathcal{H}^{\partial}_{d_0,d_{\infty},\theta} := \overline{\mathcal{H}_{d_0,d_{\infty},\theta}} \backslash \mathcal{H}_{d_0,d_{\infty},\theta} \subset \mathsf{Rat}_{d_0+d_{\infty}-1}.$$

Corollary

Every $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$ has a Herman quasicircle of rotation number θ .

Existence

Let $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$. Endow its Herman quasicircle **H** with the *combinatorial metric*, i.e. the pullback of the normalized Euclidean metric under the linearization of f.

The combinatorics of $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$ is determined by the criticality and the relative combinatorial position of its free critical points along **H**.

Existence

Let $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$. Endow its Herman quasicircle **H** with the *combinatorial metric*, i.e. the pullback of the normalized Euclidean metric under the linearization of f.

The combinatorics of $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$ is determined by the criticality and the relative combinatorial position of its free critical points along **H**.

Theorem (WRL)

Given any prescribed combinatorics, there exists a rational map in $\mathcal{H}^{\partial}_{d_0,d_{\infty},\theta}$ that realizes such combinatorics.

Existence

Let $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$. Endow its Herman quasicircle **H** with the *combinatorial metric*, i.e. the pullback of the normalized Euclidean metric under the linearization of f.

The combinatorics of $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$ is determined by the criticality and the relative combinatorial position of its free critical points along **H**.

Theorem (WRL)

Given any prescribed combinatorics, there exists a rational map in $\mathcal{H}^{\partial}_{d_0,d_{\infty},\theta}$ that realizes such combinatorics.

Sketch of proof:

1.	Thurston-type result for Herman rings (Wang '12)	⇒	$\exists f_1 \in \mathcal{H}_{d_0, d_{\infty}, \theta}$ having a Herman ring with combinatorics similar to the chosen one;
2.	QC deformation	⇒	\exists a normalized family $\{f_t\}_{0 < t \le 1}$ in $\mathcal{H}_{d_0, d_\infty, \theta}$ with the same combinatorics but mod $\rightarrow 0$
3.	a priori bounds	⇒	$\exists f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, heta}$ such that $f_t o f$ subsequentially as $t o 0$.

Non-trivial examples of golden mean Herman curves

Let *H* be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_0, d_{\infty}, \theta}$. Endow *H* with the combinatorial metric. Let *H* be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_0, d_\infty, \theta}$. Endow *H* with the combinatorial metric.

I = an interval in H of (combinatorial) length |I| < 0.1. 10I = the interval of length 10|I| having the same midpoint as I. $W_{10}(I) =$ the extremal width of curves connecting I and $H \setminus 10I$. Let *H* be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_0, d_\infty, \theta}$. Endow *H* with the combinatorial metric.

I = an interval in H of (combinatorial) length |I| < 0.1. 10I = the interval of length 10|I| having the same midpoint as I. $W_{10}(I) =$ the extremal width of curves connecting I and $H \setminus 10I$.

Let *H* be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_0, d_{\infty}, \theta}$. Endow *H* with the combinatorial metric.

I = an interval in H of (combinatorial) length |I| < 0.1. 10I = the interval of length 10|I| having the same midpoint as I. $W_{10}(I) =$ the extremal width of curves connecting I and $H \setminus 10I$.

To prove a priori bounds, it is sufficient to find some $K = K(d_0, d_\infty, B) > 0$ such that every interval $I \subset H$ satisfies $W_{10}(I) < K$.

Amplification

Our goal is reduced to showing:

Theorem

There is some K > 0 and $0 < \epsilon < 1$ depending only on d_0, d_{∞}, B such that if

there is an interval $I \subset H$ with length $|I| < \epsilon$ and width $W_{10}(I) \ge K$,

then

there is another interval $J \subset H$ with length $|J| < \epsilon$ and width $W_{10}(J) \ge 2 W_{10}(I)$.

Amplification

Our goal is reduced to showing:

Theorem

There is some K > 0 and $0 < \epsilon < 1$ depending only on d_0, d_{∞}, B such that if

there is an interval $I \subset H$ with length $|I| < \epsilon$ and width $W_{10}(I) \ge K$,

then

there is another interval $J \subset H$ with length $|J| < \epsilon$ and width $W_{10}(J) \ge 2 W_{10}(I)$.

The proof of such uses the near-degenerate regime¹. Many of our steps are inspired by Kahn-Lyubich '05, Kahn '06, and D. Dudko-Lyubich '22.

¹This includes the non-intersecting principle, quasi-additivity law, covering lemma, and canonical weighted arc diagrams.

Amplification

Our goal is reduced to showing:

Theorem

There is some K > 0 and $0 < \epsilon < 1$ depending only on d_0, d_{∞}, B such that if

there is an interval $I \subset H$ with length $|I| < \epsilon$ and width $W_{10}(I) \ge K$,

then

there is another interval $J \subset H$ with length $|J| < \epsilon$ and width $W_{10}(J) \ge 2 W_{10}(I)$.

The proof of such uses the near-degenerate regime¹. Many of our steps are inspired by Kahn-Lyubich '05, Kahn '06, and D. Dudko-Lyubich '22.

Main challenges:

- Both sides of H are dynamically nontrivial (unlike the boundary of Siegel disks);
- Lack of positive entropy (unlike primitively renormalizable quadratic maps);
- Intervals in *H* are not perfectly invariant (unlike little Julia sets in PL renorm.);
- Arbitrary number of critical points and combinatorics.

¹This includes the non-intersecting principle, quasi-additivity law, covering lemma, and canonical weighted arc diagrams.

• For $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$, is it true that Leb J(f) = 0? dim_HJ(f) = 2?

• For
$$f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$$
, is it true that Leb $J(f) = 0$? dim_H $J(f) = 2$?

 $\textbf{O} \ \ \text{Can we describe} \ \ \mathcal{H}^\partial_{d_0,d_\infty,\theta} \ \text{when} \ \theta \ \text{is of unbounded type?}$

- For $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$, is it true that Leb J(f) = 0? dim_HJ(f) = 2?
- Can we describe H[∂]_{d₀,d_∞,θ} when θ is of unbounded type?
 ⇒ For d₀ = d_∞ = 2 and high type θ, we have smooth Herman curves by Fei Yang.

- For $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$, is it true that Leb J(f) = 0? dim_HJ(f) = 2?
- **(a)** Can we describe $\mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$ when θ is of unbounded type? \Rightarrow For $d_0 = d_{\infty} = 2$ and high type θ , we have smooth Herman curves by Fei Yang.
- Is a limit of degenerating Herman rings always a Herman curve?

- For $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$, is it true that Leb J(f) = 0? dim_HJ(f) = 2?
- **(a)** Can we describe $\mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$ when θ is of unbounded type? \Rightarrow For $d_0 = d_{\infty} = 2$ and high type θ , we have smooth Herman curves by Fei Yang.
- Is a limit of degenerating Herman rings always a Herman curve?
- Is every Herman curve a limit of degenerating Herman rings?

- For $f \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$, is it true that Leb J(f) = 0? dim_HJ(f) = 2?
- **(a)** Can we describe $\mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$ when θ is of unbounded type? \Rightarrow For $d_0 = d_{\infty} = 2$ and high type θ , we have smooth Herman curves by Fei Yang.
- Is a limit of degenerating Herman rings always a Herman curve?
- Is every Herman curve a limit of degenerating Herman rings?
 ⇒ For H[∂]_{d0,d∞,θ}, this follows from combinatorial rigidity. (in progress)

Thank you!