THE MAXIMUM MODULUS SET OF AN ENTIRE MAP

Leticia Pardo-Simón

(joint work with V. Evdoridou, A. Glücksam and D. Sixsmith)
$15^{\text {th }}$ August, 2022

The University of Manchester

Bedlewo, On geometric complexity of Julia sets IV

THE MAXIMUM MODULUS SET

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire map. As usual,

$$
M(r, f):=\max _{|z|=r}|f(z)|, \quad \text { for } r \geq 0
$$

is the maximum modulus.

Definition

The set of points where f attains its maximum modulus is its maximum modulus set. That is,

$$
\mathcal{M}(f):=\{z \in \mathbb{C}:|f(z)|=M(|z|, f)\} .
$$

Remark: If f is a monomial, then $\mathcal{M}(f)=\mathbb{C}$. We ignore this case.

OVERVIEW

Goal: Historical overview of results + open questions.

- Blumenthal's pioneering work
- Discontinuities of $\mathcal{M}(f)$
- Singletons in $\mathcal{M}(f)$
- Structure near the origin
- Structure near infinity

BLUMENTHAL'S PIONEERING WORK

BLUMENTHAL'S PIONEERING WORK

Otto Blumenthal seems to be the first person who studied this set:

Theorem (Blumenthal, 1907)

For f entire, $\mathcal{M}(f)$ consists of an, at most countable, union of closed curves, which are analytic except at their endpoints, and may or may not be unbounded.
\star For fixed r, we are interested in a subset of maxima of $\vartheta \mapsto\left|f\left(r e^{i \vartheta}\right)\right|$.

Proof can also be found in:
Valiron, G. Lectures on the general theory of integral functions. Chelsea (1949).

EXCEPTIONAL VALUES

Blumenthal studied exceptional values of r, where analyticity of maximum curves is "broken", and classified them into two types:

- first kind: values for which different maximum curves meet.
- second kind: values for which some maximum curve has an endpoint.

We refer to those of the second kind as discontinuities:

Definition

$\mathcal{M}(f)$ has a discontinuity of modulus r if there is a connected component Γ of $\mathcal{M}(f)$ such that $\min \{|z|: z \in \Gamma\}=r$.

EXCEPTIONAL VALUES

Blumenthal provided an example of a quadratic polynomial p for which $\mathcal{M}(p)$ has exceptional values of the first kind:

Remark: Nobody else seems to have studied this phenomenon!
He didn't provide any example of f for which $\mathcal{M}(f)$ has discontinuities, but he conjectured that there is a cubic polynomial with this property.

DISCONTINUITIES OF M(f)

HARDY'S EXAMPLE

Hardy was the first to construct maximum modulus sets with discontinuities.

Theorem (Hardy, 1909)

For the transcendental entire function

$$
f(z):=\alpha \exp \left(e^{z^{2}}+\sin z\right), \quad \text { with } \alpha>0 \text { large },
$$

$\mathcal{M}(f)$ has infinitely many discontinuities.

Namely, far away from $0, \mathcal{M}(f)$ consists of real intervals.

PRESCRIBING DISCONTINUITIES

We generalize Hardy's result by specifying the moduli of the discontinuities.

Theorem (P., Sixsmith, 2020)
Let $\left(r_{n}\right)_{n \in \mathbb{N}}$ be a sequence of positive real numbers tending to infinity. Then there is a transcendental entire function $f \in \mathcal{B}$ such that $\mathcal{M}(f)$ has a discontinuity at r_{n}, for all $n \in \mathbb{N}$. If there is $C>1$ such that $r_{n+1}>C r_{n}$ for all n, then f can be chosen of finite order.

- $f \in \mathcal{B}$ if $\{$ asymptotic and critical values of $f\}$ is bounded; (Eremenko-Lyubich class).
- f has finite order of growth if $\log \log |f(z)|=O(\log |z|)$.

PRESCRIBING DISCONTINUITIES

-We take logarithmic coordinates and design tracts that force $\mathcal{M}(f)$ to "jump" at real parts close to $x_{n}=\log r_{n}$.

-We extend to an entire map using Cauchy integrals; [Rempe 14'].
Question: Can we specify the location of the discontinuities?

DISCONTINUITIES OF POLYNOMIALS

In 1986, Jassim and London solved Blumenthal's conjecture, proving that for

$$
p(z)=z^{3}+a z^{2}-z+b \quad \text { with } b>0 \text { and } a b>1+2 b,
$$

$M(p)$ must have a discontinuity.
We can again specify moduli of discontinuities:
Theorem (P., Sixsmith, 2021)
Suppose $r_{1}, r_{2}, \ldots, r_{n}$ is a finite sequence of positive real numbers.
Then there exists a polynomial p, of degree $2 n+1$, such that $\mathcal{M}(p)$ has discontinuities of moduli $r_{1}, r_{2}, \ldots, r_{n}$.

DISCONTINUITIES OF POLYNOMIALS

This time, our methods are much more elementary.

$$
p(z):=1000\left(z^{2}+1\right)+z\left(z^{2}-0.25\right)\left(z^{2}-1\right)\left(z^{2}-4\right) .
$$

Questions: Can we specify the location of the discontinuities? Can we improve the degree of the polynomials?

SINGLETONS IN M(f)

SINGLETONS IN M(f)

Clunie asked whether $\mathcal{M}(f)$ could have isolated points.
In his PhD thesis, Tyler, a student of Hayman, answered positively Clunie's question:

Theorem (Tyler, 2000)

The following transcendental entire function

$$
f(z):=\alpha \exp \left(e^{z^{2}}+2 z \sin ^{2} z\right)
$$

and the polynomial

$$
p(z)=\alpha\left(1+z^{2}\right)^{2}+z\left(z^{2}-1\right)^{2}, \text { where } \alpha>1,
$$

have isolated points in their maximum modulus sets.

PRESCRIBING SINGLETONS

Theorem (P., Sixsmith, 2021)

Suppose $r_{1}, r_{2}, \ldots, r_{n}$ is a finite sequence of distinct positive real numbers. Then there exists a polynomial p, of degree $4 n+1$, such that $\mathcal{M}(p)$ has singletons at the points $r_{1}, r_{2}, \ldots, r_{n}$.

$$
\tilde{p}(z):=100\left(z^{2}+1\right)-z\left(z^{2}-0.25\right)^{2}\left(z^{2}-1\right)^{2} .
$$

PRESCRIBING SINGLETONS

Theorem (P., Sixsmith, 2021)
Suppose $r_{1}, r_{2}, \ldots, r_{n}$ is a finite sequence of distinct positive real numbers. Then there exists a polynomial p, of degree $4 n+1$, such that $\mathcal{M}(p)$ has singletons at the points $r_{1}, r_{2}, \ldots, r_{n}$.

Questions:

- Can we specify the location of the singletons?
- Can we improve the degree of the polynomials?
- Can we prescribe singletons in $\mathcal{M}(f)$ for f transcendental entire?

STRUCTURE NEAR THE ORIGIN

WHAT HAPPENS NEAR THE ORIGIN?

In 1951, Hayman studied the structure of $\mathcal{M}(f)$ near the origin.
Remark: For f, g entire, if $a \neq 0, m \in \mathbb{Z}$ and $g(z)=a z^{m} f(z)$, then $\mathcal{M}(g)=\mathcal{M}(f)$.
From now on we assume that f is entire and of the form

$$
f(z)=1+a z^{k}+\text { h.o.t, } \quad \text { for } a \neq 0 \text { and } k \in \mathbb{N} .
$$

Theorem (Hayman, 1951)

Near the origin, $\mathcal{M}(f)$ consists of at most k analytic curves, only meeting at zero, any of two making an angle of $2 m \pi / k$ with each other, for some $m \in \mathbb{Z}$.

WHAT HAPPENS NEAR THE ORIGIN?

Definition

For f entire as before, its inner degree is the maximal $\mu \in \mathbb{N}$ such that $f(z)=\tilde{f}\left(z^{\mu}\right)$ for some entire \tilde{f}.

If finitely many terms in the Taylor expansion of f satisfy a certain algebraic condition, then we say that f is exceptional.

Remark: Most entire f are not exceptional.
Theorem (P., Sixsmith, Evdoridou, 2021)
If f is entire and not exceptional, then $\mathcal{M}(f)$ consists of exactly μ analytic curves that meet at zero. Otherwise, it consists of a multiple of μ.

MAGIC FUNCTIONS

Let J_{f} be the number of analytic curves that comprise $\mathcal{M}(f)$ near zero.

Definition

We say that f is magic if $J_{f}>\mu_{f}$.

$$
p(z):=1+z^{2}+i z^{3}
$$

MAGIC FUNCTIONS

Let J_{f} be the number of analytic curves that comprise $\mathcal{M}(f)$ near zero.

Definition

We say that f is magic if $J_{f}>\mu_{f}$.

Remark: If f is magic, then f is exceptional.
The converse is not true (J. Osborne, personal communication).

Questions:

- Is there a necessary and sufficient condition for a function to be magic?
- How many curves are there near the origin for a magic function?

STRUCTURE NEAR INFINITY

WHAT HAPPENS NEAR INFINITY?

For polynomials, this is essentially the same question as near the origin:

- For p a polynomial of degree n, consider its reciprocal polynomial

$$
q(z):=z^{n} p(1 / z) .
$$

- It holds that

$$
z \in \mathcal{M}(p) \backslash\{0\} \Longleftrightarrow 1 / z \in \mathcal{M}(q) \backslash\{0\}
$$

- Hence, the results near the origin for $\mathcal{M}(q)$ translate into results near infinity for $\mathcal{M}(p)$.

For transcendental entire maps, this question is open.
For each $r>0$ and f entire, let

$$
\begin{equation*}
v(r):=\#(\mathcal{M}(f) \cap\{z \in \mathbb{C}:|z|=r\}) \tag{1}
\end{equation*}
$$

Erdős' questions (1964)

Let f be a non-monomial entire function.
(a) Can the function v be unbounded, i.e., can $\lim \sup _{r \rightarrow \infty} v(r)=\infty$?
(b) Can the function v tend to infinity, i.e., can $\liminf _{r \rightarrow \infty} v(r)=\infty$?

- In 1968, Hergoz and Piranian constructed f such that $v(n)=n$ for all $n \in \mathbb{N}$, answering (a) positively.
- (b) remains open to this date.

ON ERDŐS' PROBLEM

Fix f entire. For each $r, \epsilon>0$, let $v(r, \epsilon)$ be the number of arcs in

$$
\left\{\vartheta \in[0,2 \pi):\left|f\left(r e^{i \vartheta}\right)\right|>M(r, f)-\epsilon\right\} .
$$

Theorem (P., Glücksam, 2022)
There is an entire function f for which for every $\epsilon>0$ and $N \in \mathbb{N}$, there exists $R=R(\epsilon, N)$ so that for all $r>R$,

$$
v(r, \epsilon)>N .
$$

- Our techniques rely on approximation theory, and so we cannot guarantee that $\mathcal{M}(f)$ intersects all arcs.

BEYOND ENTIRE MAPS

Theorem (Fletcher, Sixsmith, 2021)

Let $n \geq 2$, and let $T \subset \mathbb{R}^{n}$ be a closed set which contains a point of every modulus. Then, there is a quasiregular map h such that $\mathcal{M}(h)=T$.

THANKS FOR YOUR ATTENTION!

SUMMARY OF QUESTIONS

- Can we prescribe exceptional values of the first kind?
- Can we specify the location of discontinuities?
- Can we improve the degree of the polynomials on the results on discontinuities and singletons of $\mathcal{M}(p)$?
- Can we prescribe singletons of $\mathcal{M}(f)$ for f transcendental entire?
- Is there a necessary and sufficient condition for a function to be magic?
- How many curves are there near the origin for a magic function?
- (Erdős) Is it possible that ${\lim \inf _{r \rightarrow \infty}}^{\mathcal{M}}(f) \cap \partial \mathbb{D}_{r}=\infty$?

REFERENCES

Butzer, P., Volkmann, L. Otto Blumenthal (1876-1944) in retrospect. J. Approx. Theory 138 (1), 1-36 (2006).

Blumenthal. Sur le mode de croissance des fonctions entières. Bull. Soc. Math. Fr. 35, 213-232, (1907).

Valiron, G. Lectures on the general theory of integral functions. Chelsea (1949).
Hardy, G. H. The maximum modulus of an integral function. Q. J. Math. 41 1-9 (1909).
Jassim, S. A. and London R. R. On the maximum modulus paths of a certain cubic. Q. J. Math. 37, 189-191 (1986).

Tyler, T. F. Maximum curves and isolated points of entire functions. Proc. Am. Math. Soc. 128(9),(2000).

Hayman, W. K. A characterization of the maximum modulus of functions regular at the origin. J. Anal. Math. 1, 135-154 (1951).
P. and D. J. Sixsmith Variations on a theme of Hardy concerning the maximum modulus. Bull. London Math. Soc., 52: 1134-1147, 2020 doi:10.1112/blms. 12387
P. and D. J. Sixsmith The maximum modulus set of a polynomial. Comput. Methods Funct. Theory, 2021 doi:10.1007/s40315-021-00368-7
P., V. Evdoridou and D. J. Sixsmith On a result of Hayman concerning the maximum modulus set. Comput. Methods Funct. Theory, 2021, doi:10.1007/s40315-021-00407-3.

EXTRAS

DISCONTINUITIES OF POLYNOMIALS

Let \hat{p} be a polynomial with only real coefficients, and choose $0<R<R^{\prime}$. For $a>0$, set

$$
p(z):=a\left(z^{2}+1\right)+\hat{p}(z) .
$$

If a is sufficiently large, then

$$
z \in \mathcal{M}(p) \text { and } R \leq|z| \leq R^{\prime} \Longrightarrow \operatorname{Im} z=0 .
$$

If \hat{p} is odd, then

$$
\mathcal{M}(p) \cap\{z \in \mathbb{C}:|z|=r\}= \begin{cases}\{r\} & \text { if } \hat{p}(r)>0, \\ \{-r\} & \text { if } \hat{p}(r)<0, \\ \{-r, r\} & \text { if } \hat{p}(r)=0 .\end{cases}
$$

We choose

$$
\hat{p}(z):=z\left(z^{2}-r_{1}^{2}\right)\left(z^{2}-r_{2}^{2}\right) \ldots\left(z^{2}-r_{n}^{2}\right) .
$$

SINGLETONS OF POLYNOMIALS

Let \hat{p} be a polynomial with only real coefficients, and choose $0<R<R^{\prime}$. For $a>0$, set

$$
p(z):=a\left(z^{2}+1\right)+\hat{p}(z) .
$$

If a is sufficiently large, then

$$
z \in \mathcal{M}(p) \text { and } R \leq|z| \leq R^{\prime} \Longrightarrow \operatorname{Im} z=0
$$

If \hat{p} is odd, then

$$
\mathcal{M}(p) \cap\{z \in \mathbb{C}:|z|=r\}= \begin{cases}\{r\} & \text { if } \hat{p}(r)>0 \\ \{-r\} & \text { if } \hat{p}(r)<0 \\ \{-r, r\} & \text { if } \hat{p}(r)=0\end{cases}
$$

We choose

$$
\hat{p}(z):=-z\left(z^{2}-r_{1}^{2}\right)^{2}\left(z^{2}-r_{2}^{2}\right)^{2} \ldots\left(z^{2}-r_{n}^{2}\right)^{2} .
$$

EXCEPTIONAL FUNCTIONS

Let f be entire and of the form

$$
f(z):=1+a z^{k}+\sum_{\sigma=k+1}^{\infty} b_{\sigma} z^{\sigma}
$$

Let $p_{k}(z):=1+a z^{k}$, and for each $n>k$, define

$$
p_{n}(z):=1+a z^{k}+\sum_{\sigma=k+1}^{n} b_{\sigma} z^{\sigma} .
$$

There is some least $N \geq k$ such that $\mu_{\rho_{N}}=\mu_{f}$.

Definition

We say that f is exceptional if there exist $m \in\{1, \ldots, 2 k-3\}, m^{\prime} \in \mathbb{Z}$, and $\sigma \in\{k+1, \ldots, N\}$, such that $b_{\sigma} \neq 0$ and also

$$
m \pi=\frac{k}{\sigma}\left(m^{\prime} \pi-\arg b_{\sigma}\right)+\arg a
$$

SKETCH OF PROOF

- For each $n \in \mathbb{N}$, let $e_{n}(z):=\exp \left(z^{n}\right)$. Then, for each $r>0, v(r)=n$ and between every two maximum modulus points, there is an arc with $\left|e_{n}\right|<1$.

- Our function f acts like $e_{2^{n}}$ in pieces of sectors S_{n}, up to an error $\epsilon_{n} \rightarrow 0$, and $\max |f|$ is smaller elsewhere.

