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Quasi-Fuchsian and quasi-Blaschke

Bers’ simultaneous uniformization theorem: can combine two Fuchsian
group actions on D, and obtain a unique quasi-Fuchsian group.

Using the Ahlfors-Beurling extension theorem, one can prove that two
Blaschke products of the same degree, each having an attracting fixed
point in D, can be mated to obtain a unique rational map with a
quasi-circle Julia set.

How to go beyond expanding? (Haissinsky gave partial asnwers.)

How to combine the above two operations?
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David homeomorphisms

U,V ⇢ bC, � spherical measure.
H : U ! V o.p. homeo is David if H 2 W

1,1
loc (U) and 9↵,C , "0 > 0

such that

�({|µH | � 1 � "})  Ce
�↵/", "  "0, (1)

where µH = Hz/Hz .

Theorem (David Integrability Theorem)

Let µ : bC ! D be a David coefficient; i.e., µ is a measurable function
satisfying Condition (1).

Then there exists a homeomorphism H : bC ! bC of class 2 W
1,1(bC) that

solves the Beltrami equation

Hz = µHz .

Moreover, H is unique up to postcomposition with Möbius transformations.



Maps orbit equivalent to groups

To address the incompatibility of group dynamics vs semigroup dynamics of
maps, associate a piecewise (anti-)Möbius map A : S1

! S1 to a
Fuchsian/reflection group � that is

1) topologically z
d or zd , and

2) orbit equivalent to �, i.e., �.x = Grand orbit of x under A, 8x 2 S1.
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Special case of a David extension theorem

Theorem (Lyubich-Merenkov-Ntalampekos-M)
Let f : S1

! S1 be a piecewise analytic, C 1, expansive covering map of
degree d (with d � 2) such that the pieces of f satisfy a ‘complex Markov
property’.
Then there exists an orientation-preserving homeomorphism h : S1

! S1

that conjugates the map z 7! z
d or z 7! z

d to f and continuously extends
to a David homeomorphism of D.

The above result, combined with the David Integrability Theorem,
gives a unified approach to

turn hyperbolic (anti-)rational maps to parabolic ones,

construct Kleinian reflection groups from critically fixed anti-rational

maps,

combine (anti-)polynomials and Fuchsian/reflection groups to produce

hybrid dynamical systems, and

construct Bullett-Penrose type correspondences (not today).
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Mating piecewise analytic circle maps

Theorem (Lyubich-Merenkov-M-Ntalampekos)
Let f , g : S1

! S1 be two piecewise analytic, C 1, expansive covering maps
of the same degree d (with d � 2) such that the pieces of f and g satisfy
a ‘complex Markov property’.
Then the piecewise extensions of f and g (to subsets of D) are conformally
mateable.
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Doubly cusped conformally removable Julia set

The above mating is a cubic rational map with two parabolic fixed
points.
More generally, a connected Julia set of a geometrically finite rational
map with a completely invariant Fatou component is conf. removable.
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Deltoid reflection as a mating

Mating must be a Schwarz

q"E reflection
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Mating ideal triangle with cauliflower
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Necklace reflection groups

Necklace reflection groups: Closure of the Bers slice of an ideal
polygon reflection group.

Necklace groups are in bijection with critically fixed anti-polynomials.

Their limit sets are conformally removable.



Mating anti-polynomials with necklace groups

Theorem (Lyubich-Merenkov-Ntalampekos-M)
Let P be a post-critically finite, hyperbolic anti-polynomial of degree d ,
and � be a necklace group of rank d + 1 . Then,
P and N� are conformally mateable
() they are Moore-unobstructed (i.e., they are topologically mateable).
Moreover, the conformal mating is a piecewise Schwarz reflection map.



Conformal welding

�1
�2D

D
�

��1
2 � �1 : S1

! S1 is called the welding map of the Jordan curve �.
It is well-known that quasisymmetric circle homeomorphisms are
welding maps for unique Jordan curves.

Theorem (Lyubich-Merenkov-M-Ntalampekos)
Let f , g : S1

! S1 be two piecewise analytic, C 1, expansive covering maps
of the same degree d (with d � 2) such that the pieces of f and g satisfy
a ‘complex Markov property’.
Then, f and g are topologically conjugate, and any conjugacy is a welding
map. Moreover, the associated Jordan curve is conformally removable, and
hence the welding solution is unique.



Mating polynomials with Fuchsian punctured sphere groups

Theorem (M-Mj)
Let � 2 Teich(S0,d+1) and P 2 H2d�1 (where H2d�1 is the principal
hyperbolic component of degree 2d � 1 polynomials).
Then the Bowen-Series map A�,BS : D \ int⇧ ! D can be conformally
mated with P : K(P) ! K(P).

The resulting conformal mating F : ⌦ ! bC is given by:

where D is a Jordan domain that
is mapped inside out by 1/z ,
and R is a rational map univa-
lent on D with ⌦ = R(D).
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Mating polynomials with Fuchsian punctured sphere groups

The parameter space of matings produced by the previous theorem

= Teich(S0,d+1)⇥H2d�1.

Questions:
Describe compactifications of various Bers slices in the above space of

matings.

Study continuity/discontinuity of boundary extensions of conformal

isomorphisms between Bers slices.

Where is the HD of the limit set minimized?

Does the HD of the limit set vary real-analytically?

Is the variation of the HD related to natural Riemannian metrics on the

moduli space?



Mating groups in different Teichmüller spaces

Both A1,A2 are piecewise Möbius, C 1, expansive degree 9 covering of
S1 satisfying the complex Markov property.

A1 is orbit equivalent to S0,4, while A2 is orbit equivalent to S0,6

Conformal matings of A1,A2 are parametrized by
Teich(S0,4)⇥ Teich(S0,6).

Questions: What is the space of matings?
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Thank you!


