Generating holomorphic functions with critical orbit relation

K. Mamayusupov

National University of Uzbekistan, Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences

Bedlewo 2022, 16 August, 2022 Joint work with Marks Ruziboev and Doniyor Yazdonov

Introduction

Denote $f^{\circ n}(z) n$-th iterate of a map f, i.e. $f^{\circ 0}(z)=z$, $f^{\circ 1}(z)=f(z), f^{\circ 2}(z)=f(f(z))$, etc.

Introduction

Denote $f^{\circ n}(z) n$-th iterate of a map f, i.e. $f^{\circ 0}(z)=z$, $f^{\circ 1}(z)=f(z), f^{\circ 2}(z)=f(f(z))$, etc.
Let $\operatorname{Per}_{1}(\lambda)$ be the set of conformal conjugacy classes of maps, in the moduli space \mathcal{M}_{2} of quadratic rational maps, with a fixed point of multiplier $\lambda \in \mathbb{C}$. For $\lambda=0, \operatorname{Per}_{1}(0)=\left\{c \in \mathbb{C}: z^{2}+c\right\}$.

Introduction

Denote $f^{\circ n}(z) n$-th iterate of a map f, i.e. $f^{\circ 0}(z)=z$, $f^{\circ 1}(z)=f(z), f^{\circ 2}(z)=f(f(z))$, etc.
Let $\operatorname{Per}_{1}(\lambda)$ be the set of conformal conjugacy classes of maps, in the moduli space \mathcal{M}_{2} of quadratic rational maps, with a fixed point of multiplier $\lambda \in \mathbb{C}$. For $\lambda=0, \operatorname{Per}_{1}(0)=\left\{c \in \mathbb{C}: z^{2}+c\right\}$.
De Marco, Wang and Ye proved that $\operatorname{Per}_{1}(\lambda)$ contains infinitely many postcritically finite maps if and only if $\lambda=0$.
A map is called postcritically finite if all of its critical points have finite orbits.

Introduction

Denote $f^{\circ n}(z) n$-th iterate of a map f, i.e. $f^{\circ 0}(z)=z$, $f^{\circ 1}(z)=f(z), f^{\circ 2}(z)=f(f(z))$, etc.
Let $\operatorname{Per}_{1}(\lambda)$ be the set of conformal conjugacy classes of maps, in the moduli space \mathcal{M}_{2} of quadratic rational maps, with a fixed point of multiplier $\lambda \in \mathbb{C}$. For $\lambda=0, \operatorname{Per}_{1}(0)=\left\{c \in \mathbb{C}: z^{2}+c\right\}$.
De Marco, Wang and Ye proved that $\operatorname{Per}_{1}(\lambda)$ contains infinitely many postcritically finite maps if and only if $\lambda=0$.
A map is called postcritically finite if all of its critical points have finite orbits.
In \mathcal{M}_{d} for any $d \geq 2$ postcritically finite maps form a Zariski dense subset. Some subvarieties intersecting \mathcal{M}_{d} are special.

Consider $f_{t}(z)=\lambda z /\left(z^{2}+t z+1\right)$ with $t \in \mathbb{C}$ for each $\lambda \neq 0 \in \mathbb{C}$, with marked critical points at ± 1. Denote the space by $\operatorname{Per}_{1}(\lambda)^{c m}$ which is a double cover of $\operatorname{Per}_{1}(\lambda)$.

Consider $f_{t}(z)=\lambda z /\left(z^{2}+t z+1\right)$ with $t \in \mathbb{C}$ for each $\lambda \neq 0 \in \mathbb{C}$, with marked critical points at ± 1. Denote the space by $\operatorname{Per}_{1}(\lambda)^{c m}$ which is a double cover of $\operatorname{Per}_{1}(\lambda)$.
Our main theorem is the following.

Theorem

For each $\lambda \neq 0$ which is not a root of unity, in the family $f_{t}(z)=\lambda z /\left(z^{2}+t z+1\right)$ all critical orbit relations are realized except $(0,0)$ and $(n, 1)$ for each $n \geq 1$.

Let $f_{t}(z)$ for $t \in \mathcal{X}$ be a holomorphic family of rational functions of degree at least 2 .
Let $c_{1}=c_{1}(t)$ and $c_{2}=c_{2}(t)$ be marked critical points.

Let $f_{t}(z)$ for $t \in \mathcal{X}$ be a holomorphic family of rational functions of degree at least 2 .
Let $c_{1}=c_{1}(t)$ and $c_{2}=c_{2}(t)$ be marked critical points.

Definition (Critical orbit relation)

A critical orbit relation is a triple (n, m, t) with non-negative integers n and m such that for the critical points $c_{1}(t)$ and $c_{2}(t)$ we have

$$
f_{t}^{\circ n}\left(c_{1}(t)\right)=f_{t}^{\circ m}\left(c_{2}(t)\right) .
$$

Let us mark critical points $c_{1}(t), c_{2}(t), \ldots, c_{2 d-2}(t)$ (pass to a branched cover).
A point $t=t_{0}$ belongs to stability locus if the Julia sets $J\left(f_{t}\right)$ move holomorphically in a neighborhood of t_{0}.
Alternatively, a point $t=t_{0}$ belongs to stability locus if the sequence

$$
\left\{t \mapsto f_{t}^{\circ n}\left(c_{i}(t)\right)\right\}
$$

forms a normal family for each i on some neighborhood of t_{0}. A point $t=t_{0}$ belongs to the bifurcation locus if the stability fails at t_{0}.

Setup

Assume the bifurcation locus is not empty and $\#\left\{\right.$ orbit of $\left.c_{j}\right\} \geq 3$ persists in \mathcal{X} and c_{i} is active for $i \neq j$.

Lemma

Then there are infinitely many parameters $t \in \mathcal{X}$ such that $c_{i}(t)$ and $c_{j}(t)$ have critical orbit relations.

Proof.

Montel's theorem.

Setup

Assume the bifurcation locus is not empty and $\#\left\{\right.$ orbit of $\left.c_{j}\right\} \geq 3$ persists in \mathcal{X} and c_{i} is active for $i \neq j$.

Lemma

Then there are infinitely many parameters $t \in \mathcal{X}$ such that $c_{i}(t)$ and $c_{j}(t)$ have critical orbit relations.

Proof.

Montel's theorem.
In fact there are infinitely many parameters $(n, 0, t)$ such that $f_{t}^{\circ n}\left(c_{i}(t)\right)=c_{j}(t)$.
Proof. Consider two preimages $c_{j}^{0} \neq c_{j}^{1}$ of c_{j} and apply Montel's theorem with with the triple $c_{j}^{0}, c_{j}^{1}, c_{j}$ which is persistent.

Families with active two critical points

(1) $z^{3}-3 a^{2} z+b, a, b \in \mathbb{C}$,

Families with active two critical points

(1) $z^{3}-3 a^{2} z+b, a, b \in \mathbb{C}$,
(2) $\lambda z /\left(z^{2}+t z+1\right), t, \lambda \in \mathbb{C}$,

Families with active two critical points

(1) $z^{3}-3 a^{2} z+b, a, b \in \mathbb{C}$,
(2) $\lambda z /\left(z^{2}+t z+1\right), t, \lambda \in \mathbb{C}$,
(3) $a_{d} z^{d}+a_{d-1} z^{d-1}+\ldots+a_{1} z+a_{0}, a_{k} \in \mathbb{C}, d \geq 3$.

Families with active two critical points

(1) $z^{3}-3 a^{2} z+b, a, b \in \mathbb{C}$,
(2) $\lambda z /\left(z^{2}+t z+1\right), t, \lambda \in \mathbb{C}$,
(3) $a_{d} z^{d}+a_{d-1} z^{d-1}+\ldots+a_{1} z+a_{0}, a_{k} \in \mathbb{C}, d \geq 3$.
(4) $f(z)=\frac{p(z)}{q(z)}$ rational functions.

Families with active two critical points

(1) $z^{3}-3 a^{2} z+b, a, b \in \mathbb{C}$,
(2) $\lambda z /\left(z^{2}+t z+1\right), t, \lambda \in \mathbb{C}$,
(3) $a_{d} z^{d}+a_{d-1} z^{d-1}+\ldots+a_{1} z+a_{0}, a_{k} \in \mathbb{C}, d \geq 3$.
(4) $f(z)=\frac{p(z)}{q(z)}$ rational functions.
(5) $f_{a}(z)=z^{2} \frac{z+a-1}{(a+1) z-1}$.

Cubic polynomials, $z^{3}-3 a^{2} z+b$

Consider cubic polynomials $p(z)=z^{3}-3 a^{2} z+b$. The critical points are at $\pm a$.

Cubic polynomials, $z^{3}-3 a^{2} z+b$

Consider cubic polynomials $p(z)=z^{3}-3 a^{2} z+b$. The critical points are at $\pm a$.

- Two distinct cubics $z^{3}-3 a^{2} z+b$ and $z^{3}-3 a^{\prime 2} z+b^{\prime}$ are affine conjugate if and only if $a^{\prime}=-a$ and $b^{\prime}=-b$, the conjugacy is $z \mapsto-z$. This conjugacy interchanges the markings of critical points \pm.

Cubic polynomials, $z^{3}-3 a^{2} z+b$

Consider cubic polynomials $p(z)=z^{3}-3 a^{2} z+b$. The critical points are at \pm a.

- Two distinct cubics $z^{3}-3 a^{2} z+b$ and $z^{3}-3 a^{\prime 2} z+b^{\prime}$ are affine conjugate if and only if $a^{\prime}=-a$ and $b^{\prime}=-b$, the conjugacy is $z \mapsto-z$. This conjugacy interchanges the markings of critical points $\pm a$.
Thus the moduli space, consisting of all affine conjugacy classes of cubics with marked critical point, can be identified with coordinates $\left(a^{2}, b^{2}\right) \in \mathbb{C}^{2}$.

A critical orbit relation becomes

$$
\left(p^{\circ n}(a)-p^{\circ m}(-a)\right)\left(p^{\circ n}(-a)-p^{\circ m}(a)\right)=0 .
$$

A critical orbit relation becomes

$$
\left(p^{\circ n}(a)-p^{\circ m}(-a)\right)\left(p^{\circ n}(-a)-p^{\circ m}(a)\right)=0 .
$$

It is required that such n, m must be minimal:

- if $p^{\circ n}(a)=p^{\circ m}(-a)$ then
- $p^{\circ(n-i)}(a) \neq p^{o(m-i)}(-a)$ for all $1 \leq i \leq \min \{n, m\}$.

A critical orbit relation becomes

$$
\left(p^{\circ n}(a)-p^{\circ m}(-a)\right)\left(p^{\circ n}(-a)-p^{\circ m}(a)\right)=0 .
$$

It is required that such n, m must be minimal:

- if $p^{\circ n}(a)=p^{\circ m}(-a)$ then
- $p^{\circ(n-i)}(a) \neq p^{o(m-i)}(-a)$ for all $1 \leq i \leq \min \{n, m\}$.
- Every critical orbit relation of the form $(n, 0)$ is minimal.

A critical orbit relation becomes

$$
\left(p^{\circ n}(a)-p^{\circ m}(-a)\right)\left(p^{\circ n}(-a)-p^{\circ m}(a)\right)=0 .
$$

It is required that such n, m must be minimal:

- if $p^{\circ n}(a)=p^{\circ m}(-a)$ then
- $p^{\circ(n-i)}(a) \neq p^{\circ(m-i)}(-a)$ for all $1 \leq i \leq \min \{n, m\}$.
- Every critical orbit relation of the form $(n, 0)$ is minimal.
- As the critical orbit relation is symmetric with respect to n and m, it suffices to consider only the cases of $n \geq m$.
- We are interested in finding all cubic polynomials possessing some critical orbit relation.
- We are interested in finding all cubic polynomials possessing some critical orbit relation.
- The problem maybe reduced to computing the resultant of two polynomials $p^{\circ n}(z)-p^{\circ m}(-z)$ and $z^{2}-a^{2}$. The resultant is a polynomial on the parameters a, b.
- Equivalently, one can also find the Gröbner basis of $\left\{p^{\circ n}(z)-p^{\circ m}(-z), z^{2}-a^{2}\right\}$.

The main idea

Lemma (Key-Lemma)

There exist sequences $\left\{A_{n}(a, b)\right\}_{n \geq 0}$ and $\left\{B_{n}(a, b)\right\}_{n \geq 0}$ of polynomials of parameters a, b such that if z is a critical point of $p(z)$ then for all $n \geq 0$ the relation $p^{\circ n}(z)=A_{n}(a, b) z+B_{n}(a, b)$ holds.

The main idea

Lemma (Key-Lemma)

There exist sequences $\left\{A_{n}(a, b)\right\}_{n \geq 0}$ and $\left\{B_{n}(a, b)\right\}_{n \geq 0}$ of polynomials of parameters a, b such that if z is a critical point of $p(z)$ then for all $n \geq 0$ the relation $p^{\circ n}(z)=A_{n}(a, b) z+B_{n}(a, b)$ holds.

Proof.

As $p^{\circ 0}(z)=z$, set $A_{0}(a, b)=1$ and $B_{0}(a, b)=0$.

- Recurrently define polynomials $A_{n}(a, b)$ and $B_{n}(a, b)$ with

$$
\begin{aligned}
& A_{n+1}(a, b)=A_{n}(a, b)\left(a^{2} A_{n}^{2}(a, b)+3 B_{n}^{2}(a, b)-3 a^{2}\right) \\
& B_{n+1}(a, b)=B_{n}^{3}(a, b)+3 a^{2} B_{n}(a, b)\left(A_{n}^{2}(a, b)-1\right)+b
\end{aligned}
$$

such that $A_{n+1}(a, b) z+B_{n+1}(a, b)=p\left(A_{n}(a, b) z+B_{n}(a, b)\right)$.

The above formulas are obtained by substituting $z^{2}=a^{2}, z^{3}=a^{2} z$ into the expansion of

$$
\left(A_{n}(a, b) z+B_{n}(a, b)\right)^{3}-3 a^{2}\left(A_{n}(a, b) z+B_{n}(a, b)\right)+b \text { and }
$$ combining common terms. \square

It is easy to see from the recurrence relations that $\operatorname{deg}_{a} A_{n}(a, b)=\operatorname{deg} A_{n}(a, b)=3^{n}-1$ for $n \geq 1$, $\operatorname{deg}_{a} B_{n}(a, b)=3^{n}-3$ and $\operatorname{deg} B_{n}(a, b)=3^{n}-2$ for $n \geq 1$.

Lemma

There exist sequences $\left\{\tilde{A}_{n}(x, y)\right\}_{n \geq 0}$ and $\left\{\tilde{B}_{n}(x, y)\right\}_{n \geq 0}$ of polynomials such that for every $n \geq 0$ one has $A_{n}(a, \bar{b})=\tilde{A}_{n}\left(a^{2}, b^{2}\right)$ and $B_{n}(a, b)=b \tilde{B}_{n}\left(a^{2}, b^{2}\right)$.

Lemma

There exist sequences $\left\{\tilde{A}_{n}(x, y)\right\}_{n \geq 0}$ and $\left\{\tilde{B}_{n}(x, y)\right\}_{n \geq 0}$ of polynomials such that for every $n \geq 0$ one has $A_{n}(a, b)=\tilde{A}_{n}\left(a^{2}, b^{2}\right)$ and $B_{n}(a, b)=b \tilde{B}_{n}\left(a^{2}, b^{2}\right)$.

Our main theorem is the following.

Theorem

Except $(1,1)$ all critical orbit relations are realized. In particular, there are infinitely many cubic polynomials with critical orbit relations.

The proof is split into three separate cases.

Case of (n, n)

Proof. By the Key-Lemma we have $p^{\circ n}(z)-p^{\circ n}(-z)=$ $A_{n}(a, b) z+B_{n}(a, b)-\left(-A_{n}(a, b) z+B_{n}(a, b)\right)=2 A_{n}(a, b) z$ for $n \geq 1$. It implies that the critical orbit relation reduces to $A_{n}(a, b)=0$.
As $A_{1}=-2 a^{2}$, it vanishes if $a=0$. In this case both critical points collide so the critical orbit relation is $(0,0)$. This means that there is no cubic polynomial with an exact critical orbit relation $(1,1)$.

Case of (n, n)

Set $P_{n, n}(a, b)=A_{n}(a, b) / A_{1}(a, b)$. We have

$$
P_{n, n}(a, b)=A_{n-1}(a, b) / A_{1}(a, b)\left(a^{2} A_{n-1}^{2}(a, b)+3 B_{n-1}^{2}(a, b)-3 a^{2}\right) .
$$

Set

$$
\tilde{P}_{n, n}(a, b)=a^{2} A_{n-1}^{2}(a, b)+3 B_{n-1}^{2}(a, b)-3 a^{2},
$$

or we can write

$$
\tilde{P}_{n, n}(a, b)=a^{2} \tilde{A}_{n-1}^{2}\left(a^{2}, b^{2}\right)+3 b^{2} \tilde{B}_{n-1}^{2}\left(a^{2}, b^{2}\right)-3 a^{2} .
$$

This implies that for $n \geq 2$ we can write

$$
P_{n, n}(a, b)=P_{n-1, n-1}(a, b) \cdot \tilde{P}_{n, n}(a, b) .
$$

Case of (n, n)

Proposition

For $n \geq 1$ set

$$
Q_{n, n}(x, y)=x \tilde{A}_{n-1}^{2}(x, y)+3 y \tilde{B}_{n-1}^{2}(x, y)-3 x
$$

then $\tilde{P}_{n, n}(x, y)=Q_{n, n}\left(x^{2}, y^{2}\right)$. Moreover, $\operatorname{deg}_{a} P_{n, n}(a, b)=\operatorname{deg} P_{n, n}(a, b)=3^{n}-3$ and $\operatorname{deg}_{a} \tilde{P}_{n, n}(a, b)=\operatorname{deg} \tilde{P}_{n, n}(a, b)=2 \cdot 3^{n-1}$ for $n \geq 1$.

Case of $n>m$ for $m=0$ and $m=1$

For $z= \pm a$ we have that
$p^{\circ n}(z)-p^{\circ m}(-z)=A_{n}(a, b) z+B_{n}(a, b)-\left(-A_{m}(a, b) z+B_{m}(a, b)\right)=$ $\left(A_{n}(a, b)+A_{m}(a, b)\right) z+B_{n}(a, b)-B_{m}(a, b)$. Solving the critical orbit relation for z (equating the latter to zero) we obtain

$$
z=\frac{B_{m}(a, b)-B_{n}(a, b)}{A_{n}(a, b)+A_{m}(a, b)}
$$

Since the obtained z is a critical point, it satisfies the equation $z^{2}-a^{2}=0$. Set
$P_{n, m}(a, b)=a^{2}\left(A_{n}(a, b)+A_{m}(a, b)\right)^{2}-\left(B_{n}(a, b)-B_{m}(a, b)\right)^{2}$.

Recall that $A_{0}=1, B_{0}=0$ and $A_{1}=-2 a^{2}, B_{1}=b$.
For $n \geq 1$ we have that $P_{n, 0}=a^{2}\left(A_{n}(a, b)+1\right)^{2}-B_{n}^{2}(a, b)$. Set

$$
\tilde{P}_{n, 0}(a, b)=P_{n, 0}(a, b)=a^{2}\left(\tilde{A}_{n}\left(a^{2}, b^{2}\right)+1\right)^{2}-b^{2} \tilde{B}_{n}^{2}\left(a^{2}, b^{2}\right) .
$$

Note that the critical orbit relation $(n, 0)$ is exact (minimal). An easy calculation shows that

$$
P_{n, 1}=\left(a^{2}\left(A_{n-1}+1\right)^{2}-B_{n-1}^{2}\right)^{2} \cdot\left(a^{2}\left(A_{n-1}-2\right)^{2}-B_{n-1}^{2}\right) .
$$

For $n \geq 1$ set

$$
\tilde{P}_{n, 1}(a, b)=a^{2}\left(A_{n-1}(a, b)-2\right)^{2}-B_{n-1}^{2}(a, b),
$$

or we can write it as

$$
\tilde{P}_{n, 1}(a, b)=a^{2}\left(\tilde{A}_{n-1}\left(a^{2}, b^{2}\right)-2\right)^{2}-b^{2} \tilde{B}_{n-1}^{2}\left(a^{2}, b^{2}\right)
$$

then the above implies that

$$
P_{n, 1}=P_{n-1,0}^{2} \cdot \tilde{P}_{n, 1}
$$

Proposition

For $n \geq 1$ set

$$
\begin{aligned}
& Q_{n, 0}(x, y)=x\left(\tilde{A}_{n}(x, y)+1\right)^{2}-y \tilde{B}_{n}^{2}(x, y) \\
& Q_{n, 1}(x, y)=x\left(\tilde{A}_{n-1}(x, y)-2\right)^{2}-y \tilde{B}_{n-1}^{2}(x, y)
\end{aligned}
$$

then $\tilde{P}_{n, 0}(x, y)=Q_{n, 0}\left(x^{2}, y^{2}\right)$ and $\tilde{P}_{n, 1}(x, y)=Q_{n, 1}\left(x^{2}, y^{2}\right)$.
Moreover, $\operatorname{deg}_{a} \tilde{P}_{n, 0}(a, b)=\operatorname{deg} \tilde{P}_{n, 0}(a, b)=2 \cdot 3^{n}$ and $\operatorname{deg}_{a} \tilde{P}_{n, 1}=\operatorname{deg} \tilde{P}_{n, 1}=2 \cdot 3^{n-1}$ for $n \geq 1$.

Case of $n>m \geq 2$

Set

$$
\begin{aligned}
\tilde{P}_{n, m}(a . b)= & \left(a^{2}\left(A_{n-1}^{2}-A_{n-1} A_{m-1}+A_{m-1}^{2}\right)\right. \\
& \left.+B_{n-1}^{2}+B_{n-1} B_{m-1}+B_{m-1}^{2}-3 a^{2}\right)^{2} \\
& -a^{2}\left(\left(2 A_{n-1}-A_{m-1}\right) B_{n-1}+\left(A_{n-1}-2 A_{m-1}\right) B_{m-1}\right)^{2},
\end{aligned}
$$

then we have that

$$
P_{n, m}(a, b)=P_{n-1, m-1}(a, b) \cdot \tilde{P}_{n, m}(a, b)
$$

Proposition

Let $n>m \geq 2$ and set

$$
\begin{aligned}
Q_{n, m}(x, y)= & \left(x\left(\tilde{A}_{n-1}^{2}(x, y)-\tilde{A}_{n-1}(x, y) \tilde{A}_{m-1}(x, y)+\tilde{A}_{m-1}^{2}(x, y)\right)\right. \\
& +y \tilde{B}_{n-1}^{2}(x, y)+y \tilde{B}_{n-1}(x, y) \tilde{B}_{m-1}(x, y)+y \tilde{B}_{m-1}^{2}(x, y) \\
& -3 x)^{2}-x y\left(\left(2 \tilde{A}_{n-1}(x, y)-\tilde{A}_{m-1}(x, y)\right) \tilde{B}_{n-1}(x, y)\right. \\
& \left.+\left(\tilde{A}_{n-1}(x, y)-2 \tilde{A}_{m-1}(x, y)\right) \tilde{B}_{m-1}(x, y)\right)^{2}
\end{aligned}
$$

then $\tilde{P}_{n, m}(x, y)=Q_{n, m}\left(x^{2}, y^{2}\right)$. Moreover, $\operatorname{deg} P_{n, m}(a, b)=\operatorname{deg}_{a} P_{n, m}(a, b)=2 \cdot 3^{n}$ and $\operatorname{deg} \tilde{P}_{n, m}(a, b)=\operatorname{deg}_{a} \tilde{P}_{n, m}(a, b)=4 \cdot 3^{n-1}$.

All three cases $((n, n),(n, m)$ for $n>m$ and $m=0$ and $m=1$, (n, m) for $n>m \geq 2)$ have been considered in the above three propositions.
For each case the zero level of polynomials $\tilde{P}_{n, m}(a, b)$ corresponds to exactly (n, m) critical orbit relation.
Denote Crit $(n, m)=\left\{(a, b): \tilde{P}_{n, m}(a, b)=0\right\}$.
The degree counts show that all but $(1,1)$ critical orbit relations are realized so that there are infinitely many cubic polynomials with critical orbit relations.

Corollary

In the moduli space of cubics of the form $z^{3}-3 a^{2} z+b$ with coordinates $x=a^{2}$ and $y=b^{2}$ the exact (minimal) critical orbit relation (n, m) corresponds to the set $\left\{(x, y) \in \mathbb{C}^{2}: Q_{n, m}(x, y)=0\right\}$, where $Q_{n, m}(x, y)$ is defined above. It is never empty, except for the relation $(1,1)$.

> Denote $\mathcal{S}_{n, m}=\left\{(x, y) \in \mathbb{C}^{2}: Q_{n, m}(x, y)=0\right\}$ the affine algebraic curve in \mathbb{C}^{2}. It seems that each curve $\mathcal{S}_{n, m}$, except $\mathcal{S}_{1,1}$ (which is an empty set), is irreducible. These curves are analogous to those defined by Milnor.

Some examples

Here are some examples of these special curves in \mathbb{C}^{2}.
$\mathcal{S}_{0,0}=\{x=0\}, \mathcal{S}_{1,0}=\left\{x(2 x-1)^{2}-y=0\right\}$,
$\mathcal{S}_{2,0}=\left\{x\left(8 x^{4}-6 x^{2}+6 x y-1\right)^{2}-y\left(12 x^{3}-3 x+y+1\right)^{2}=0\right\}$,
$\mathcal{S}_{2,1}=\left\{4 x(1+x)^{2}-y=0\right\}, \mathcal{S}_{2,2}=\left\{4 x^{3}-3 x+3 y=0\right\}$, and
$\mathcal{S}_{3,3}=\left\{64 x^{9}-96 x^{7}+528 x^{6} y+36 x^{5}-288 x^{4} y+108 x^{3} y^{2}+\right.$
$\left.72 x^{3} y+27 x^{2} y-18 x y^{2}-18 x y-3 x+3 y^{3}+6 y^{2}+3 y=0\right\}$.
The curves $\mathcal{S}_{0,0}, \mathcal{S}_{1,0}, \mathcal{S}_{2,1}$, and $\mathcal{S}_{2,2}$ can be identified with the complex plain \mathbb{C} as these are graphs of polynomials.

Corollary

The degree of the curve $\mathcal{S}_{n, m}$ is a half of the degree of the polynomial $\tilde{P}_{(n, m)}(a, b)$.

Table: The degree row of $\mathcal{S}_{n, m}$ for $n \geq 2$.

	m						
	0	1	2	\cdot	$n-1$	n	
n	3^{n}	3^{n-1}	$2 \cdot 3^{n-1}$.	.	$2 \cdot 3^{n-1}$	3^{n-1}

In Table 1 we list degrees of $\mathcal{S}_{n, m}$ for $n \geq 2$ in a row.

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(0,0)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(1,0)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(2,0)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(2,1)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(2,2)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(3,0)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(3,1)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(3,2)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(3,3)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(4,0)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(4,1)$

st

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(4,2)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(4,3)$

Parameter space of $z^{3}+a z^{2}+z$ with $\operatorname{COR}(4,4)$

COR just $(6,0)$

COR just $(6,5)$

The space $\lambda z /\left(z^{2}+t z+1\right)$

Now consider the space of functions $f_{t}(z)=\lambda z /\left(z^{2}+t z+1\right)$ with a fixed point at the origin with multiplier $\lambda \neq 0 \in \mathbb{C}$ for each $t \in \mathbb{C}$. Each f_{t} has critical points at ± 1. The map $z \mapsto-z$ conjugates f_{t} to f_{-t} and interchanges the two critical points.
The critical orbit relation (n, m) becomes

$$
\left(f_{t}^{\circ n}(1)-f_{t}^{\circ m}(-1)\right)\left(f_{t}^{\circ n}(-1)-f_{t}^{\circ m}(1)\right)=0 .
$$

The main idea

Lemma

There exist sequences $\left\{A_{n}(t)\right\}_{n \geq 0},\left\{B_{n}(t)\right\}_{n \geq 0},\left\{C_{n}(t)\right\}_{n \geq 0}$ and $\left\{D_{n}(t)\right\}_{n \geq 0}$ of polynomials of t such that if z is a critical point of f_{t} then for all $n \geq 0$ the equality $f_{t}^{\circ n}(z)=\frac{A_{n}(t) z+B_{n}(t)}{C_{n}(t) z+D_{n}(t)}$ holds.

The main idea

Lemma

There exist sequences $\left\{A_{n}(t)\right\}_{n \geq 0},\left\{B_{n}(t)\right\}_{n \geq 0},\left\{C_{n}(t)\right\}_{n \geq 0}$ and $\left\{D_{n}(t)\right\}_{n \geq 0}$ of polynomials of t such that if z is a critical point of f_{t} then for all $n \geq 0$ the equality $f_{t}^{\circ n}(z)=\frac{A_{n}(t) z+B_{n}(t)}{C_{n}(t) z+D_{n}(t)}$ holds.

$$
\begin{aligned}
& A_{n+1}(t)=\lambda\left(A_{n}(t) D_{n}(t)+B_{n}(t) C_{n}(t)\right) \\
& B_{n+1}(t)=\lambda\left(A_{n}(t) C_{n}(t)+B_{n}(t) D_{n}(t)\right) ; \\
& C_{n+1}(t)=2\left(A_{n} B_{n}+C_{n} D_{n}\right)+t\left(A_{n} D_{n}+B_{n} C_{n}\right) \\
& D_{n+1}(t)=A_{n}^{2}+B_{n}^{2}+C_{n}^{2}+D_{n}^{2}+t\left(A_{n} C_{n}+B_{n} D_{n}\right)
\end{aligned}
$$

with $A_{0}(t)=1$ and $B_{0}(t)=0, C_{0}(t)=0$ and $D_{0}(t)=1$.

Lemma

If λ is not a root of unity then $\operatorname{deg}_{t} A_{n}=2^{n}-2, \operatorname{deg}_{t} B_{n}=2^{n}-1$, $\operatorname{deg}_{t} C_{n}=2^{n}-1$, and $\operatorname{deg}_{t} D_{n}=2^{n}$ with the leading coefficients a_{n}, b_{n}, c_{n}, and d_{n} (polynomials of λ) respectively that satisfy $a_{n+1}=\lambda\left(a_{n} d_{n}+b_{n} c_{n}\right), b_{n+1}=\lambda b_{n} d_{n}, c_{n+1}=2 c_{n} d_{n}+a_{n} d_{n}+b_{n} c_{n}$, and $d_{n+1}=d_{n}\left(d_{n}+b_{n}\right)$ for every $n \geq 2$.

The explicit expression for d_{n} is as follows.

$$
\begin{aligned}
d_{n}= & (1+\lambda)^{2^{n-3}}\left(1+\lambda+\lambda^{2}\right)^{2^{n-4}} \cdots\left(1+\lambda+\lambda+\cdots+\lambda^{n-2}\right)^{2^{0}} \\
& \left(1+\lambda+\lambda+\cdots+\lambda^{n-1}\right)
\end{aligned}
$$

for every $n \geq 3$.

Our main theorem is the following.

Theorem

For each $\lambda \neq 0$ which is not a root of unity, in the family $f_{t}(z)=\lambda z /\left(z^{2}+t z+1\right)$ all critical orbit relations are realized except $(0,0)$ and $(n, 1)$ for each $n \geq 1$.

Our main theorem is the following.

Theorem

For each $\lambda \neq 0$ which is not a root of unity, in the family $f_{t}(z)=\lambda z /\left(z^{2}+t z+1\right)$ all critical orbit relations are realized except $(0,0)$ and $(n, 1)$ for each $n \geq 1$.

Define polynomials as follows.

$$
\begin{aligned}
P_{n, m}(t)= & \left(A_{n} D_{m}+A_{m} D_{n}-B_{n} C_{m}-B_{m} C_{n}\right)^{2} \\
& -\left(A_{n} C_{m}-A_{m} C_{n}-B_{n} D_{m}+B_{m} D_{n}\right)^{2} \text { and } \\
P_{n, n}(t)= & A_{n} D_{n}-B_{n} C_{n} .
\end{aligned}
$$

The critical orbit relation (n, m) is equivalent to $P_{n, m}(t)=0$.

Case of (n, n)

Set $\tilde{P}_{n, n}=A_{n-1}^{2}-B_{n-1}^{2}-C_{n-1}^{2}+D_{n-1}^{2}$.

Proposition

For all $n \geq 1, P_{n, n}(t)=\lambda P_{n-1, n-1}(t) \cdot \tilde{P}_{n, n}(t)$ holds and if λ is not a root of unity then $\operatorname{deg}_{t} \tilde{P}_{n, n}(t)=2^{n}$ for all $n \geq 2$.

Case of (n, n)

Set $\tilde{P}_{n, n}=A_{n-1}^{2}-B_{n-1}^{2}-C_{n-1}^{2}+D_{n-1}^{2}$.

Proposition

For all $n \geq 1, P_{n, n}(t)=\lambda P_{n-1, n-1}(t) \cdot \tilde{P}_{n, n}(t)$ holds and if λ is not a root of unity then $\operatorname{deg}_{t} \tilde{P}_{n, n}(t)=2^{n}$ for all $n \geq 2$.

It yields that if (n, n) relation is minimal then $\tilde{P}_{n, n}(t)=0$. As $\tilde{P}_{1,1}(t)=2$ there is no critical orbit relation of $(1,1)$.

Case of (n, n)

Set $\tilde{P}_{n, n}=A_{n-1}^{2}-B_{n-1}^{2}-C_{n-1}^{2}+D_{n-1}^{2}$.

Proposition

For all $n \geq 1, P_{n, n}(t)=\lambda_{\tilde{P}} P_{n-1, n-1}(t) \cdot \tilde{P}_{n, n}(t)$ holds and if λ is not a root of unity then $\operatorname{deg}_{t} \tilde{P}_{n, n}(t)=2^{n}$ for all $n \geq 2$.

It yields that if (n, n) relation is minimal then $\tilde{P}_{n, n}(t)=0$. As $\tilde{P}_{1,1}(t)=2$ there is no critical orbit relation of $(1,1)$. The case of (n, n) factors as following.

Corollary

$P_{n, n}(t)=\lambda^{n-1} \tilde{P}_{1,1}(t) \tilde{P}_{2,2}(t) \cdots \tilde{P}_{n-1, n-1}(t) \tilde{P}_{n, n}(t)$ holds for all $n \geq 1$.

Cases of $(n, 0)$ and $(n, 1)$

Note that $A_{1}(t)=\lambda, B_{1}(t)=0, C_{1}(t)=t, D_{1}(t)=2$.
We have $P_{n, 0}(t)=\left(A_{n}(t)+D_{n}(t)\right)^{2}-\left(B_{n}(t)+C_{n}(t)\right)^{2}$ and the following holds.

Proposition

$P_{n+1,1}(t)=-\lambda^{2} P_{n, 0}^{2}(t)$ holds for all $n \geq 1$ with $\operatorname{deg}_{t} P_{n, 0}(t)=2^{n+1}$ for all $n \geq 2$.

Cases of $(n, 0)$ and $(n, 1)$

Note that $A_{1}(t)=\lambda, B_{1}(t)=0, C_{1}(t)=t, D_{1}(t)=2$.
We have $P_{n, 0}(t)=\left(A_{n}(t)+D_{n}(t)\right)^{2}-\left(B_{n}(t)+C_{n}(t)\right)^{2}$ and the following holds.

Proposition

$P_{n+1,1}(t)=-\lambda^{2} P_{n, 0}^{2}(t)$ holds for all $n \geq 1$ with $\operatorname{deg}_{t} P_{n, 0}(t)=2^{n+1}$ for all $n \geq 2$.

It implies that $(n, 1)$ for $n \geq 2$ critical orbit relations do not exist. Combining with the above we conclude that critical orbit relations ($n, 1$) for $n \geq 1$ do not exist.

Case of $n>m \geq 2$

Set

$$
\begin{aligned}
\tilde{P}_{n, m}(t)= & \left(\left(A_{n-1}+B_{n-1}\right) B_{m-1}+\left(C_{n-1}+D_{n-1}\right) C_{m-1}\right)^{2} \\
& -\left(\left(A_{n-1}+B_{n-1}\right) A_{m-1}+\left(C_{n-1}+D_{n-1}\right) D_{m-1}\right)^{2} .
\end{aligned}
$$

Proposition

$P_{n, m}(t)=\lambda^{2} P_{n-1, m-1}(t) \cdot \tilde{P}_{n, m}(t)$ holds with $\operatorname{deg}_{t} \tilde{P}_{n, m}(t)=2^{n}+2^{m}$ for all $n>m \geq 2$.

Case of $n>m \geq 2$

Set

$$
\begin{aligned}
\tilde{P}_{n, m}(t)= & \left(\left(A_{n-1}+B_{n-1}\right) B_{m-1}+\left(C_{n-1}+D_{n-1}\right) C_{m-1}\right)^{2} \\
& -\left(\left(A_{n-1}+B_{n-1}\right) A_{m-1}+\left(C_{n-1}+D_{n-1}\right) D_{m-1}\right)^{2} .
\end{aligned}
$$

Proposition

$P_{n, m}(t)=\lambda^{2} P_{n-1, m-1}(t) \cdot \tilde{P}_{n, m}(t)$ holds with $\operatorname{deg}_{t} \tilde{P}_{n, m}(t)=2^{n}+2^{m}$ for all $n>m \geq 2$.

The case of $(n+k, k), n \geq 1, k \geq 2$, factors as following.

Corollary

$P_{n+k, k}(t)=-\lambda^{2 k} \tilde{P}_{n, 0}^{2}(t) \tilde{P}_{n+2,2}(t) \tilde{P}_{n+3,3}(t) \cdots \tilde{P}_{n+k, k}(t)$ holds for all $k \geq 2$.

$$
a_{d} z^{d}+a_{d-1} z^{d-1}+\ldots+a_{1} z+a_{0}, a_{k} \in \mathbb{C}, d \geq 3 .
$$

Let $p(z)$ be a family of polynomial of degree $d \geq 3$ with at least two distinct simple critical points. By changing coordinates we can put its two critical points to ± 1.
Critical orbit relation is $\left(p^{\circ n}(-1)-p^{\circ m}(1)\right)\left(p^{\circ n}(1)-p^{\circ m}(-1)\right)=0$. For every $z \in \mathbb{C}$ by Taylor's formula we obtain the following

$$
p(z)=p(1)+p^{\prime}(1)(z-1)+\frac{p^{\prime \prime}(1)}{2!}(z-1)^{2}+\cdots+\frac{p^{d}(1)}{d!}(z-1)^{d} .
$$

As $z=1$ is a simple critical point we get

$$
\begin{aligned}
p(z)-p(1) & =\frac{p^{\prime \prime}(1)}{2!}(z-1)^{2}+\cdots+\frac{p^{d}(1)}{d!}(z-1)^{d} \\
& =(z-1)^{2}\left(\frac{p^{\prime \prime}(1)}{2!}+\cdots+\frac{p^{d}(1)}{d!}(z-1)^{d-2}\right) .
\end{aligned}
$$

Plug in into the above equality $z=p^{\circ(n-1)}(-1)$ and obtain $p^{\circ n}(-1)-p(1)=\left(p^{\circ(n-1)}(-1)-1\right)^{2} \cdot g_{1}$, where $g_{1}=\frac{p^{\prime \prime}(1)}{2!}+\frac{p^{\prime \prime \prime}(1)}{3!}\left(p^{\circ(n-1)}(-1)-1\right)+\cdots+\frac{p^{d}(1)}{d!}\left(p^{\circ(n-1)}(-1)-1\right)^{d-2}$. If we write the Taylor's formula about $z=-1$ then we obtain
$p(z)-p(-1)=p^{\prime}(-1)(z+1)+\frac{p^{\prime \prime}(-1)}{2!}(z+1)^{2}+\cdots+\frac{p^{d}(-1)}{d!}(z+1)^{d}$.
Now plug in $z=p^{\circ(n-1)}(1)$ and obtain $p^{\circ n}(1)-p(-1)=\left(p^{\circ(n-1)}(1)+1\right)^{2} \cdot g_{2}$, where $g_{2}=\frac{p^{\prime \prime}(-1)}{2!}+\frac{p^{\prime \prime \prime}(-1)}{3!}\left(p^{\circ}(n-1)(1)+1\right)+\cdots+\frac{p^{d}(-1)}{d!}\left(p^{\circ(n-1)}(1)+1\right)^{d-2}$.

The critical orbit relations $(n, 1)$ and $(n-1,0)$ are related to each other as following $\left(p^{\circ n}(-1)-p(1)\right)\left(p^{\circ n}(1)-p(-1)\right)=$ $\left(p^{\circ(n-1)}(-1)-1\right)^{2}\left(p^{\circ(n-1)}(1)+1\right)^{2} g_{1} g_{2}$.
Thus the exact (minimal) critical orbit relation $(n, 1)$ becomes $g_{1} \cdot g_{2}=0$, set $\tilde{P}_{n, 1}=g_{1} \cdot g_{2}$.
For the cubic family $p(z)=z^{3}-3 a^{2} z+b$, we obtain $g_{1} g_{2}=\left(p^{\circ(n-1)}(a)-2 a\right)\left(p^{\circ(n-1)}(-a)+2 a\right)=B_{n-1}^{2}-a^{2}\left(A_{n-1}-2\right)^{2}$, which coincides with the previous result.

Rational function $f(z)=\frac{p(z)}{q(z)}$

Consider $f(z)=\frac{p(z)}{q(z)}$ a rational function with two distinct simple critical points at ± 1 (after a coordinate change). Taylor development at $z=1$ is
$f(z)=f(1)+f^{\prime}(1)(z-1)+\frac{f^{\prime \prime}(1)}{2!}(z-1)^{2}+\cdots+\frac{f^{k}(1)}{k!}(z-1)^{k}+\cdots$.
Then $f(z)-f(1)=(z-1)^{2}\left(\frac{f^{\prime \prime}(1)}{2!}+\cdots+\frac{f^{k}(1)}{k!}(z-1)^{k-2}+\cdots\right)$.
Now plug in $z=f^{\circ(n-1)}(-1)$ into the above and obtain $f^{\circ n}(-1)-f(1)=\left(f^{\circ(n-1)}(-1)-1\right)^{2} \cdot g_{1}$, where $g_{1}=$ $\frac{f^{\prime \prime}(1)}{2!}+\frac{f^{\prime \prime \prime}(1)}{3!}\left(f^{\circ(n-1)}(-1)-1\right)+\cdots+\frac{f^{k}(1)}{k!}\left(f^{\circ(n-1)}(-1)-1\right)^{k-2}+\cdots$.

Similarly, Taylor development at $z=-1$ is

$$
f(z)=f(-1)+f^{\prime}(-1)(z+1)+\frac{f^{\prime \prime}(-1)}{2!}(z+1)^{2}+\cdots+\frac{f^{k}(-1)}{k!}(z+1)^{k}+\cdots
$$

Then $f(z)-f(-1)=(z+1)^{2}\left(\frac{f^{\prime \prime}(-1)}{2!}+\cdots+\frac{f^{k}(-1)}{k!}(z+1)^{k-2}+\cdots\right)$.
Now plug in $z=f^{\circ(n-1)}(1)$ into the above and obtain $f^{\circ n}(1)-f(-1)=\left(f^{\circ(n-1)}(1)+1\right)^{2} \cdot g_{2}$, where $g_{2}=$ $\frac{f^{\prime \prime}(-1)}{2!}+\frac{f^{\prime \prime \prime}(-1)}{3!}\left(f^{\circ(n-1)}(1)+1\right)+\cdots+\frac{f^{k}(-1)}{k!}\left(f^{\circ(n-1)}(1)+1\right)^{k-2}+\cdots$. Analogously, the exact critical orbit relation $(n, 1)$ reduces to $g_{1} g_{2}=0$.

Cubic rational functions $f(z)=z^{2} z+a-1$
 Cubic rational functions $f_{a}(z)=z^{2} \frac{z+1) z-1}{(a+1)}$

Let $f_{a}(z)=z^{2} \frac{z+a-1}{(a+1) z-1}$. The map $h(z)=1 / z$ conjugates f_{a} with f_{-a}. Consider parameters $a \neq 0$ such that there exists a pair of non-negative integers n and m with

$$
f_{a}^{\circ n}(z)=f_{a}^{\circ m}(w)
$$

where z and w are critical points of f_{a} which are roots of

$$
2(a+1) z^{2}+\left(a^{2}-4\right) z-2(a-1)=0
$$

If $a=-1, f_{-1}(z)=-z^{2}(z-2)$ is a polynomial. Its critical point $4 / 3$ converges to the parabolic fixed point at $z=1$ and do not make any orbit relations with ∞.

The main idea

Lemma

There exist sequences $\left\{A_{n}(a)\right\}_{n \geq 0},\left\{B_{n}(a)\right\}_{n \geq 0},\left\{C_{n}(a)\right\}_{n \geq 0}$ and $\left\{D_{n}(a)\right\}_{n \geq 0}$ of polynomials of a such that if z is a critical point of f_{a} then for all $n \geq 0$ the equality $f_{a}^{\circ n}(z)=\frac{A_{n}(a) z+B_{n}(a)}{C_{n}(a) z+D_{n}(a)}$ holds.

$$
\begin{aligned}
A_{n+1}(a)= & \left(a^{4}-4 a^{2}+12\right) A_{n}^{2}\left(A_{n}+(a-1) C_{n}\right) \\
& +12(a+1)^{2} A_{n} B_{n}^{2}-(a-1)\left(a^{2}-4\right) C_{n} \\
& +4(a-1)(a+1)^{2} B_{n}^{2} C_{n}-2(a+1) D_{n}(t) \\
& +A_{n}^{2}\left(-6(a+1)\left(a^{2}-4\right) B_{n}-2(a+1)\left(a^{2}-4\right) D_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
B_{n+1}(a)= & -2(a-1)\left(a^{2}-4\right) A_{n}^{3}+2(a-1) A_{n}^{2}\left(6(a+1) B_{n}\right. \\
& \left.-(a-1)\left(\left(a^{2}-4\right) C_{n}-2(a+1) D_{n}\right)\right) \\
& +8(a-1)^{2}(a+1) A_{n} B_{n} C_{n}+4(a+1)^{2} B_{n}^{2}\left((a-1) D_{n}+B_{n}\right) ; \\
C_{n+1}(a)= & (a+1) C_{n}^{2}\left(\left(a^{4}-4 a^{2}+12\right) A_{n}-2\left(a^{2}-4\right)\left((a+1) B_{n}-3 D_{n}\right)\right) \\
& -\left(a^{4}-4 a^{2}+12\right) C_{n}^{3}+4(a+1)^{3} A_{n} D_{n}^{2} \\
& -4(a+1)^{2} C_{n} D_{n}\left(\left(a^{2}-4\right) A_{n}-2(a+1) B_{n}+3 D_{n}\right) ; \\
D_{n+1}(a)= & -2(a-1) C_{n}^{2}\left((a+1)\left(a^{2}-4\right) A_{n}-2(1+a)^{2} B_{n}\right. \\
& \left.-\left(a^{2}-4\right) C_{n}\right)+4\left(a^{2}-1\right)\left(2(a+1) A_{n}\right. \\
& \left.-3 C_{n}\right) C_{n} D_{n}+4(a+1)^{3} B_{n} D_{n}^{2}-4(a+1)^{2} D_{n}^{3},
\end{aligned}
$$

with $A_{0}(a)=1$ and $B_{0}(a)=0, C_{0}(a)=0$ and $D_{0}(a)=1$.

Lemma

$a^{\left(3^{n}-3\right) / 2}$ divides each of $A_{n}(a), B_{n}(a), C_{n}(a), D_{n}(a),(a+1)^{2^{n+1}-1}$ divides each of $C_{n}(a), D_{n}(a)$ and $\operatorname{deg} A_{n}(a)=2 \cdot 3^{n}-2$, $\operatorname{deg} B_{n}(a)=2 \cdot 3^{n}-3, \operatorname{deg} C_{n}(a)=2 \cdot 3^{n}-3$, and $\operatorname{deg} D_{n}(a)=2 \cdot 3^{n}-4$ with the leading coefficients a_{n}, b_{n}, c_{n}, and d_{n} respectively that satisfy for all $n \geq 1$ recurrence relations

$$
\begin{aligned}
& a_{n+1}=a_{n}^{2}\left(a_{n}+c_{n}\right), b_{n+1}=-2 a_{n}^{2}\left(a_{n}+c_{n}\right), c_{n+1}=a_{n} c_{n}^{2}, \text { and } \\
& d_{n+1}=-2 a_{n} c_{n}^{2} \text { with } a_{1}=-1, b_{1}=2, c_{1}=4, \text { and } d_{1}=-4 .
\end{aligned}
$$

Set

$$
\begin{aligned}
P_{n, m}(a)= & \left(\left(a^{2}-4\right) A_{n} B_{n}+2(a-1) A_{n}^{2}-2(a+1) B_{n}^{2}\right)\left(\left(a^{2}-4\right) C_{m} D_{m}\right. \\
& \left.+2(a-1) C_{m}^{2}-2(a+1) D_{m}^{2}\right)+2(a+1) B_{m} D_{m}\left(\left(a^{2}-4\right) A_{n} D_{1}\right. \\
& \left.+\left(a^{2}-4\right) B_{n} C_{n}+4(a-1) A_{n} C_{n}-4(a+1) B_{n} D_{n}\right) \\
& +2\left((a-1) A_{m}^{2}-(a+1) B_{m}^{2}\right)\left(\left(a^{2}-4\right) C_{n} D_{n}+2(a-1) C_{n}^{2}\right. \\
& \left.-2(a+1) D_{n}^{2}\right)+A_{m}\left(-2(a-1) C_{m}\left(\left(a^{2}-4\right) A_{n} D_{n}\right.\right. \\
& \left.+\left(a^{2}-4\right) B_{n} C_{n}+4(a-1) A_{n} C_{n}-4(a+1) B_{n} D_{n}\right) \\
& +\left(a^{2}-4\right) B_{m}\left(\left(a^{2}-4\right) C_{n} D_{n}+2(a-1) C_{n}^{2}-2(a+1) D_{n}^{2}\right) \\
& -D_{m}\left(\left(a^{4}+8\right) A_{n} D_{n}-2(a+1) B_{n}\left(\left(a^{2}-4\right) D_{n}+4(a-1) C_{n}\right)\right. \\
& \left.\left.+2(a-1)\left(a^{2}-4\right) A_{n} C_{n}\right)\right)+B_{m} C_{m}\left(2 (a + 1) D _ { n } \left(\left(a^{2}-4\right) B_{n}\right.\right. \\
& \left.\left.+4(a-1) A_{n}\right)-C_{n}\left(\left(a^{4}+8\right) B_{n}+2(a-1)\left(a^{2}-4\right) A_{n}\right)\right) .
\end{aligned}
$$

and

$$
P_{n, n}(a)=A_{n}(a) D_{n}(a)-B_{n}(a) C_{n}(a) .
$$

The critical orbit relation (n, m) is equivalent to $P_{n, m}(a)=0$.

Theorem (Main)

In the family $f_{a}(z)=z^{2} \frac{z+a-1}{(a+1) z-1}$ all critical orbit relations are realized except $(1,1)$.

Case of (n, n)

Set

$$
\begin{aligned}
\tilde{P}_{n, n}(a)= & 2\left(a^{2}-1\right) A_{n-1}^{3}\left(\left(a^{2}-4\right) D_{n-1}+4(a-1) C_{n-1}\right) \\
& +A_{n-1}^{2}\left(D _ { n - 1 } \left(2(a-1)\left(a^{2}-4\right)^{2} C_{n-1}\right.\right. \\
& \left.+(a+1)\left(a^{4}-16 a^{2}+24\right) B_{n-1}\right)+\left(-5 a^{4}+12 a^{2}-16\right) D_{n-1}^{2} \\
& \left.+2(a-1)\left(a^{2}-4\right) C_{n-1}\left(3(a+1) B_{n-1}+2(a-1) C_{n-1}\right)\right) \\
& +B_{n-1}\left(-2(a+1)^{2} B_{n-1}^{2}\left(\left(a^{2}-4\right) C_{n-1}-4(a+1) D_{n-1}\right)\right. \\
& -(a-1)\left(\left(a^{2}-4\right) C_{n-1}-4(a+1) D_{n-1}\right)\left(\left(a^{2}-4\right) C_{n-1} D_{n-1}\right. \\
& \left.+2(a-1) C_{n-1}^{2}-2(a+1) D_{n-1}^{2}\right) \\
& +B_{n-1}\left(-2(a+1)\left(a^{2}-4\right)^{2} C_{n-1} D_{n-1}\right. \\
& \left.\left.+4(a+1)^{2}\left(a^{2}-4\right) D_{n-1}^{2}+\left(-5 a^{4}+12 a^{2}-16\right) C_{n-1}^{2}\right)\right)
\end{aligned}
$$

cont. $+A_{n-1}\left(-(a-1)\left(\left(a^{2}-4\right) D_{n-1}+4(a-1) C_{n-1}\right)\right.$

$$
\begin{aligned}
& \left(\left(a^{2}-4\right) C_{n-1} D_{n-1}+2(a-1) C_{n-1}^{2}-2(a+1) D_{n-1}^{2}\right) \\
& +(a+1) B_{n-1}^{2}\left(\left(a^{4}-16 a^{2}+24\right) C_{n-1}\right. \\
& \left.-6(a-2)(a+1)(a+2) D_{n-1}\right)+B_{n-1}\left(2(a-1)\left(a^{2}-4\right)^{2} C_{n-1}^{2}\right. \\
& \left.\left.-2(a+1)\left(a^{2}-4\right)^{2} D_{n-1}^{2}+\left(a^{6}-10 a^{4}+64 a^{2}-64\right) C_{n-1} D_{n-1}\right)\right)
\end{aligned}
$$

Proposition

For all $n \geq 2, P_{n, n}(a)=4(a+1)^{2} P_{n-1, n-1}(a) \cdot \tilde{P}_{n, n}(a)$ holds with $\operatorname{deg} \tilde{P}_{n, n}(a) /\left(a^{2 \cdot 3^{n-1}}(a+1)^{2 \cdot 3^{n-1}-2}\right)=2 \cdot 3^{n-1}$.

Proposition

For all $n \geq 2, P_{n, n}(a)=4(a+1)^{2} P_{n-1, n-1}(a) \cdot \tilde{P}_{n, n}(a)$ holds with $\operatorname{deg} \tilde{P}_{n, n}(a) /\left(a^{2 \cdot 3^{n-1}}(a+1)^{2 \cdot 3^{n-1}-2}\right)=2 \cdot 3^{n-1}$.

It yields that if (n, n) relation is minimal then $\tilde{P}_{n, n}(a)=0$. As $\tilde{P}_{1,1}(a)=-a^{2}\left(a^{2}+8\right)$ there is no critical orbit relation of $(1,1)$. Actually, the critical orbit relation is $(0,0)$ as $a^{2}\left(a^{2}+8\right)$ is the discriminate of the critical point equation.

Proposition

For all $n \geq 2, P_{n, n}(a)=4(a+1)^{2} P_{n-1, n-1}(a) \cdot \tilde{P}_{n, n}(a)$ holds with $\operatorname{deg} \tilde{P}_{n, n}(a) /\left(a^{2 \cdot 3^{n-1}}(a+1)^{2 \cdot 3^{n-1}-2}\right)=2 \cdot 3^{n-1}$.
It yields that if (n, n) relation is minimal then $\tilde{P}_{n, n}(a)=0$. As $\tilde{P}_{1,1}(a)=-a^{2}\left(a^{2}+8\right)$ there is no critical orbit relation of $(1,1)$. Actually, the critical orbit relation is $(0,0)$ as $a^{2}\left(a^{2}+8\right)$ is the discriminate of the critical point equation.
The case of (n, n) factors as following.

Corollary

$P_{n, n}(a)=4^{n}(a+1)^{2 n} \tilde{P}_{1,1}(a) \tilde{P}_{2,2}(a) \cdots \tilde{P}_{n-1, n-1}(a) \tilde{P}_{n, n}(a)$ holds for all $n \geq 2$.

Cases of $(n, 0)$ and $(n, 1)$

Set

$$
\begin{aligned}
\tilde{P}_{n+1,1}(a)= & 2\left(a^{2}-1\right) A_{n}^{2}-2(a+1)^{2} B_{n}^{2}+A_{n}\left(2(a-1)\left(a^{2}+2\right) C_{n}\right. \\
& \left.-\left(5 a^{2}+4\right) D_{n}+(a-2)(a+1)(a+2) B_{n}\right) \\
& +(a+1) B_{n}\left((a-1)\left(a^{2}+4\right) C_{n}-2\left(a^{2}+2\right) D_{n}\right) \\
& -(a-1)\left(\left(a^{2}-4\right) C_{n} D_{n}+2(a-1) C_{n}^{2}-2(a+1) D_{n}^{2}\right), \\
P_{n, 0}(a)= & 4\left(a^{2}-1\right)\left(A_{n}^{2}+D_{n}^{2}\right)-4\left((a+1) B_{n}+(a-1) C_{n}\right)^{2} \\
& +2\left(a^{2}-4\right)\left(A_{n}-D_{n}\right)\left((a+1) B_{n}+(a-1) C_{n}\right) \\
& +\left(a^{4}+8\right) A_{n} D_{n} .
\end{aligned}
$$

Note that $A_{1}(a)=-a^{4}+6 a^{2}+4, B_{1}(a)=2(a-1)\left(a^{2}+2\right)$,
$C_{1}(a)=4(a+1)^{3}, D_{1}(a)=-4(a+1)^{2}$.

Proposition

$P_{n+1,1}(a)=16 a^{2}(1+a)^{4} P_{n, 0}^{2}(a) \tilde{P}_{n+1,1}(a)$ with $\operatorname{deg} P_{n, 0}(a) /\left(a^{3^{n}+1}(a+1)^{3^{n}-1}\right)=3^{n}+1$ holds for all $n \geq 1$.

Some examples

$P_{1,0}(a)=a^{4}+12 a^{2}+68$,
$P_{2,0}(a)=9 a^{10}+116 a^{8}+1932 a^{6}+10896 a^{4}+35984 a^{2}+10112$,
$\tilde{P}_{2,1}(a)=9 a^{4}+56 a^{2}+16$,
$\tilde{P}_{2,2}(a)=a^{6}+8 a^{4}+56 a^{2}+16$,
$P_{3,0}(a)=13689 a^{28}+179100 a^{26}+6874588 a^{24}+94460304 a^{22}+$
$1225422576 a^{20}+10841205568 a^{18}+76505084288 a^{16}+$ $392572421632 a^{14}+1527281530112 a^{12}+4123190390784 a^{10}+$ $7458475134976 a^{8}+6466193604608 a^{6}+2436690755584 a^{4}+$ $369190502400 a^{2}+14524874752$, $\tilde{P}_{3,1}(a)=169 a^{10}+1616 a^{8}+8432 a^{6}+28608 a^{4}+19200 a^{2}+1024$,

Some examples

$\tilde{P}_{3,2}(a)=13689 a^{24}+248832 a^{22}+4837752 a^{20}+54139104 a^{18}+$ $492002832 a^{16}+3000822272 a^{14}+14056360704 a^{12}+$ $43529908736 a^{10}+93937358848 a^{8}+87954415616 a^{6}+$ $34018004992 a^{4}+5179047936 a^{2}+202375168$, $\tilde{P}_{3,3}(a)=$ $1521 a^{18}+15080 a^{16}+316912 a^{14}+2485344 a^{12}+16203168 a^{10}+$ $58029440 a^{8}+151108096 a^{6}+126720256 a^{4}+31131648 a^{2}+1409024$, $\tilde{P}_{4,1}(a)=423801 a^{28}+6546872 a^{26}+104315104 a^{24}+$ $1161470304 a^{22}+10072950592 a^{20}+66979653504 a^{18}+$ $335044251904 a^{16}+1279180918784 a^{14}+3481356134400 a^{12}+$ $6537205153792 a^{10}+6880747786240 a^{8}+3452825862144 a^{6}+$ $770545090560 a^{4}+60874031104 a^{2}+687865856$.

Table: Degree of $\tilde{P}_{n, m}(a)$ for (n, m) up to $(6,6)$.

Proposition

For all $n \geq 2$ one has $\operatorname{deg} \tilde{P}_{(n, 1)}(a)=\operatorname{deg} \tilde{P}_{(n-1,0)}(a)=3^{n-1}+1$ and $\operatorname{deg} \tilde{P}_{(n, n)}(a)=2 \cdot 3^{n-1}$ for $n \geq 2$. For all $n \geq 3$ and $2 \leq k \leq n-1$, $\operatorname{deg} \tilde{P}_{(n, k)}(a)=2 \cdot 3^{n-1}+2 \cdot 3^{k-1}$ holds.

〈口－〈甸

Open problems

We need to study the irreducibility of obtained polynomials $\tilde{P}_{n, m}$. Another research direction is to study the distribution of functions with critical orbit relations in the moduli space.

Thank you.

