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THE MAXIMUM MODULUS SET

Let f : C → C be an entire map. As usual,

M(r, f) ..= max
|z|=r

|f(z)|, for r ≥ 0

is the maximum modulus.

Definition
The set of points where f attains its maximum modulus is its
maximum modulus set. That is,

M(f) ..= {z ∈ C : |f(z)| = M(|z|, f)}.

Remark: If f is a monomial, thenM(f) = C. We ignore this case.
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OVERVIEW

Goal: Historical overview of results + open questions.

I Blumenthal’s pioneering work

I Discontinuities ofM(f)

I Singletons inM(f)

I Structure near the origin

I Structure near infinity
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BLUMENTHAL’S PIONEERING WORK



BLUMENTHAL’S PIONEERING WORK

Otto Blumenthal seems to be the first person who studied this set:

Theorem (Blumenthal, 1907)

For f entire,M(f) consists of an, at most countable, union of closed
curves, which are analytic except at their endpoints, and may or may
not be unbounded.

⋆ For fixed r, we are interested in a subset of maxima of ϑ 7→ |f(reiϑ)|.

Proof can also be found in:
Valiron, G. Lectures on the general theory of integral functions. Chelsea (1949).
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EXCEPTIONAL VALUES

Blumenthal studied exceptional values of r, where analyticity of
maximum curves is “broken”, and classified them into two types:

I first kind: values for which different maximum curves meet.

I second kind: values for which some maximum curve has an
endpoint.

We refer to those of the second kind as discontinuities:

Definition
M(f) has a discontinuity of modulus r if there is a connected
component Γ ofM(f) such that min{|z| : z ∈ Γ} = r.
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EXCEPTIONAL VALUES

Blumenthal provided an example of a quadratic polynomial p for
whichM(p) has exceptional values of the first kind:

Remark: Nobody else seems to have studied this phenomenon!

He didn’t provide any example of f for whichM(f) has
discontinuities, but he conjectured that there is a cubic polynomial
with this property.
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DISCONTINUITIES OF M(f)



HARDY’S EXAMPLE

Hardy was the first to construct maximum modulus sets with
discontinuities.

Theorem (Hardy, 1909)

For the transcendental entire function

f(z) ..= α exp
(
ez

2
+ sin z

)
, with α > 0 large,

M(f) has infinitely many discontinuities.

Namely, far away from 0,M(f) consists of real intervals.
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PRESCRIBING DISCONTINUITIES

We generalize Hardy’s result by specifying the moduli of the
discontinuities.

Theorem (P., Sixsmith, 2020)

Let (rn)n∈N be a sequence of positive real numbers tending to
infinity. Then there is a transcendental entire function f ∈ B such
thatM(f) has a discontinuity at rn, for all n ∈ N.
If there is C > 1 such that rn+1 > Crn for all n, then f can be chosen of
finite order.

I f ∈ B if { asymptotic and critical values of f } is bounded;
(Eremenko-Lyubich class).

I f has finite order of growth if log log |f(z)| = O(log |z|).
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PRESCRIBING DISCONTINUITIES

-We take logarithmic coordinates and design tracts that forceM(f)
to “jump” at real parts close to xn = log rn.

-We extend to an entire map using Cauchy integrals; [Rempe 14’].

Question: Can we specify the location of the discontinuities?
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DISCONTINUITIES OF POLYNOMIALS

In 1986, Jassim and London solved Blumenthal’s conjecture, proving
that for

p(z) = z3 + az2 − z+ b with b > 0 and ab > 1+ 2b,

M(p) must have a discontinuity.

We can again specify moduli of discontinuities:

Theorem (P., Sixsmith, 2021)

Suppose r1, r2, ..., rn is a finite sequence of positive real numbers.
Then there exists a polynomial p, of degree 2n+ 1, such thatM(p)
has discontinuities of moduli r1, r2, ..., rn.
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DISCONTINUITIES OF POLYNOMIALS

This time, our methods are much more elementary.

p(z) ..= 1000(z2 + 1) + z(z2 − 0.25)(z2 − 1)(z2 − 4).

Proof

Questions: Can we specify the location of the discontinuities? Can
we improve the degree of the polynomials?
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SINGLETONS IN M(f)



SINGLETONS IN M(f)

Clunie asked whetherM(f) could have isolated points.

In his PhD thesis, Tyler, a student of Hayman, answered positively
Clunie’s question:

Theorem (Tyler, 2000)

The following transcendental entire function

f(z) ..= α exp
(
ez

2
+ 2z sin2 z

)
and the polynomial

p(z) = α(1+ z2)2 + z(z2 − 1)2, where α > 1,

have isolated points in their maximum modulus sets.
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PRESCRIBING SINGLETONS

Theorem (P., Sixsmith, 2021)

Suppose r1, r2, . . . , rn is a finite sequence of distinct positive real
numbers. Then there exists a polynomial p, of degree 4n+ 1, such
thatM(p) has singletons at the points r1, r2, . . . , rn.

p̃(z) ..= 100(z2 + 1)− z(z2 − 0.25)2(z2 − 1)2. Proof
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PRESCRIBING SINGLETONS

Theorem (P., Sixsmith, 2021)

Suppose r1, r2, ..., rn is a finite sequence of distinct positive real
numbers. Then there exists a polynomial p, of degree 4n+ 1, such
thatM(p) has singletons at the points r1, r2, ..., rn.

Questions:

I Can we specify the location of the singletons?

I Can we improve the degree of the polynomials?

I Can we prescribe singletons inM(f) for f transcendental entire?
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STRUCTURE NEAR THE ORIGIN



WHAT HAPPENS NEAR THE ORIGIN?

In 1951, Hayman studied the structure ofM(f) near the origin.

Remark: For f,g entire, if a 6= 0, m ∈ Z and g(z) = azmf(z), then
M(g) = M(f).

From now on we assume that f is entire and of the form

f(z) = 1+ azk + h.o.t, for a 6= 0 and k ∈ N.

Theorem (Hayman, 1951)

Near the origin,M(f) consists of at most k analytic curves, only
meeting at zero, any of two making an angle of 2mπ/k with each
other, for some m ∈ Z.
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WHAT HAPPENS NEAR THE ORIGIN?

Definition
For f entire as before, its inner degree is the maximal µ ∈ N such that
f(z) = f̃(zµ) for some entire f̃.

If finitely many terms in the Taylor expansion of f satisfy a certain
algebraic condition, then we say that f is exceptional. AC

Remark: Most entire f are not exceptional.

Theorem (P., Sixsmith, Evdoridou, 2021)

If f is entire and not exceptional, thenM(f) consists of exactly µ
analytic curves that meet at zero. Otherwise, it consists of a multiple
of µ.
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MAGIC FUNCTIONS

Let Jf be the number of analytic curves that compriseM(f) near zero.

Definition
We say that f is magic if Jf > µf.

p(z) ..= 1+ z2 + iz3
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MAGIC FUNCTIONS

Let Jf be the number of analytic curves that compriseM(f) near zero.

Definition
We say that f is magic if Jf > µf.

Remark: If f is magic, then f is exceptional.

The converse is not true (J. Osborne, personal communication).

Questions:

I Is there a necessary and sufficient condition for a function to be
magic?

I How many curves are there near the origin for a magic function?
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STRUCTURE NEAR INFINITY



WHAT HAPPENS NEAR INFINITY?

For polynomials, this is essentially the same question as near the
origin:

I For p a polynomial of degree n, consider its reciprocal polynomial

q(z) ..= znp(1/z).

I It holds that

z ∈ M(p) \ {0} ⇐⇒ 1/z ∈ M(q) \ {0}.

I Hence, the results near the origin forM(q) translate into results
near infinity forM(p).
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ON ERDŐS’ PROBLEM

For transcendental entire maps, this question is open.

For each r > 0 and f entire, let

v(r) ..= #(M(f) ∩ {z ∈ C : |z| = r}). (1)

Erdős’ questions (1964)

Let f be a non-monomial entire function.
(a) Can the function v be unbounded, i.e., can lim supr→∞ v(r) = ∞?
(b) Can the function v tend to infinity, i.e., can lim infr→∞ v(r) = ∞?

I In 1968, Hergoz and Piranian constructed f such that v(n) = n for
all n ∈ N, answering (a) positively.

I (b) remains open to this date.
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ON ERDŐS’ PROBLEM

Fix f entire. For each r, ϵ > 0, let v(r, ϵ) be the number of arcs in

{ϑ ∈ [0, 2π) : |f(reiϑ)| > M(r, f)− ϵ}.

Theorem (P., Glücksam, 2022)

There is an entire function f for which for every ϵ > 0 and N ∈ N,
there exists R = R(ϵ,N) so that for all r > R,

v(r, ϵ) > N.

I Our techniques rely on approximation theory, and so we cannot
guarantee thatM(f) intersects all arcs.

Proof
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BEYOND ENTIRE MAPS

Theorem (Fletcher, Sixsmith, 2021)

Let n ≥ 2, and let T ⊂ Rn be a closed set which contains a point of
every modulus. Then, there is a quasiregular map h such that
M(h) = T.
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SUMMARY OF QUESTIONS

I Can we prescribe exceptional values of the first kind?

I Can we specify the location of discontinuities?

I Can we improve the degree of the polynomials on the results on
discontinuities and singletons ofM(p)?

I Can we prescribe singletons ofM(f) for f transcendental entire?

I Is there a necessary and sufficient condition for a function to be
magic?

I How many curves are there near the origin for a magic function?

I (Erdős) Is it possible that lim infr→∞ M(f) ∩ ∂Dr = ∞?
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DISCONTINUITIES OF POLYNOMIALS

Let p̂ be a polynomial with only real coefficients, and choose
0 < R < R′. For a > 0, set

p(z) ..= a(z2 + 1) + p̂(z).

If a is sufficiently large, then

z ∈ M(p) and R ≤ |z| ≤ R′ =⇒ Im z = 0.

If p̂ is odd, then

M(p) ∩ {z ∈ C : |z| = r} =


{r} if p̂(r) > 0,

{−r} if p̂(r) < 0,

{−r, r} if p̂(r) = 0.

We choose
p̂(z) ..= z(z2 − r21)(z2 − r22) . . . (z2 − r2n).

Polynomial discontinuities
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SINGLETONS OF POLYNOMIALS

Let p̂ be a polynomial with only real coefficients, and choose
0 < R < R′. For a > 0, set

p(z) ..= a(z2 + 1) + p̂(z).

If a is sufficiently large, then

z ∈ M(p) and R ≤ |z| ≤ R′ =⇒ Im z = 0.

If p̂ is odd, then

M(p) ∩ {z ∈ C : |z| = r} =


{r} if p̂(r) > 0,

{−r} if p̂(r) < 0,

{−r, r} if p̂(r) = 0.

We choose

p̂(z) ..= −z(z2 − r21)2(z2 − r22)2 . . . (z2 − r2n)2.
Singletons 32



EXCEPTIONAL FUNCTIONS

Let f be entire and of the form

f(z) ..= 1+ azk +
∞∑

σ=k+1

bσzσ.

Let pk(z) ..= 1+ azk, and for each n > k, define

pn(z) ..= 1+ azk +
n∑

σ=k+1

bσzσ.

There is some least N ≥ k such that µpN = µf.

Definition
We say that f is exceptional if there exist m ∈ {1, . . . , 2k− 3}, m′ ∈ Z,
and σ ∈ {k+ 1, . . . ,N}, such that bσ 6= 0 and also

mπ =
k
σ
(m′π − arg bσ) + arg a.

Near the origin 33



SKETCH OF PROOF

I For each n ∈ N, let en(z) ..= exp(zn). Then, for each r > 0, v(r) = n
and between every two maximum modulus points, there is an arc
with |en| < 1.

I Our function f acts like e2n in pieces of sectors Sn, up to an error
ϵn → 0, and max |f| is smaller elsewhere. Erdős
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