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Rotation domains

Let f ∈ Ratd . A maximal invariant domain U ⊂ Ĉ is a rotation domain if
f |U is conjugate to a rigid rotation. There are 2 types:

1 U is simply connected, i.e. a Siegel disk;

2 U is an annulus, i.e. a Herman ring.

The two can be converted into one another via quasiconformal surgery. (Shishikura ’87)
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Bounded type rotation domains

Assume from now on that θ ∈ (0, 1) is an irrational number of bounded type,

i.e. there is some B ∈ N such that supn an ≤ B where θ =
1

a1 + 1

a2+ 1
a3+...

.

Theorem (Zhang ’11)

Every invariant Siegel disk of a map f ∈ Ratd with rotation number θ
is a K(d ,B)-quasidisk containing a critical point on the boundary.

Applying Shishikura’s surgery, we have:

Corollary

Every boundary component of an invariant Herman ring of a map f ∈ Ratd with
rotation number θ and modulus µ is a K (d ,B, µ)-quasicircle
containing a critical point.
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Hd0,d∞,θ

Denote by Hd0,d∞,θ the space of all maps f ∈ Ratd0+d∞−1 such that

(I) the only non-repelling periodic points are superattracting fixed points 0 and ∞
of criticalities d0 ≥ 2 and d∞ ≥ 2 respectively;

(II) f has an invariant Herman ring H of rotation number θ;

(III) H separates 0 and ∞;

(IV) every critical point of f other than 0 and ∞ lies on ∂H.

Proposition

Hd0,d∞,θ consists of all rational maps that can be obtained from Shishikura surgery
out of a pair of polynomials P0, P∞ such that for ? ∈ {0,∞},

deg(P?) = d?;

P? has an invariant Siegel disk Z?;

rot(Z0) = θ and rot(Z∞) = 1− θ;
all free critical points of P? lie in ∂Z?.
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A priori bounds

It turns out that for Hd0,d∞,θ, we can remove the dependence on the modulus µ.

Theorem (WRL)

The boundary components of the Herman ring of every rational map in Hd0,d∞,θ are
K(d0, d∞,B)-quasicircles.
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Herman curves

Definition

A Herman curve H of a rational map f is a forward invariant Jordan curve where

1 f |H is conjugate to an irrational rotation, and

2 H is not contained in the closure of any rotation domain.

Additionally, H is called a Herman quasicircle if it is a quasicircle.

Trivial example:
There is a unique ζθ ∈ T such that
the unit circle T is a Herman curve of
rotation number θ for the map

fθ(z) = ζθz
2 z − 3

1− 3z
.

Question: Can non-trivial Herman curves exist?
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Degeneration of Herman rings

Consider the limit space

H∂d0,d∞,θ := Hd0,d∞,θ\Hd0,d∞,θ ⊂ Ratd0+d∞−1.

Corollary

Every f ∈ H∂d0,d∞,θ has a Herman quasicircle of rotation number θ.

Herman ring of f ∈ H4,3,θ Herman quasicircle of f ∈ H∂4,3,θ

0 0
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Existence

Let f ∈ H∂d0,d∞,θ. Endow its Herman quasicircle H with the combinatorial metric,
i.e. the pullback of the normalized Euclidean metric under the linearization of f .

The combinatorics of f ∈ H∂d0,d∞,θ is determined by the criticality and the relative
combinatorial position of its free critical points along H.

Theorem (WRL)

Given any prescribed combinatorics, there exists a rational map in H∂d0,d∞,θ

that realizes such combinatorics.

Sketch of proof:

1.
Thurston-type result for ⇒ ∃ f1 ∈ Hd0,d∞,θ having a Herman ring with

Herman rings (Wang ’12) combinatorics similar to the chosen one;

2. QC deformation ⇒ ∃ a normalized family {ft}0<t≤1 in Hd0,d∞,θ

with the same combinatorics but mod→ 0

3. a priori bounds ⇒ ∃ f ∈ H∂d0,d∞,θ such that
ft → f subsequentially as t → 0.
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Non-trivial examples of golden mean Herman curves

f (z) = cz2 z3 − 5z2 + 10z − 10

5z − 1
,

c ≈ 0.3866 + 0.3205i

f (z) = z2 q − z

1 + q̄z

q ≈ −1.26 + 2.94i
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How to prove a priori bounds?

Let H be a boundary component of the Herman ring of f ∈ Hd0,d∞,θ.
Endow H with the combinatorial metric.

I = an interval in H of (combinatorial) length |I | < 0.1.
10I = the interval of length 10|I | having the same midpoint as I .
W10(I ) = the extremal width of curves connecting I and H\10I .

small W10(I ) large W10(I )

To prove a priori bounds, it is sufficient to find some K = K(d0, d∞,B) > 0 such that
every interval I ⊂ H satisfies W10(I ) < K .
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Amplification

Our goal is reduced to showing:

Theorem

There is some K > 0 and 0 < ε < 1 depending only on d0, d∞,B such that if

there is an interval I ⊂ H with length |I | < ε and width W10(I ) ≥ K,

then

there is another interval J ⊂ H with length |J| < ε and width W10(J) ≥ 2 W10(I ).

The proof of such uses the near-degenerate regimeThis includes the non-intersecting
principle, quasi-additivity law, covering lemma, and canonical weighted arc diagrams..
Many of our steps are
inspired by Kahn-Lyubich ’05, Kahn ’06, and D. Dudko-Lyubich ’22.

Main challenges:

Both sides of H are dynamically nontrivial (unlike the boundary of Siegel disks);

Lack of positive entropy (unlike primitively renormalizable quadratic maps);

Intervals in H are not perfectly invariant (unlike little Julia sets in PL renorm.);

Arbitrary number of critical points and combinatorics.
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Open questions

1 For f ∈ H∂d0,d∞,θ, is it true that Leb J(f ) = 0? dimHJ(f ) = 2?

2 Can we describe H∂d0,d∞,θ when θ is of unbounded type?
⇒ For d0 = d∞ = 2 and high type θ, we have smooth Herman curves by Fei Yang.

3 Is a limit of degenerating Herman rings always a Herman curve?

4 Is every Herman curve a limit of degenerating Herman rings?
⇒ For H∂d0,d∞,θ, this follows from combinatorial rigidity. (in progress)
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Thank you!
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