Lasse Rempe

Theme an Variations

Wandering domains

Boundary behaviou

A counterexample to Eremenko's conjecture

Lasse Rempe (with David Martí-Pete and James Waterman)

Department of Mathematical Sciences, University of Liverpool

Bedlęwo, August 19, 2022

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

[E] Alexandre Eremenko, *On the iteration of entire functions*, in: Dynamical systems and ergodic theory, Banach Center Publications, 1989.

A fine paper of 1989

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire function. $I(f) := \{z \in \mathbb{C} : f^n(z) \to \infty\}$ "Escaping Set"

Theorem (Eremenko, 1989)

Let f be a transcendental entire function.

• $I(f) \neq \emptyset;$

• Every connected component of *I*(*f*) is unbounded.

[[]E] Alexandre Eremenko, On the iteration of entire functions, in: Dynamical systems and ergodic theory, Banach Center Publications, 1989.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

[E] Alexandre Eremenko, *On the iteration of entire functions*, in: Dynamical systems and ergodic theory, Banach Center Publications, 1989.

A fine paper of 1989

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire function. $I(f) := \{z \in \mathbb{C} : f^n(z) \to \infty\}$ "Escaping Set"

Theorem (Eremenko, 1989)

Let f be a transcendental entire function.

• $I(f) \neq \emptyset;$

• Every connected component of *I*(*f*) is unbounded.

[[]E] Alexandre Eremenko, On the iteration of entire functions, in: Dynamical systems and ergodic theory, Banach Center Publications, 1989.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

[E] Alexandre Eremenko, *On the iteration of entire functions*, in: Dynamical systems and ergodic theory, Banach Center Publications, 1989.

A fine paper of 1989

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire function. $I(f) := \{z \in \mathbb{C} : f^n(z) \to \infty\}$ "Escaping Set"

Theorem (Eremenko, 1989)

Let f be a transcendental entire function.

• $l(f) \neq \emptyset;$

• Every connected component of *l*(*f*) is unbounded.

[[]E] Alexandre Eremenko, On the iteration of entire functions, in: Dynamical systems and ergodic theory, Banach Center Publications, 1989.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

[E] Alexandre Eremenko, *On the iteration of entire functions*, in: Dynamical systems and ergodic theory, Banach Center Publications, 1989.

A fine paper of 1989

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire function. $I(f) := \{z \in \mathbb{C} : f^n(z) \to \infty\}$ "Escaping Set"

Theorem (Eremenko, 1989)

Let f be a transcendental entire function.

• $I(f) \neq \emptyset;$

• Every connected component of $\overline{I(f)}$ is **unbounded**.

[[]E] Alexandre Eremenko, On the iteration of entire functions, in: Dynamical systems and ergodic theory, Banach Center Publications, 1989.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

• *f* polynomial: *basin of infinity* – open set foliated by *external rays*.

- ~ puzzle techniques.
- *f* transcendental: *f* is a $F_{\sigma\delta}$ but never F_{σ} (R., 2022).
- But *I*(*f*) often contains structures such as curves to infinity.
- \rightarrow understand the dynamics by understanding the structure of I(f).

Why the escaping set?

Eremenko's conjecture

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

• *f* polynomial: *basin of infinity* – open set foliated by *external rays*.

- \rightarrow puzzle techniques.
- *f* transcendental: *f* is a $F_{\sigma\delta}$ but never F_{σ} (R., 2022).
- But *I*(*f*) often contains structures such as curves to infinity.
- \rightarrow understand the dynamics by understanding the structure of I(f).

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

• *f* polynomial: *basin of infinity* – open set foliated by *external rays*.

- ~ puzzle techniques.
- *f* transcendental: *f* is a $F_{\sigma\delta}$ but never F_{σ} (R., 2022).
- But I(f) often contains structures such as curves to infinity.
- \rightarrow understand the dynamics by understanding the structure of I(f).

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

• f polynomial: **basin of infinity** – open set foliated by **external rays**.

- \rightarrow puzzle techniques.
- *f* transcendental: *f* is a $F_{\sigma\delta}$ but never F_{σ} (R., 2022).
- But *I*(*f*) often contains structures such as curves to infinity.
- \rightarrow understand the dynamics by understanding the structure of I(f).

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

- *f* polynomial: *basin of infinity* open set foliated by *external rays*.
- \rightarrow puzzle techniques.
- *f* transcendental: *f* is a $F_{\sigma\delta}$ but never F_{σ} (R., 2022).
- But *I*(*f*) often contains structures such as curves to infinity.
- \rightarrow understand the dynamics by understanding the structure of I(f).

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Eremenko's conjecture

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

$$I(f) := \{z \in \mathbb{C} \colon f^n(z) \to \infty\}$$

"It is plausible that the set I(f) has **no bounded connected components**."

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Eremenko's conjecture

$$I(f) := \{z \in \mathbb{C} \colon f^n(z) \to \infty\}$$

It seems that each escaping point can to infinity be joined using a connected shape all points of which themselves escape.

◆□▶◆□▶◆□▶◆□▶ □ のへで

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Eremenko's conjecture

 $I(f) := \{z \in \mathbb{C} \colon f^n(z) \to \infty\}$

It seems that each escaping point can to infinity be joined using a connected shape all points of which themselves escape.

Conjecture (Eremenko's conjecture)

Let *f* be a transcendental entire function. Then every connected component of I(f) is unbounded.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

- Variation I: I(f) has at least one unbounded connected component. True! (Rippon–Stallard 2005).
- Variation II: I(f) ∪ {∞} is connected.
 True! (Rippon–Stallard 2011).

[[]RS05] P. J. Rippon and G. M. Stallard, On questions of Fatou and Eremenko, Proc. Amer. Math. (2005)

[[]RS11] P. J. Rippon and G. M. Stallard, Boundaries of escaping Fatou components, Proc. Amer. Math. Soc. (2011)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

- Variation I: I(f) has at least one unbounded connected component. True! (Rippon–Stallard 2005).
- Variation II: I(f) ∪ {∞} is connected.
 True! (Rippon–Stallard 2011).

[[]RS05] P. J. Rippon and G. M. Stallard, On questions of Fatou and Eremenko, Proc. Amer. Math. (2005)

[[]RS11] P. J. Rippon and G. M. Stallard, Boundaries of escaping Fatou components, Proc. Amer. Math. Soc. (2011)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

- Variation I: I(f) has at least one unbounded connected component. True! (Rippon–Stallard 2005).
- Variation II: I(f) ∪ {∞} is connected.
 True! (Rippon–Stallard 2011).

[[]RS05] P. J. Rippon and G. M. Stallard, On questions of Fatou and Eremenko, Proc. Amer. Math. (2005)

[[]RS11] P. J. Rippon and G. M. Stallard, Boundaries of escaping Fatou components, Proc. Amer. Math. Soc. (2011)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

- Variation I: I(f) has at least one unbounded connected component. True! (Rippon–Stallard 2005).
- Variation II: I(f) ∪ {∞} is connected.
 True! (Rippon–Stallard 2011).

[[]RS05] P. J. Rippon and G. M. Stallard, On questions of Fatou and Eremenko, Proc. Amer. Math. (2005)

[[]RS11] P. J. Rippon and G. M. Stallard, Boundaries of escaping Fatou components, Proc. Amer. Math. Soc. (2011)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Progress on Eremenko's conjecture Theme and variations

Variation III ("Strong version of Eremenko's conjecture"): *I*(*f*) ∪ {∞} is path-connected.

False! (Rottenfußer–Rückert–R–Schleicher, 2011).

Variation IV ("uniform version"): If z ∈ I(f), then there is an unbounded connected set A such that fⁿ|_A → ∞ uniformly.
 False! (R 2016).

[[]RRRS] G. Rottenfußer, J. Rückert, L. Rempe, and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2011).

[[]R16] L. Rempe, Arc-like continua, Julia sets of entire functions, and Eremenko's conjecture, Preprint, 2016.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Progress on Eremenko's conjecture Theme and variations

- Variation III ("Strong version of Eremenko's conjecture"): *I*(*f*) ∪ {∞} is path-connected.
 False! (Rottenfußer–Rückert–R–Schleicher, 2011).
- Variation IV ("uniform version"): If z ∈ I(f), then there is an unbounded connected set A such that fⁿ|_A → ∞ uniformly.
 False! (R 2016).

[[]RRRS] G. Rottenfußer, J. Rückert, L. Rempe, and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2011).

[[]R16] L. Rempe, Arc-like continua, Julia sets of entire functions, and Eremenko's conjecture, Preprint, 2016.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Progress on Eremenko's conjecture Theme and variations

- Variation III ("Strong version of Eremenko's conjecture"): *I*(*f*) ∪ {∞} is path-connected.
 False! (Rottenfußer–Rückert–R–Schleicher, 2011).
- Variation IV ("uniform version"): If z ∈ I(f), then there is an unbounded connected set A such that fⁿ|_A → ∞ uniformly.
 False! (R 2016).

[[]RRRS] G. Rottenfußer, J. Rückert, L. Rempe, and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2011).

[[]R16] L. Rempe, Arc-like continua, Julia sets of entire functions, and Eremenko's conjecture, Preprint, 2016.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Progress on Eremenko's conjecture Theme and variations

- Variation III ("Strong version of Eremenko's conjecture"): *I*(*f*) ∪ {∞} is path-connected.
 False! (Rottenfußer–Rückert–R–Schleicher, 2011).
- Variation IV ("uniform version"): If z ∈ I(f), then there is an unbounded connected set A such that fⁿ|_A → ∞ uniformly.
 False! (R 2016).

[[]RRRS] G. Rottenfußer, J. Rückert, L. Rempe, and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2011).

[[]R16] L. Rempe, Arc-like continua, Julia sets of entire functions, and Eremenko's conjecture, Preprint, 2016.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Positive results on Eremenko's conjecture Positive results

- The *postsingular set* of *f* is bounded.
- The *singular set* of *f* is bounded and *f* has *finite order*.
- $F(f) = \mathbb{C} \setminus \partial I(f)$ has a *multiply-connected* component.
- Functions of order < 1/2 and *regular growth*.
- *Real* functions of order < 1/2 with only negative roots.
- Functions of *very* small growth.

[[]R07] L. Rempe, On a question of Eremenko concerning escaping sets of entire functions, Bull. Lond. Math. Soc. (2007)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary Dehaviour

Positive results on Eremenko's conjecture Positive results

Eremenko's conjecture *holds* if:

- The *postsingular set* of *f* is bounded.
- The *singular set* of *f* is bounded and *f* has *finite order*.
- $F(f) = \mathbb{C} \setminus \partial I(f)$ has a *multiply-connected* component.
- Functions of order < 1/2 and *regular growth*.
- *Real* functions of order < 1/2 with only negative roots.
- Functions of *very* small growth.

[RRRS] G. Rottenfußer, J. Rückert, L. Rempe, and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2011).

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Positive results on Eremenko's conjecture Positive results

Eremenko's conjecture *holds* if:

- The *postsingular set* of *f* is bounded.
- The *singular set* of *f* is bounded and *f* has *finite order*.
- $F(f) = \mathbb{C} \setminus \partial I(f)$ has a *multiply-connected* component.
- Functions of order < 1/2 and *regular growth*.
- *Real* functions of order < 1/2 with only negative roots.
- Functions of *very* small growth.

[RS11] P. J. Rippon and G. M. Stallard, On questions of Fatou and Eremenko, Proc. Amer. Math. (2005)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Positive results on Eremenko's conjecture Positive results

- The *postsingular set* of *f* is bounded.
- The *singular set* of *f* is bounded and *f* has *finite order*.
- $F(f) = \mathbb{C} \setminus \partial I(f)$ has a *multiply-connected* component.
- Functions of order < 1/2 and *regular growth*.
- *Real* functions of order < 1/2 with only negative roots.
- Functions of *very* small growth.

[[]RS13] P. J. Rippon and G. M. Stallard, Functions of small growth with no unbounded Fatou components, J. Anal. Math. (2009)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Positive results on Eremenko's conjecture Positive results

- The *postsingular set* of *f* is bounded.
- The *singular set* of *f* is bounded and *f* has *finite order*.
- $F(f) = \mathbb{C} \setminus \partial I(f)$ has a *multiply-connected* component.
- Functions of order < 1/2 and *regular growth*.
- *Real* functions of order < 1/2 with only negative roots.
- Functions of *very* small growth.

[[]RS09] P. J. Rippon and G. M. Stallard, Baker's conjecture and Eremenko's conjecture for functions with negative zeros, J. Anal. Math. (2013)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Positive results on Eremenko's conjecture Positive results

- The *postsingular set* of *f* is bounded.
- The *singular set* of *f* is bounded and *f* has *finite order*.
- $F(f) = \mathbb{C} \setminus \partial I(f)$ has a *multiply-connected* component.
- Functions of order < 1/2 and *regular growth*.
- *Real* functions of order < 1/2 with only negative roots.
- Functions of *very* small growth.

[[]RS13] P. J. Rippon and G. M. Stallard, Functions of small growth with no unbounded Fatou components, J. Anal. Math. (2009)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Challenges of finding a counterexample

- What could a counterexample look like?
- How to obtain sufficient control to realise this structure?

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

A counterexample to Eremenko's conjecture

Theorem (Martí-Pete–R–Waterman 2022)

There exists a transcendental entire function f such that I(f) has a connected component consisting of **a single point**.

[[]MRW] D. Martí-Pete, L. Rempe and J. Waterman, Eremenko's conjecture, wandering lakes of Wada, and maverick points, Preprint (2022)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Wandering domains

$f \colon \mathbb{C} \to \mathbb{C}$ transcendental entire

Fatou set F(f): locus of normality of (fⁿ). Julia set J(f) = C \ F(f) = ∂I(f): locus of non-normality. wandering domain is a connected component U of F(f) such that fⁿ(U) ∩ f^m(U) = Ø, n ≠ m.

In transcendental dynamics, wandering domains exist!

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Wandering domains

$f \colon \mathbb{C} \to \mathbb{C}$ transcendental entire

Fatou set F(f): locus of normality of (fⁿ). Julia set J(f) = C \ F(f) = ∂I(f): locus of non-normality.

A wandering domain is a connected component U of F(f) such that

 $f^n(U) \cap f^m(U) = \emptyset, \quad n \neq m.$

In transcendental dynamics, wandering domains exist!

・ロト・西・・田・・田・・日・

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Wandering domains

$f \colon \mathbb{C} \to \mathbb{C}$ transcendental entire

Fatou set F(f): locus of normality of (fⁿ).
Julia set J(f) = C \ F(f) = ∂I(f): locus of non-normality.

A wandering domain is a connected component U of F(f) such that

 $f^n(U) \cap f^m(U) = \emptyset, \quad n \neq m.$

In transcendental dynamics, wandering domains exist!

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Wandering domains

 $f \colon \mathbb{C} \to \mathbb{C}$ transcendental entire

Fatou set F(f): locus of normality of (fⁿ).
Julia set J(f) = C \ F(f) = ∂l(f): locus of non-normality.

A wandering domain is a connected component U of F(f) such that

 $f^n(U) \cap f^m(U) = \emptyset, \quad n \neq m.$

In transcendental dynamics, wandering domains exist!

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Approximation theory

Theorem ((A special case of) Arakelian's theorem)

Let $A \subset \mathbb{C}$ be closed such that $(\mathbb{C} \setminus A) \cup \{\infty\}$ is connected, and locally connected at ∞ .

Suppose $g: A \to \mathbb{C}$ is continuous on A and holomorphic on its interior. Then, for every $\varepsilon > 0$, there is an entire function $f: \mathbb{C} \to \mathbb{C}$ such that $|f - g| < \varepsilon$ on A.

Use of approximation theory to construct wandering domains: Eremenko–Lyubich, 1989.

[[]EL89] A. È. Eremenko and M. Yu Lyubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (1987)
Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Approximation theory

Theorem ((A special case of) Arakelian's theorem) Let $A \subset \mathbb{C}$ be closed such that $(\mathbb{C} \setminus A) \cup \{\infty\}$ is connected, and locally connected at ∞ . Suppose $g: A \to \mathbb{C}$ is continuous on A and holomorphic on its interior. Then, for every $\varepsilon > 0$, there is an entire function $f: \mathbb{C} \to \mathbb{C}$ such that |f - g| < on A.

Use of approximation theory to construct wandering domains: Eremenko–Lyubich, 1989.

[[]EL89] A. È. Eremenko and M. Yu Lyubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (1987)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Approximation theory

Theorem ((A special case of) Arakelian's theorem) Let $A \subset \mathbb{C}$ be closed such that $(\mathbb{C} \setminus A) \cup \{\infty\}$ is **connected, and locally connected at** ∞ . Suppose $g: A \to \mathbb{C}$ is continuous on A and holomorphic on its interior. Then, for every $\varepsilon > 0$, there is an entire function $f: \mathbb{C} \to \mathbb{C}$ such that $|f - g| < \varepsilon$ on A.

Use of approximation theory to construct wandering domains: Eremenko–Lyubich, 1989.

[[]EL89] A. È. Eremenko and M. Yu Lyubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (1987)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Approximation theory

Theorem ((A special case of) Arakelian's theorem) Let $A \subset \mathbb{C}$ be closed such that $(\mathbb{C} \setminus A) \cup \{\infty\}$ is **connected, and locally connected at** ∞ . Suppose $g: A \to \mathbb{C}$ is continuous on A and holomorphic on its interior. Then, for every $\varepsilon > 0$, there is an entire function $f: \mathbb{C} \to \mathbb{C}$ such that $|f - g| < \varepsilon$ on A.

Use of approximation theory to construct wandering domains: Eremenko–Lyubich, 1989.

[[]EL89] A. È. Eremenko and M. Yu Lyubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (1987)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Existence of WD via Arakelian's theorem

◆□ ◆ ▲ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Existence of WD via Arakelian's theorem

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Existence of WD via Arakelian's theorem

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Types of wandering domains

The wandering domain we just constructed is in the *escaping set*.

- A wandering domain *U* with $U \subset I(f)$ is called *escaping*.
- A wandering domain U is called *oscillating* if orbits in U are *unbounded* but U ⊄ I(f).

Theorem (Eremenko–Lyubich 1989)

There exists an entire function with an oscillating wandering domain.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Types of wandering domains

The wandering domain we just constructed is in the *escaping set*.

• A wandering domain U with $U \subset I(f)$ is called *escaping*.

A wandering domain U is called *oscillating* if orbits in U are *unbounded* but U ⊄ I(f).

Theorem (Eremenko–Lyubich 1989)

There exists an entire function with an oscillating wandering domain.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Types of wandering domains

▲□▶▲□▶▲□▶▲□▶ □ の000

The wandering domain we just constructed is in the *escaping set*.

- A wandering domain U with $U \subset I(f)$ is called *escaping*.
- A wandering domain *U* is called *oscillating* if orbits in *U* are *unbounded* but *U* ⊄ *I*(*f*).

Theorem (Eremenko–Lyubich 1989)

There exists an entire function with an oscillating wandering domain.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Types of wandering domains

The wandering domain we just constructed is in the *escaping set*.

- A wandering domain *U* with $U \subset I(f)$ is called *escaping*.
- A wandering domain U is called *oscillating* if orbits in U are *unbounded* but U ⊄ I(f).

Theorem (Eremenko–Lyubich 1989)

There exists an entire function with an oscillating wandering domain.

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Types of wandering domains

The wandering domain we just constructed is in the *escaping set*.

- A wandering domain *U* with $U \subset I(f)$ is called *escaping*.
- A wandering domain U is called *oscillating* if orbits in U are *unbounded* but U ⊄ I(f).

Theorem (Eremenko–Lyubich 1989)

There exists an entire function with an oscillating wandering domain.

Eremenko's conjecture Lasse Rempe

Types of wandering domains

Variations

Wandering domains

Boundary behaviou

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Oscillating Wandering Domains

Key idea: Instead of obtaining *f* by *one* approximation, build a *sequence* f_n , where f_{n+1} approximates a map g_n that agrees with f_n on a (large) set.

• May use the properties of f_n in defining g_{n+1} .

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Oscillating Wandering Domains

Key idea: Instead of obtaining *f* by *one* approximation, build a *sequence* f_n , where f_{n+1} approximates a map g_n that agrees with f_n on a (large) set.

• May use the properties of f_n in defining g_{n+1} .

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Constructing oscillating WD

◆□ ◆ ▲ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour Constructing oscillating WD

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour Constructing oscillating WD

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour Constructing oscillating WD

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviou

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Behaviour of boundary points

▲□▶▲□▶▲□▶▲□▶ □ の000

Can I(f) contain a *bounded* wandering domain U with $\partial U \cap I(f) = \emptyset$?

Theorem (Rippon–Stallard 2011)

If $U \subset I(f)$ is a wandering domain, then $I(f) \cap \partial U$ has **full harmonic measure**.

Question (Rippon)

Suppose *U* is a bounded *escaping* wandering domain of *f*. Is $\partial U \subset I(f)$?

Question

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Behaviour of boundary points

▲□▶▲□▶▲□▶▲□▶ □ の000

Can I(f) contain a **bounded** wandering domain U with $\partial U \cap I(f) = \emptyset$?

Theorem (Rippon–Stallard 2011)

If $U \subset I(f)$ is a wandering domain, then $I(f) \cap \partial U$ has full harmonic measure.

Question (Rippon)

Suppose *U* is a bounded *escaping* wandering domain of *f*. Is $\partial U \subset I(f)$?

Question

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Behaviour of boundary points

▲□▶▲□▶▲□▶▲□▶ □ の000

Can I(f) contain a *bounded* wandering domain U with $\partial U \cap I(f) = \emptyset$?

Theorem (Rippon–Stallard 2011)

If $U \subset I(f)$ is a wandering domain, then $I(f) \cap \partial U$ has full harmonic measure.

Question (Rippon)

Suppose *U* is a bounded *escaping* wandering domain of *f*. Is $\partial U \subset I(f)$?

Question

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Behaviour of boundary points

▲□▶▲□▶▲□▶▲□▶ □ の000

Can I(f) contain a *bounded* wandering domain U with $\partial U \cap I(f) = \emptyset$?

Theorem (Rippon–Stallard 2011)

If $U \subset I(f)$ is a wandering domain, then $I(f) \cap \partial U$ has full harmonic measure.

Question (Rippon)

Suppose *U* is a bounded *escaping* wandering domain of *f*. Is $\partial U \subset I(f)$?

Question

Scaffolding

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

・ロト・西ト・ヨト・日・ シック

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour Boc-Thaler (2020): many simply-connected domains can be realised exactly as wandering domains of entire functions.

Boc-Thaler's result

- The proof uses a similar approach to the above (*next talk*!).
- We can use a similar approach to ensure that our WD is a *half-strip*.

[[]B21] B. Boc Thaler, On the geometry of simply connected wandering domains, B. London Math. Soc. (2021)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour Boc-Thaler's result

- Boc-Thaler (2020): many simply-connected domains can be realised *exactly* as wandering domains of entire functions.
- The proof uses a similar approach to the above (*next talk*!).
- We can use a similar approach to ensure that our WD is a *half-strip*.

[[]B21] B. Boc Thaler, On the geometry of simply connected wandering domains, B. London Math. Soc. (2021)

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour **Boc-Thaler's result**

- Boc-Thaler (2020): many simply-connected domains can be realised *exactly* as wandering domains of entire functions.
- The proof uses a similar approach to the above (*next talk*!).
- We can use a similar approach to ensure that our WD is a *half-strip*.

[[]B21] B. Boc Thaler, On the geometry of simply connected wandering domains, B. London Math. Soc. (2021)

The example

Eremenko's conjecture

Lasse Rempe

Theme an Variations

Wandering domains

Boundary behaviour

Theorem (Martí-Pete–R–Waterman)

 $U := \{a + ib: a > 0, |b| < 1$

There exists an entire function f with the following properties.

- U is an oscillating wandering domain of f.
- $0 \in I(f)$.
- \overline{U} is a connected component of the set of points with unbounded orbits.

By a result of Rippon and Stallard, $I(f) \cap \partial U$ has *zero harmonic measure*. Hence {0} is a connected component of I(f).

Lasse Rempe

Theme an Variations

Wandering domains

Boundary behaviour

Theorem (Martí-Pete–R–Waterman)

Define

$U := \{a + ib: a > 0, |b| < 1\}.$

There exists an entire function f with the following properties.

- U is an oscillating wandering domain of f.
- $0 \in I(f)$
- \overline{U} is a connected component of the set of points with unbounded orbits.

By a result of Rippon and Stallard, $I(f) \cap \partial U$ has *zero harmonic measure*. Hence {0} is a connected component of I(f).

An example
Eremenko's conjecture

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Theorem (Martí-Pete–R–Waterman)

Define

$$U := \{a + ib: a > 0, |b| < 1\}.$$

There exists an entire function f with the following properties.

• U is an oscillating wandering domain of f.

• $0 \in I(f)$.

• \overline{U} is a connected component of the set of points with unbounded orbits.

By a result of Rippon and Stallard, $I(f) \cap \partial U$ has *zero harmonic measure*. Hence {0} is a connected component of I(f).

An example

Eremenko's conjecture

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Theorem (Martí-Pete–R–Waterman)

Define

$$U := \{a + ib: a > 0, |b| < 1\}.$$

There exists an entire function f with the following properties.

- U is an oscillating wandering domain of f.
- $0 \in I(f)$.
- \overline{U} is a connected component of the set of points with unbounded orbits.

By a result of Rippon and Stallard, $I(f) \cap \partial U$ has *zero harmonic measure*. Hence {0} is a connected component of I(f).

An example

An example

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Eremenko's conjecture

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Theorem (Martí-Pete–R–Waterman)

 $U := \{a + ib: a > 0, |b| < 1\}.$

There exists an entire function f with the following properties.

- U is an oscillating wandering domain of f.
- $0 \in I(f)$.

Define

• \overline{U} is a connected component of the set of points with unbounded orbits.

By a result of Rippon and Stallard, $I(f) \cap \partial U$ has *zero harmonic measure*. Hence {0} is a connected component of I(f).

An example

Lasse Rempe

Eremenko's conjecture

Wandering domains

Boundary behaviour

Theorem (Martí-Pete–R–Waterman)

 $U := \{a + ib: a > 0, |b| < 1\}.$

There exists an entire function f with the following properties.

- U is an oscillating wandering domain of f.
- $0 \in I(f)$.

Define

• \overline{U} is a connected component of the set of points with unbounded orbits.

By a result of Rippon and Stallard, $I(f) \cap \partial U$ has *zero harmonic measure*. Hence $\{0\}$ is a connected component of I(f).

Further results

Eremenko's conjecture

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Our method also yields:

- An escaping wandering domain whose boundary contains non-escaping ("maverick") points.
- Lakes of Wada in complex dynamics.
- A counterexample to a *question of Boc Thaler* concerning simply-connected wandering domains.
- Wandering continua of transcendental entire functions.

See the next talk by David Martí-Pete!

[MRW] D. Martí-Pete, L. Rempe and J. Waterman, Eremenko's conjecture, wandering lakes of Wada, and maverick Points, Preprint (2022)

Eremenko's conjecture

Lasse Rempe

Theme and Variations

Wandering domains

Boundary behaviour

Dziękuję!

★ □ ▶ ★ 個 ▶ ★ 월 ▶ ★ 월 ▶ → 월