

Core entropy along the Mandelbrot set
and Thurston's Master Teapot

Giulio Tiozzo - University of Toronto

Summary

1. Topological entropy

Summary

1. Topological entropy
2. The core entropy

Summary

1. Topological entropy
2. The core entropy
3. The entropy spectrum (Thurston set)

Summary

1. Topological entropy
2. The core entropy
3. The entropy spectrum (Thurston set)
4. The Master teapot

Summary

1. Topological entropy
2. The core entropy
3. The entropy spectrum (Thurston set)
4. The Master teapot
5. Kneading theory for veins

Joint work with Kathryn Lindsey and Chenxi Wu.

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone.

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals (Misiurewicz-Szlenk)

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals (Misiurewicz-Szlenk)

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals (Misiurewicz-Szlenk)

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite.

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$\begin{array}{ccc}A & \mapsto & A \cup B \\ B & \mapsto & A\end{array}$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$$
\begin{array}{ccc}
A & \mapsto & A \cup B \\
B & \mapsto & A
\end{array} \Rightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$\left.\begin{array}{l}A \\ A\end{array}\right) A \cup B \Rightarrow\left(\begin{array}{ll}1 & 1 \\ B & \mapsto\end{array}\right) \Rightarrow \lambda=\frac{\sqrt{5}+1}{2}$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$\left.\begin{array}{l}A \\ \mapsto\end{array}\right) A \cup B \Rightarrow\left(\begin{array}{ll}1 & 1 \\ B & \mapsto\end{array}\right) \Rightarrow \lambda=\frac{\sqrt{5}+1}{2}=e^{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}$

Dynamics and algebraic numbers
Let $f: I \rightarrow I$ be PCF with Markov matrix A.

Dynamics and algebraic numbers
Let $f: I \rightarrow I$ be PCF with Markov matrix A.
Questions

- What is the meaning of the other eigenvalues?

Dynamics and algebraic numbers

Let $f: I \rightarrow I$ be PCF with Markov matrix A.
Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...

Dynamics and algebraic numbers

Let $f: I \rightarrow /$ be PCF with Markov matrix A.
Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues?

Dynamics and algebraic numbers

Let $f: I \rightarrow I$ be PCF with Markov matrix A.
Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues? (e.g., what happens if you change symbolic coding?)

Dynamics and algebraic numbers

Let $f: I \rightarrow I$ be PCF with Markov matrix A.
Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues? (e.g., what happens if you change symbolic coding?)

Observation. If λ^{\prime} is a Galois conjugate of λ, then it is an eigenvalue of the same matrix.

Dynamics and algebraic numbers

Let $f: I \rightarrow I$ be PCF with Markov matrix A.
Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues? (e.g., what happens if you change symbolic coding?)

Observation. If λ^{\prime} is a Galois conjugate of λ, then it is an eigenvalue of the same matrix.

- What algebraic numbers arise as growth rates of PCF maps?

Dynamics and algebraic numbers

Let $f: I \rightarrow I$ be PCF with Markov matrix A.
Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues? (e.g., what happens if you change symbolic coding?)

Observation. If λ^{\prime} is a Galois conjugate of λ, then it is an eigenvalue of the same matrix.

- What algebraic numbers arise as growth rates of PCF maps?
λ is a Perron number if $\left|\lambda^{\prime}\right| \leq \lambda$ for any λ^{\prime} Galois conjugate of λ.

Dynamics and algebraic numbers

Let $f: I \rightarrow I$ be PCF with Markov matrix A.
Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues? (e.g., what happens if you change symbolic coding?)

Observation. If λ^{\prime} is a Galois conjugate of λ, then it is an eigenvalue of the same matrix.

- What algebraic numbers arise as growth rates of PCF maps?
λ is a Perron number if $\left|\lambda^{\prime}\right| \leq \lambda$ for any λ^{\prime} Galois conjugate of λ.
(W. Thurston '12) Every Perron number arises as growth rate of a real PCF polynomial

Dynamics and algebraic numbers

Let $f: I \rightarrow I$ be PCF with Markov matrix A.
Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues? (e.g., what happens if you change symbolic coding?)

Observation. If λ^{\prime} is a Galois conjugate of λ, then it is an eigenvalue of the same matrix.

- What algebraic numbers arise as growth rates of PCF maps?
λ is a Perron number if $\left|\lambda^{\prime}\right| \leq \lambda$ for any λ^{\prime} Galois conjugate of λ.
(W. Thurston '12) Every Perron number arises as growth rate of a real PCF polynomial
- What if you fix the degree of the polynomial?

Topological entropy of real maps

$$
h_{\text {top }}(f, \mathbb{R}):=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Consider the real quadratic family

$$
f_{c}(z):=z^{2}+c \quad c \in[-2,1 / 4]
$$

Topological entropy of real maps

$$
h_{\text {top }}(f, \mathbb{R}):=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Consider the real quadratic family

$$
f_{c}(z):=z^{2}+c \quad c \in[-2,1 / 4]
$$

Question. How does entropy change with the parameter c ?

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right):$

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

[Picture is for $f_{a}(x)=a x(1-x)$.]

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right):$

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

Question : Can we extend this theory to complex polynomials?

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

Remark. If we consider $f_{c}: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ entropy is constant $h_{\text {top }}\left(f_{c}, \widehat{\mathbb{C}}\right)=\log 2$. (Lyubich 1980)

Mandelbrot set

The Mandelbrot set \mathcal{M} is the connectedness locus of the quadratic family

$$
\mathcal{M}=\left\{c \in \mathbb{C}: f_{c}^{n}(0) \nrightarrow \infty\right\}
$$

External rays

Since $\widehat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

External rays

Since $\widehat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

External rays

Since $\widehat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

The images of radial arcs in the disk are called external rays.

$$
R(\theta):=\Phi_{\mathcal{M}}\left(\left\{\rho e^{2 \pi i \theta}: \rho>1\right\}\right)
$$

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

where $[x, y]$ is the regulated arc between x and y.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

where $[x, y]$ is the regulated arc between x and y.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

where $[x, y]$ is the regulated arc between x and y.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

where $[x, y]$ is the regulated arc between x and y.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

It is a forward invariant, connected subset of the filled Julia set which contains the critical orbit.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

It is a forward invariant, connected subset of the filled Julia set which contains the critical orbit. The $\operatorname{map} f_{c}$ acts on it.

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f).

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

The core entropy

Definition (W. Thurston)

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

The core entropy

Definition (W. Thurston)

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

where T_{f} is the Hubbard tree of f.

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

$A \rightarrow B$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A \cup D
\end{aligned}
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A \cup D \\
& D \rightarrow A \cup B
\end{aligned}
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$$
M=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

$A \rightarrow B$
$B \rightarrow C$
$C \rightarrow A \cup D$
$D \rightarrow A \cup B$

1 \& 0 \& 0 \& 1

0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0\end{array}\right) \quad\)| $\operatorname{det}(M-x I)=$ |
| :--- |
| $=-1-2 x+x^{4}$ |

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$A \rightarrow B$
$B \rightarrow C$
$C \rightarrow A \cup D$
$D \rightarrow A \cup B$

1 \& 0 \& 0 \& 1

0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0\end{array}\right) \quad\)| $\operatorname{det}(M-x I)=$ |
| :--- |
| $=-1-2 x+x^{4}$ |
| $\lambda \approx 1.39534$ |

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

$A \rightarrow B$
$B \rightarrow C$
$C \rightarrow A \cup D$
$D \rightarrow A \cup B$

$$
M=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \operatorname{det}(M-x I)= \\
& =-1-2 x+x^{4} \\
& \lambda \approx 1.39534 \\
& h \approx \log 1.39534
\end{aligned}
$$

The core entropy

Let $\theta \in \mathbb{Q} / \mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ}, with Hubbard tree T_{θ}.

The core entropy

Let $\theta \in \mathbb{Q} / \mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ}, with Hubbard tree T_{θ}.
Definition (W. Thurston)
The core entropy of f_{θ} is

$$
h(\theta):=h\left(\left.f_{\theta}\right|_{T_{\theta}}\right)
$$

The core entropy

Let $\theta \in \mathbb{Q} / \mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ}, with Hubbard tree T_{θ}.

Definition (W. Thurston)
The core entropy of f_{θ} is

$$
h(\theta):=h\left(\left.f_{\theta}\right|_{T_{\theta}}\right)
$$

Question: How does $h(\theta)$ vary with the parameter θ ?

Core entropy as a function of external angle (W. Thurston)

Core entropy as a function of external angle (W. Thurston)

Core entropy as a function of external angle (W. Thurston)

Question Can you see the Mandelbrot set in this picture?

Core entropy as a function of c

Monotonicity of entropy

Observation

Monotonicity of entropy

Observation
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.

Monotonicity of entropy

Observation
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.

Monotonicity of entropy

Observation
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}.

Monotonicity of entropy

Observation
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}. Then we define $\theta_{1}<\mathcal{M} \theta_{2}$ if c_{1} lies on the arc $\left[0, c_{2}\right]$.

Monotonicity of entropy

Observation
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}. Then we define $\theta_{1}<\mathcal{M} \theta_{2}$ if c_{1} lies on the arc [$0, c_{2}$].

Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong)
If $\theta_{1}<\mathcal{M} \theta_{2}$, then

$$
h\left(\theta_{1}\right) \leq h\left(\theta_{2}\right)
$$

The core entropy as a function of external angle
Question (Thurston, Hubbard):
Is $h(\theta)$ a continuous function of θ ?

Continuity of core entropy

Theorem (T.; Dudko-Schleicher)
The core entropy function $h(\theta)$ extends to a continuous function from \mathbb{R} / \mathbb{Z} to \mathbb{R}.

Regularity properties of the core entropy

In fact:

Theorem (T. '15)

The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Theorem (T. '17)
Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$
\alpha(h, \theta):=\frac{h(\theta)}{\log 2}
$$

(Conjectured Isola-Politi, 1990)

Further questions

Question. What about the other eigenvalues?

The entropy spectrum (W. Thurston '12)

Thurston's entropy spectrum

Let

$$
\mathcal{M}_{0}:=\left\{c \in \mathbb{R}: \exists n \text { s.t. } f_{c}^{n}(0)=0\right\}
$$

the set of critically periodic parameters.

Thurston's entropy spectrum

Let

$$
\mathcal{M}_{0}:=\left\{c \in \mathbb{R}: \exists n \text { s.t. } f_{c}^{n}(0)=0\right\}
$$

the set of critically periodic parameters. Recall

$$
\lambda\left(f_{c}\right)=e^{h_{\text {top }}\left(f_{c}\right)}
$$

Thurston's entropy spectrum

Let

$$
\mathcal{M}_{0}:=\left\{c \in \mathbb{R}: \exists n \text { s.t. } f_{c}^{n}(0)=0\right\}
$$

the set of critically periodic parameters. Recall

$$
\lambda\left(f_{c}\right)=e^{h_{\text {top }}\left(f_{c}\right)}
$$

Definition

We define the Thurston set (entropy spectrum) as

Thurston's entropy spectrum

Let

$$
\mathcal{M}_{0}:=\left\{c \in \mathbb{R}: \exists n \text { s.t. } f_{c}^{n}(0)=0\right\}
$$

the set of critically periodic parameters. Recall

$$
\lambda\left(f_{c}\right)=e^{h_{\text {top }}\left(f_{c}\right)}
$$

Definition

We define the Thurston set (entropy spectrum) as

$$
\Sigma:=\overline{\bigcup_{c \in \mathcal{M}_{0}} \operatorname{Gal}\left(\lambda\left(f_{c}\right)\right)}
$$

Thurston's entropy spectrum

Let

$$
\mathcal{M}_{0}:=\left\{c \in \mathbb{R}: \exists n \text { s.t. } f_{c}^{n}(0)=0\right\}
$$

the set of critically periodic parameters. Recall

$$
\lambda\left(f_{c}\right)=e^{h_{\text {top }}\left(f_{c}\right)}
$$

Definition
We define the Thurston set (entropy spectrum) as

$$
\Sigma:=\overline{\bigcup_{c \in \mathcal{M}_{0}} \operatorname{Gal}\left(\lambda\left(f_{c}\right)\right)}
$$

where $\operatorname{Gal}(\lambda)$ is the set of Galois conjugates (i.e., roots of the same minimal polynomial) of λ.

The entropy spectrum

The entropy spectrum

The entropy spectrum

Zeros of polynomials with coefficients ± 1 (Bousch)

Comparison

$$
\Sigma_{ \pm}:=\overline{\left\{z \in \mathbb{C}: \exists\left(\epsilon_{k}\right) \in\{ \pm\}^{n}: \sum_{k=1}^{n} \epsilon_{k} z^{k}=0\right\}}
$$

Zeros of polynomials with coefficients 0,1 (Odlyzko-Poonen)

The entropy spectrum

Theorem (T. '14)

- The Thurston set Σ is connected and locally connected.

The entropy spectrum

Theorem (T. '14)

- The Thurston set Σ is connected and locally connected.
- Σ contains a neighbourhood $\{1-\epsilon<|z|<1+\epsilon\}$ of the unit circle.

The entropy spectrum

Theorem (T. '14)

- The Thurston set Σ is connected and locally connected.
- Σ contains a neighbourhood $\{1-\epsilon<|z|<1+\epsilon\}$ of the unit circle.
- Σ is closed under taking $n^{\text {th }}$ roots: if $z \in \Sigma$ and $w^{n}=z$ for some $n \in \mathbb{N}$, then w belongs to Σ.

The entropy spectrum

Theorem (T. '14)

- The Thurston set Σ is connected and locally connected.
- Σ contains a neighbourhood $\{1-\epsilon<|z|<1+\epsilon\}$ of the unit circle.
- Σ is closed under taking $n^{\text {th }}$ roots: if $z \in \Sigma$ and $w^{n}=z$ for some $n \in \mathbb{N}$, then w belongs to Σ.
- Moreover, we have

$$
\Sigma \cap \mathbb{D}=\Sigma_{ \pm} \cap \mathbb{D}
$$

The Master Teapot for real maps

The Master Teapot for tent maps

For each $\lambda \in[1,2]$, consider the tent map $T_{\lambda}:[0,1] \rightarrow[0,1]$

$$
T_{\lambda}(x):= \begin{cases}\lambda x & \text { if } x \leq 1 / 2 \\ \lambda(1-x) & \text { if } x>1 / 2\end{cases}
$$

Let Π be the set of parameters for which the orbit of $x=1 / 2$ is purely periodic under T_{λ}.

The Master Teapot for tent maps

For each $\lambda \in[1,2]$, consider the tent map $T_{\lambda}:[0,1] \rightarrow[0,1]$

$$
T_{\lambda}(x):= \begin{cases}\lambda x & \text { if } x \leq 1 / 2 \\ \lambda(1-x) & \text { if } x>1 / 2\end{cases}
$$

Let Π be the set of parameters for which the orbit of $x=1 / 2$ is purely periodic under T_{λ}. If $\lambda \in \Pi$, the system has a Markov partition: let M_{λ} be the corresponding transition matrix.

The Master Teapot for tent maps

For each $\lambda \in[1,2]$, consider the tent map $T_{\lambda}:[0,1] \rightarrow[0,1]$

$$
T_{\lambda}(x):= \begin{cases}\lambda x & \text { if } x \leq 1 / 2 \\ \lambda(1-x) & \text { if } x>1 / 2\end{cases}
$$

Let Π be the set of parameters for which the orbit of $x=1 / 2$ is purely periodic under T_{λ}. If $\lambda \in \Pi$, the system has a Markov partition: let M_{λ} be the corresponding transition matrix.
Definition
Thurston's Master Teapot is the closure

$$
\Upsilon:=\overline{\left\{(z, \lambda) \in \mathbb{C} \times[1,2]: \lambda \in \Pi, \operatorname{det}\left(M_{\lambda}-z I\right)=0\right\}}
$$

The Master Teapot for real polynomials

A three-dimensional object

Geometry of the teapot

Video (by D. Davis): https://vimeo.com/259921275
3D view:
http://www.math.toronto.edu/tiozzo/teapot.html

Geometry of the real teapot

Theorem (Connectedness - T. '14)
The Master Teapot \uparrow is connected and locally connected.

Geometry of the real teapot

Theorem (Connectedness - T. '14)
The Master Teapot \uparrow is connected and locally connected.
Theorem (Persistence - Bray-Davis-Lindsey-Wu '19)
For $z \in \mathbb{D},(z, \lambda) \in \Upsilon$ implies $\{z\} \times[\lambda, 2] \subset \Upsilon$.

Geometry of the real teapot

Theorem (Connectedness - T. '14)
The Master Teapot Υ is connected and locally connected.
Theorem (Persistence - Bray-Davis-Lindsey-Wu '19)
For $z \in \mathbb{D},(z, \lambda) \in \Upsilon$ implies $\{z\} \times[\lambda, 2] \subset \Upsilon$.

Eigenvalues for complex polynomials

- Let f postcritically finite.

Eigenvalues for complex polynomials

- Let f postcritically finite.
- Its postcritical set together with the branch points of its Hubbard tree determine a Markov partition for f.

Eigenvalues for complex polynomials

- Let f postcritically finite.
- Its postcritical set together with the branch points of its Hubbard tree determine a Markov partition for f.
- Denote by M_{f} the transition matrix associated to this Markov partition.

Eigenvalues for complex polynomials

- Let f postcritically finite.
- Its postcritical set together with the branch points of its Hubbard tree determine a Markov partition for f.
- Denote by M_{f} the transition matrix associated to this Markov partition.

Definition

Consider the set $Z(f)$ of eigenvalues of M_{f} :

$$
Z(f):=\left\{\lambda \in \mathbb{C} \mid \operatorname{det}\left(M_{f}-\lambda I\right)=0\right\}
$$

Eigenvalues for complex polynomials

- Let f postcritically finite.
- Its postcritical set together with the branch points of its Hubbard tree determine a Markov partition for f.
- Denote by M_{f} the transition matrix associated to this Markov partition.

Definition

Consider the set $Z(f)$ of eigenvalues of M_{f} :

$$
Z(f):=\left\{\lambda \in \mathbb{C} \mid \operatorname{det}\left(M_{f}-\lambda I\right)=0\right\}
$$

The growth rate $\lambda=e^{h(f)}$ is one element of $Z(f)$.

Eigenvalues for complex polynomials

- Let f postcritically finite.
- Its postcritical set together with the branch points of its Hubbard tree determine a Markov partition for f.
- Denote by M_{f} the transition matrix associated to this Markov partition.

Definition

Consider the set $Z(f)$ of eigenvalues of M_{f} :

$$
Z(f):=\left\{\lambda \in \mathbb{C} \mid \operatorname{det}\left(M_{f}-\lambda I\right)=0\right\}
$$

The growth rate $\lambda=e^{h(f)}$ is one element of $Z(f)$.

The core entropy - example

The core entropy - example

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A \cup D \\
& D \rightarrow A \cup B
\end{aligned}
$$

The core entropy - example

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A \cup D \\
& D \rightarrow A \cup B
\end{aligned}
$$

$$
M=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The core entropy - example

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A \cup D \\
& D \rightarrow A \cup B
\end{aligned}
$$

$$
M=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
\operatorname{det}(M-x I)=
$$

$$
=-1-2 x+x^{4}
$$

The core entropy - example

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A \cup D \\
& D \rightarrow A \cup B
\end{aligned}
$$

$$
M=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
\operatorname{det}(M-x I)=
$$

$$
=-1-2 x+x^{4}
$$

$$
\lambda \approx 1.39534
$$

$$
h \approx \log 1.39534
$$

The core entropy - example

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A \cup D \\
& D \rightarrow A \cup B
\end{aligned}
$$

$$
M=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
\operatorname{det}(M-x I)=
$$

$$
=-1-2 x+x^{4}
$$

$$
\lambda \approx 1.39534
$$

$$
h \approx \log 1.39534
$$

Outside view: continuity

Denote as $\mathrm{Com}^{+}(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \backslash \overline{\mathbb{D}}$,

Outside view: continuity

Denote as $\mathrm{Com}^{+}(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \backslash \overline{\mathbb{D}}$, with the Hausdorff topology.

Outside view: continuity

Denote as $\mathrm{Com}^{+}(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \backslash \overline{\mathbb{D}}$, with the Hausdorff topology.
Define $Z^{+}: \mathbb{Q} / \mathbb{Z} \rightarrow \operatorname{Com}^{+}(\mathbb{C})$ as

Outside view: continuity

Denote as $\mathrm{Com}^{+}(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \backslash \overline{\mathbb{D}}$, with the Hausdorff topology.
Define $Z^{+}: \mathbb{Q} / \mathbb{Z} \rightarrow \operatorname{Com}^{+}(\mathbb{C})$ as

$$
Z^{+}(\theta):=Z\left(f_{\theta}\right) \cap(\mathbb{C} \backslash \mathbb{D})
$$

Outside view: continuity

Denote as $\mathrm{Com}^{+}(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \backslash \overline{\mathbb{D}}$, with the Hausdorff topology.
Define $Z^{+}: \mathbb{Q} / \mathbb{Z} \rightarrow \operatorname{Com}^{+}(\mathbb{C})$ as

$$
Z^{+}(\theta):=Z\left(f_{\theta}\right) \cap(\mathbb{C} \backslash \mathbb{D})
$$

Theorem (Lindsey-T.-Wu '21)
The map $Z^{+}: \mathbb{Q} / \mathbb{Z} \rightarrow \operatorname{Com}^{+}(\mathbb{C})$ admits a continuous extension

$$
Z^{+}: \mathbb{R} / \mathbb{Z} \rightarrow \operatorname{Com}^{+}(\mathbb{C})
$$

Outside view: continuity

Denote as $\mathrm{Com}^{+}(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \backslash \overline{\mathbb{D}}$, with the Hausdorff topology.
Define $Z^{+}: \mathbb{Q} / \mathbb{Z} \rightarrow \operatorname{Com}^{+}(\mathbb{C})$ as

$$
Z^{+}(\theta):=Z\left(f_{\theta}\right) \cap(\mathbb{C} \backslash \mathbb{D}) .
$$

Theorem (Lindsey-T.-Wu '21)
The map $Z^{+}: \mathbb{Q} / \mathbb{Z} \rightarrow$ Com $^{+}(\mathbb{C})$ admits a continuous extension

$$
Z^{+}: \mathbb{R} / \mathbb{Z} \rightarrow \operatorname{Com}^{+}(\mathbb{C})
$$

But: this is not true for the part inside \mathbb{D} !

Veins

A vein is an embedded arc in the Mandelbrot set.

Veins

A vein is an embedded arc in the Mandelbrot set.
Existence (surgery): Branner-Douady '87

Veins

A vein is an embedded arc in the Mandelbrot set.
Existence (surgery): Branner-Douady '87

Principal veins

For each p, q with $\operatorname{gcd}(p, q)=1$, there is a parameter $c_{p / q}$ with:

- pre-fixed critical point

Principal veins

For each p, q with $\operatorname{gcd}(p, q)=1$, there is a parameter $c_{p / q}$ with:

- pre-fixed critical point
- rotation number $\frac{p}{q}$ around the α-fixed point

Principal veins

For each p, q with $\operatorname{gcd}(p, q)=1$, there is a parameter $c_{p / q}$ with:

- pre-fixed critical point
- rotation number $\frac{p}{q}$ around the α-fixed point
- The Hubbard tree of $c_{p / q}$ is a q-pronged star.

Principal veins

For each p, q with $\operatorname{gcd}(p, q)=1$, there is a parameter $c_{p / q}$ with:

- pre-fixed critical point
- rotation number $\frac{p}{q}$ around the α-fixed point
- The Hubbard tree of $c_{p / q}$ is a q-pronged star.

Principal veins

Definition
The $\frac{p}{q}$-principal vein is the vein joining 0 with $c_{p / q}$.
Let $\Theta_{p / q}^{p e r}$ the periodic external angles whose rays land on the p / q-vein.

Principal veins

Definition
The $\frac{p}{q}$-principal vein is the vein joining 0 with $c_{p / q}$.
Let $\Theta_{p / q}^{p e r}$ the periodic external angles whose rays land on the p / q-vein.

The Thurston set for a principal vein

We define the Thurston set for the principal p / q-vein as

$$
\Sigma_{p / q}:=\overline{\left\{z \in \mathbb{C} \mid \operatorname{det}\left(M_{\theta}-z I\right)=0 \text { for some } \theta \in \Theta_{p / q}^{p e r}\right\}} .
$$

Galois conjugates of entropies of complex maps: $1 / 3$ vein

Galois conjugates of entropies of complex maps: $1 / 5$ vein

Galois conjugates of entropies of complex maps: $1 / 11$ vein

Connectivity of the $\frac{p}{q}$-Thurston set

Corollary (Lindsey-T.-Wu '21)
For any (p, q) coprime, the Thurston set

$$
\Sigma_{p / q} \cap\{z \in \mathbb{C}:|z| \geq 1\}
$$

is path connected and locally connected.

Inside view: the Teapot

The Master Teapot for principal veins

For each λ, define

$$
\mathcal{Z}(\lambda):=\left\{z \in \mathbb{C} \mid \operatorname{det}\left(M_{\theta}-z l\right)=0 \forall \theta \in \Theta_{p / q} \text { s.t. } \lambda=e^{h(\theta)}\right\}
$$

The Master Teapot for principal veins

For each λ, define

$$
\mathcal{Z}(\lambda):=\left\{z \in \mathbb{C} \mid \operatorname{det}\left(M_{\theta}-z I\right)=0 \forall \theta \in \Theta_{p / q} \text { s.t. } \lambda=e^{h(\theta)}\right\}
$$

the set of eigenvalues of all matrices for parameters of growth rate λ in the vein.

The Master Teapot for principal veins

For each λ, define

$$
\mathcal{Z}(\lambda):=\left\{z \in \mathbb{C} \mid \operatorname{det}\left(M_{\theta}-z I\right)=0 \forall \theta \in \Theta_{p / q} \text { s.t. } \lambda=e^{h(\theta)}\right\}
$$

the set of eigenvalues of all matrices for parameters of growth rate λ in the vein.

Definition
We define the $\frac{p}{q}$-Master Teapot to be the set

$$
\Upsilon_{p / q}:=\overline{\left\{(z, \lambda) \in \mathbb{C} \times \mathbb{R} \mid \lambda=e^{h(\theta)} \text { for some } \theta \in \Theta_{p / q}^{p e r}, \quad z \in \mathcal{Z}(\lambda)\right\}}
$$

The Persistence Theorem - complex veins

Theorem (Persistence - Lindsey-T.-Wu '21)
For $z \in \mathbb{D},(z, \lambda) \in \Upsilon_{p / q}$ implies $\{z\} \times\left[\lambda, \lambda_{q}\right] \subset \Upsilon_{p / q}$.

The Persistence Theorem - complex veins

Theorem (Persistence - Lindsey-T.-Wu '21)
For $z \in \mathbb{D},(z, \lambda) \in \Upsilon_{p / q}$ implies $\{z\} \times\left[\lambda, \lambda_{q}\right] \subset \Upsilon_{p / q}$.

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue
This works, but you need to know the topology of the tree,

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue
This works, but you need to know the topology of the tree, and that varies wildly with the parameter!

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue
This works, but you need to know the topology of the tree, and that varies wildly with the parameter!

Idea 2: (Thurston): look at set of pairs of postcritical points

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue
This works, but you need to know the topology of the tree, and that varies wildly with the parameter!

Idea 2: (Thurston): look at set of pairs of postcritical points, which correspond to arcs between postcritical points.

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue
This works, but you need to know the topology of the tree, and that varies wildly with the parameter!
Idea 2: (Thurston): look at set of pairs of postcritical points, which correspond to arcs between postcritical points. Denote $c_{i}:=f^{i}(0)$ the $i^{\text {th }}$ iterate of the critical point, and let

$$
P:=\left\{\left(c_{i}, c_{j}\right) \quad i, j \geq 0\right\}
$$

the set of pairs of postcritical points

Computing the entropy: non-separated pair

A pair (i, j) is non-separated if c_{i} and c_{j} lie on the same side of the critical point.

Computing the entropy: non-separated pair

A pair (i, j) is non-separated if c_{i} and c_{j} lie on the same side of the critical point.

Computing the entropy: non-separated pair

A pair (i, j) is non-separated if c_{i} and c_{j} lie on the same side of the critical point.

Computing the entropy: non-separated pair

A pair (i, j) is non-separated if c_{i} and c_{j} lie on the same side of the critical point.

Computing the entropy: separated pair

A pair (i, j) is separated if c_{i} and c_{j} lie on opposite sides of the critical point.

Computing the entropy: separated pair

A pair (i, j) is separated if c_{i} and c_{j} lie on opposite sides of the critical point.

Computing the entropy: separated pair

A pair (i, j) is separated if c_{i} and c_{j} lie on opposite sides of the critical point.

Computing the entropy: separated pair

A pair (i, j) is separated if c_{i} and c_{j} lie on opposite sides of the critical point.

The algorithm

Let P the cardinality of the set of pairs of postcritical points, and consider $A: \mathbb{R}^{P} \rightarrow \mathbb{R}^{P}$ given by

The algorithm

Let P the cardinality of the set of pairs of postcritical points, and consider $A: \mathbb{R}^{P} \rightarrow \mathbb{R}^{P}$ given by

- If (i, j) is non-separated, then $(i, j) \rightarrow(i+1, j+1)$

$$
A\left(e_{i, j}\right)=e_{i+1, j+1}
$$

The algorithm

Let P the cardinality of the set of pairs of postcritical points, and consider $A: \mathbb{R}^{P} \rightarrow \mathbb{R}^{P}$ given by

- If (i, j) is non-separated, then $(i, j) \rightarrow(i+1, j+1)$

$$
A\left(e_{i, j}\right)=e_{i+1, j+1}
$$

- If (i, j) is separated, then $(i, j) \rightarrow(1, i+1)+(1, j+1)$.

$$
A\left(e_{i, j}\right)=e_{1, i+1}+e_{1, j+1}
$$

The algorithm

Let P the cardinality of the set of pairs of postcritical points, and consider $A: \mathbb{R}^{P} \rightarrow \mathbb{R}^{P}$ given by

- If (i, j) is non-separated, then $(i, j) \rightarrow(i+1, j+1)$

$$
A\left(e_{i, j}\right)=e_{i+1, j+1}
$$

- If (i, j) is separated, then $(i, j) \rightarrow(1, i+1)+(1, j+1)$.

$$
A\left(e_{i, j}\right)=e_{1, i+1}+e_{1, j+1}
$$

Theorem (Thurston; Tan Lei)
The entropy of f_{θ} is given by

$$
h(\theta)=\log \lambda
$$

where λ is the leading eigenvalue of A.
See also Gao Yan, Wolf Jung.

Coincidence of entropy algorithms

Theorem (Lindsey-T.-Wu '21)
Let f be a postcritically finite quadratic polynomial.

Coincidence of entropy algorithms

Theorem (Lindsey-T.-Wu '21)
Let f be a postcritically finite quadratic polynomial. Then the following 2 polynomials have the same roots off the unit circle:

Coincidence of entropy algorithms

Theorem (Lindsey-T.-Wu '21)
Let f be a postcritically finite quadratic polynomial. Then the following 2 polynomials have the same roots off the unit circle:

1. $P_{T h}(t)$ from Thurston's algorithm;

Coincidence of entropy algorithms

Theorem (Lindsey-T.-Wu '21)
Let f be a postcritically finite quadratic polynomial. Then the following 2 polynomials have the same roots off the unit circle:

1. $P_{T h}(t)$ from Thurston's algorithm;
2. $P_{\text {Mar }}(t)$ from the Markov partition.

Coincidence of entropy algorithms

Theorem (Lindsey-T.-Wu '21)

Let f be a postcritically finite quadratic polynomial. Then the following 2 polynomials have the same roots off the unit circle:

1. $P_{T h}(t)$ from Thurston's algorithm;
2. $P_{M a r}(t)$ from the Markov partition.

If f is critically periodic and belongs to a principal vein, a third polynomial that has the same roots off the unit circle is
(3) the principal vein kneading polynomial $D(t)$.

Kneading theory for principal veins

We define the itinerary $\operatorname{lt}(x) \in\{0,1,2\}^{\mathbb{N}}$ as the itinerary for the first return map on $I_{0} \cup I_{1} \cup I_{2}$.

Kneading theory for principal veins

Let us define the "piecewise linear model"

$$
\begin{aligned}
F_{0, q, \lambda}(x) & :=\lambda x+\lambda+1 \\
F_{1, q, \lambda}(x) & :=-\lambda x+\lambda+1 \\
F_{2, q, \lambda}(x) & :=-\lambda^{q-1} x+\lambda^{q-1}+1
\end{aligned}
$$

Let $\epsilon_{j} \in\{+1,-1\}$ and $q_{j} \in \mathbb{N}^{+}$, and polynomial B_{j} be such that

$$
F_{j, q, 1 / t}(x):=\frac{\epsilon_{j}}{t^{q_{j}}} x+\frac{B_{j}(t)}{t^{q_{j}}}
$$

Kneading theory for principal veins
Let $w=\operatorname{lt}(c) \in\{0,1,2\}^{\mathbb{N}}$.

Kneading theory for principal veins

Let $w=\operatorname{lt}(c) \in\{0,1,2\}^{\mathbb{N}}$. For each $k \geq 1$, define

$$
\begin{aligned}
\eta_{k} & :=\epsilon_{w_{1}} \ldots \epsilon_{w_{k}} \\
d_{k} & :=q_{w_{0}}+\cdots+q_{w_{k-1}}
\end{aligned}
$$

while $\eta_{0}=1, d_{0}=0$.

Kneading theory for principal veins

Let $w=\operatorname{lt}(c) \in\{0,1,2\}^{\mathbb{N}}$. For each $k \geq 1$, define

$$
\begin{aligned}
\eta_{k} & :=\epsilon_{w_{1}} \ldots \epsilon_{w_{k}} \\
d_{k} & :=q_{w_{0}}+\cdots+q_{w_{k-1}}
\end{aligned}
$$

while $\eta_{0}=1, d_{0}=0$.
We define the q-vein kneading determinant of f_{c} as

$$
D(t):=\sum_{k=0}^{\infty} \eta_{k} B_{w_{k}} t^{d_{k}}
$$

Kneading theory for principal veins

Let $w=\operatorname{lt}(c) \in\{0,1,2\}^{\mathbb{N}}$. For each $k \geq 1$, define

$$
\begin{aligned}
\eta_{k} & :=\epsilon_{w_{1}} \ldots \epsilon_{w_{k}} \\
d_{k} & :=q_{w_{0}}+\cdots+q_{w_{k-1}}
\end{aligned}
$$

while $\eta_{0}=1, d_{0}=0$.
We define the q-vein kneading determinant of f_{c} as

$$
D(t):=\sum_{k=0}^{\infty} \eta_{k} B_{w_{k}} t^{d_{k}}
$$

Proposition
The power series $D(t)$:

- converges in the unit disk to a holomorphic function.

Kneading theory for principal veins

Let $w=\operatorname{lt}(c) \in\{0,1,2\}^{\mathbb{N}}$. For each $k \geq 1$, define

$$
\begin{aligned}
\eta_{k} & :=\epsilon_{w_{1}} \ldots \epsilon_{w_{k}} \\
d_{k} & :=q_{w_{0}}+\cdots+q_{w_{k-1}}
\end{aligned}
$$

while $\eta_{0}=1, d_{0}=0$.
We define the q-vein kneading determinant of f_{c} as

$$
D(t):=\sum_{k=0}^{\infty} \eta_{k} B_{w_{k}} t^{d_{k}}
$$

Proposition

The power series $D(t)$:

- converges in the unit disk to a holomorphic function.
- The smallest root is $t=\frac{1}{\lambda}$, where λ is the growth rate

Kneading theory for principal veins

Let $w=\operatorname{lt}(c) \in\{0,1,2\}^{\mathbb{N}}$. For each $k \geq 1$, define

$$
\begin{aligned}
\eta_{k} & :=\epsilon_{w_{1}} \ldots \epsilon_{w_{k}} \\
d_{k} & :=q_{w_{0}}+\cdots+q_{w_{k-1}}
\end{aligned}
$$

while $\eta_{0}=1, d_{0}=0$.
We define the q-vein kneading determinant of f_{c} as

$$
D(t):=\sum_{k=0}^{\infty} \eta_{k} B_{w_{k}} d_{k} .
$$

Proposition

The power series $D(t)$:

- converges in the unit disk to a holomorphic function.
- The smallest root is $t=\frac{1}{\lambda}$, where λ is the growth rate
- The roots of $D(t)$ inside the unit circle change continuously with w.

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.
Theorem
Let

$$
\operatorname{lt}\left(c_{0}\right)=\left(w_{0}\right)^{\infty}, \quad \operatorname{lt}\left(c_{1}\right)=\left(w_{1}\right)^{\infty}
$$

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.
Theorem
Let

$$
\operatorname{lt}\left(c_{0}\right)=\left(w_{0}\right)^{\infty}, \quad \operatorname{lt}\left(c_{1}\right)=\left(w_{1}\right)^{\infty}
$$

be the itineraries of two critically periodic parameters $c_{0}<\mathcal{M} c_{1}$ in $\mathcal{V}_{p / q}$.

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.
Theorem
Let

$$
\operatorname{lt}\left(c_{0}\right)=\left(w_{0}\right)^{\infty}, \quad \operatorname{lt}\left(c_{1}\right)=\left(w_{1}\right)^{\infty}
$$

be the itineraries of two critically periodic parameters $c_{0}<\mathcal{M} c_{1}$ in $\mathcal{V}_{p / q}$. Then, given any $N>0$, there is a critically periodic parameter c_{2} such that the itinerary of c_{2} is

$$
\operatorname{lt}\left(c_{2}\right)=\left(\left(w_{1}\right)^{N} u\left(w_{0}\right)^{N}\right)^{\infty}
$$

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.
Theorem
Let

$$
\operatorname{lt}\left(c_{0}\right)=\left(w_{0}\right)^{\infty}, \quad \operatorname{lt}\left(c_{1}\right)=\left(w_{1}\right)^{\infty}
$$

be the itineraries of two critically periodic parameters $c_{0}<\mathcal{M} c_{1}$ in $\mathcal{V}_{p / q}$. Then, given any $N>0$, there is a critically periodic parameter c_{2} such that the itinerary of c_{2} is

$$
\operatorname{lt}\left(c_{2}\right)=\left(\left(w_{1}\right)^{N} u\left(w_{0}\right)^{N}\right)^{\infty}
$$

and c_{2} is the smallest parameter on the vein with the given core entropy.

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.
Theorem
Let

$$
\operatorname{lt}\left(c_{0}\right)=\left(w_{0}\right)^{\infty}, \quad \operatorname{lt}\left(c_{1}\right)=\left(w_{1}\right)^{\infty}
$$

be the itineraries of two critically periodic parameters $c_{0}<\mathcal{M} c_{1}$ in $\mathcal{V}_{p / q}$. Then, given any $N>0$, there is a critically periodic parameter c_{2} such that the itinerary of c_{2} is

$$
\operatorname{lt}\left(c_{2}\right)=\left(\left(w_{1}\right)^{N} u\left(w_{0}\right)^{N}\right)^{\infty}
$$

and c_{2} is the smallest parameter on the vein with the given core entropy.
Corollary
Let $\left(z, \lambda_{0}\right) \in \Upsilon$, let $\lambda_{1}>\lambda_{0}$.

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.
Theorem
Let

$$
\operatorname{lt}\left(c_{0}\right)=\left(w_{0}\right)^{\infty}, \quad \operatorname{lt}\left(c_{1}\right)=\left(w_{1}\right)^{\infty}
$$

be the itineraries of two critically periodic parameters $c_{0}<\mathcal{M} c_{1}$ in $\mathcal{V}_{p / q}$. Then, given any $N>0$, there is a critically periodic parameter c_{2} such that the itinerary of c_{2} is

$$
\operatorname{tt}\left(c_{2}\right)=\left(\left(w_{1}\right)^{N} u\left(w_{0}\right)^{N}\right)^{\infty}
$$

and c_{2} is the smallest parameter on the vein with the given core entropy.
Corollary
Let $\left(z, \lambda_{0}\right) \in \Upsilon$, let $\lambda_{1}>\lambda_{0}$. For N large, $c_{0}<\mathcal{M} c_{2}<\mathcal{M} c_{1}$,

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.
Theorem
Let

$$
\operatorname{lt}\left(c_{0}\right)=\left(w_{0}\right)^{\infty}, \quad \operatorname{lt}\left(c_{1}\right)=\left(w_{1}\right)^{\infty}
$$

be the itineraries of two critically periodic parameters $c_{0}<\mathcal{M} c_{1}$ in $\mathcal{V}_{p / q}$. Then, given any $N>0$, there is a critically periodic parameter c_{2} such that the itinerary of c_{2} is

$$
\operatorname{tt}\left(c_{2}\right)=\left(\left(w_{1}\right)^{N} u\left(w_{0}\right)^{N}\right)^{\infty}
$$

and c_{2} is the smallest parameter on the vein with the given core entropy.
Corollary
Let $\left(z, \lambda_{0}\right) \in \Upsilon$, let $\lambda_{1}>\lambda_{0}$. For N large, $c_{0}<\mathcal{M} c_{2}<\mathcal{M} c_{1}$, hence $\lambda_{0}<\lambda_{2}<\lambda_{1}$

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.
Theorem
Let

$$
\operatorname{lt}\left(c_{0}\right)=\left(w_{0}\right)^{\infty}, \quad \operatorname{lt}\left(c_{1}\right)=\left(w_{1}\right)^{\infty}
$$

be the itineraries of two critically periodic parameters $c_{0}<\mathcal{M} c_{1}$ in $\mathcal{V}_{p / q}$. Then, given any $N>0$, there is a critically periodic parameter c_{2} such that the itinerary of c_{2} is

$$
\operatorname{tt}\left(c_{2}\right)=\left(\left(w_{1}\right)^{N} u\left(w_{0}\right)^{N}\right)^{\infty}
$$

and c_{2} is the smallest parameter on the vein with the given core entropy.
Corollary
Let $\left(z, \lambda_{0}\right) \in \Upsilon$, let $\lambda_{1}>\lambda_{0}$. For N large, $c_{0}<\mathcal{M} c_{2}<_{\mathcal{M}} c_{1}$, hence $\lambda_{0}<\lambda_{2}<\lambda_{1}$ but since $\operatorname{lt}\left(c_{2}\right)$ and $\operatorname{lt}\left(c_{0}\right)$ have the same "end" we have $d\left(z, \mathcal{Z}\left(c_{0}\right)\right)<\epsilon$,

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.
Theorem
Let

$$
\operatorname{lt}\left(c_{0}\right)=\left(w_{0}\right)^{\infty}, \quad \operatorname{lt}\left(c_{1}\right)=\left(w_{1}\right)^{\infty}
$$

be the itineraries of two critically periodic parameters $c_{0}<\mathcal{M} c_{1}$ in $\mathcal{V}_{p / q}$. Then, given any $N>0$, there is a critically periodic parameter c_{2} such that the itinerary of c_{2} is

$$
\operatorname{tt}\left(c_{2}\right)=\left(\left(w_{1}\right)^{N} u\left(w_{0}\right)^{N}\right)^{\infty}
$$

and c_{2} is the smallest parameter on the vein with the given core entropy.
Corollary
Let $\left(z, \lambda_{0}\right) \in \Upsilon$, let $\lambda_{1}>\lambda_{0}$. For N large, $c_{0}<\mathcal{M} c_{2}<\mathcal{M} c_{1}$, hence $\lambda_{0}<\lambda_{2}<\lambda_{1}$ but since $\operatorname{lt}\left(c_{2}\right)$ and $\operatorname{It}\left(c_{0}\right)$ have the same "end" we have $d\left(z, \mathcal{Z}\left(c_{0}\right)\right)<\epsilon$, hence $\left(z, \lambda_{1}\right) \in \Upsilon$

Persistence

Fix a principal vein $\mathcal{V}_{p / q}$.
Theorem
Let

$$
\operatorname{lt}\left(c_{0}\right)=\left(w_{0}\right)^{\infty}, \quad \operatorname{lt}\left(c_{1}\right)=\left(w_{1}\right)^{\infty}
$$

be the itineraries of two critically periodic parameters $c_{0}<\mathcal{M} c_{1}$ in $\mathcal{V}_{p / q}$. Then, given any $N>0$, there is a critically periodic parameter c_{2} such that the itinerary of c_{2} is

$$
\operatorname{tt}\left(c_{2}\right)=\left(\left(w_{1}\right)^{N} u\left(w_{0}\right)^{N}\right)^{\infty}
$$

and c_{2} is the smallest parameter on the vein with the given core entropy.
Corollary
Let $\left(z, \lambda_{0}\right) \in \Upsilon$, let $\lambda_{1}>\lambda_{0}$. For N large, $c_{0}<\mathcal{M} c_{2}<\mathcal{M} c_{1}$, hence $\lambda_{0}<\lambda_{2}<\lambda_{1}$ but since $\operatorname{lt}\left(c_{2}\right)$ and $\operatorname{It}\left(c_{0}\right)$ have the same "end" we have $d\left(z, \mathcal{Z}\left(c_{0}\right)\right)<\epsilon$, hence $\left(z, \lambda_{1}\right) \in \Upsilon$
\Rightarrow persistence.

Thank you!

