

Core entropy along the Mandelbrot set and Thurston's *Master Teapot*

Giulio Tiozzo - University of Toronto

1. Topological entropy

- 1. Topological entropy
- 2. The core entropy

- 1. Topological entropy
- 2. The core entropy
- 3. The entropy spectrum (Thurston set)

- 1. Topological entropy
- 2. The core entropy
- 3. The entropy spectrum (Thurston set)
- 4. The Master teapot

- 1. Topological entropy
- 2. The core entropy
- 3. The entropy spectrum (Thurston set)
- 4. The Master teapot
- 5. Kneading theory for veins

Joint work with Kathryn Lindsey and Chenxi Wu.

Let $f : I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone.

Let $f : I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals (Misiurewicz-Szlenk)

Let $f : I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals (Misiurewicz-Szlenk)

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

Let $f : I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals (Misiurewicz-Szlenk)

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

$$h_{top}(f,\mathbb{R}) = \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

 $f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of *f* are finite.

 $f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of *f* are finite. Then the entropy is the logarithm of an algebraic number.

 $f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of *f* are finite. Then the entropy is the logarithm of an algebraic number.

 $\begin{array}{rrr} A & \mapsto & A \cup B \\ B & \mapsto & A \end{array}$

 $f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of *f* are finite. Then the entropy is the logarithm of an algebraic number.

 $\begin{array}{ccc} A & \mapsto & A \cup B \\ B & \mapsto & A \end{array} \quad \Rightarrow \quad \left(\begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} \right)$

 $f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of *f* are finite. Then the entropy is the logarithm of an algebraic number.

 $\begin{array}{ccc} A & \mapsto & A \cup B \\ B & \mapsto & A \end{array} \quad \Rightarrow \quad \left(\begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} \right) \quad \Rightarrow \quad \lambda = \frac{\sqrt{5}+1}{2} \end{array}$

 $f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of *f* are finite. Then the entropy is the logarithm of an algebraic number.

 $\begin{array}{ccc} A & \mapsto & A \cup B \\ B & \mapsto & A \end{array} \quad \Rightarrow \quad \left(\begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} \right) \quad \Rightarrow \quad \lambda = \frac{\sqrt{5}+1}{2} = e^{h_{top}(f_c,\mathbb{R})} \end{array}$

Let $f : I \rightarrow I$ be PCF with Markov matrix A.

Let $f : I \rightarrow I$ be PCF with Markov matrix *A*. Questions

What is the meaning of the other eigenvalues?

Let $f : I \rightarrow I$ be PCF with Markov matrix *A*. Questions

What is the meaning of the other eigenvalues? Ergodicity, mixing, ...

Let $f : I \rightarrow I$ be PCF with Markov matrix *A*. Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues?

Let $f : I \rightarrow I$ be PCF with Markov matrix *A*. Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues?
 (e.g., what happens if you change symbolic coding?)

Let $f : I \rightarrow I$ be PCF with Markov matrix *A*. Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues?
 (e.g., what happens if you change symbolic coding?)

Observation. If λ' is a <u>Galois conjugate</u> of λ , then it is an eigenvalue of the same matrix.

Let $f : I \rightarrow I$ be PCF with Markov matrix *A*. Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues?
 (e.g., what happens if you change symbolic coding?)

Observation. If λ' is a <u>Galois conjugate</u> of λ , then it is an eigenvalue of the same matrix.

What algebraic numbers arise as growth rates of PCF maps?

Let $f : I \rightarrow I$ be PCF with Markov matrix *A*. Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues?
 (e.g., what happens if you change symbolic coding?)

Observation. If λ' is a <u>Galois conjugate</u> of λ , then it is an eigenvalue of the same matrix.

What algebraic numbers arise as growth rates of PCF maps?

 λ is a Perron number if $|\lambda'| \leq \lambda$ for any λ' Galois conjugate of λ .

Let $f : I \rightarrow I$ be PCF with Markov matrix *A*. Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues?
 (e.g., what happens if you change symbolic coding?)

Observation. If λ' is a <u>Galois conjugate</u> of λ , then it is an eigenvalue of the same matrix.

What algebraic numbers arise as growth rates of PCF maps?

 λ is a Perron number if $|\lambda'| \leq \lambda$ for any λ' Galois conjugate of λ .

(W. Thurston '12) <u>Every</u> Perron number arises as growth rate of a real PCF polynomial

Let $f : I \rightarrow I$ be PCF with Markov matrix *A*. Questions

- What is the meaning of the other eigenvalues? Ergodicity, mixing, ...
- How "intrinsic" are the other eigenvalues?
 (e.g., what happens if you change symbolic coding?)

Observation. If λ' is a <u>Galois conjugate</u> of λ , then it is an eigenvalue of the same matrix.

What algebraic numbers arise as growth rates of PCF maps?

 λ is a Perron number if $|\lambda'| \leq \lambda$ for any λ' Galois conjugate of λ .

(W. Thurston '12) <u>Every</u> Perron number arises as growth rate of a real PCF polynomial

What if you fix the degree of the polynomial?
Topological entropy of real maps

$$h_{top}(f,\mathbb{R}) := \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

Consider the real quadratic family

$$f_c(z) := z^2 + c$$
 $c \in [-2, 1/4]$

Topological entropy of real maps

$$h_{top}(f,\mathbb{R}) := \lim_{n \to \infty} \frac{\log \#\{ \operatorname{laps}(f^n) \}}{n}$$

Consider the real quadratic family

$$f_c(z) := z^2 + c$$
 $c \in [-2, 1/4]$

Question. How does entropy change with the parameter c?

► is continuous

▶ is continuous and monotone (Milnor-Thurston, 1977).

- ▶ is continuous and monotone (Milnor-Thurston, 1977).
- ▶ $0 \le h_{top}(f_c, \mathbb{R}) \le \log 2.$

- ▶ is continuous and monotone (Milnor-Thurston, 1977).
- ▶ $0 \le h_{top}(f_c, \mathbb{R}) \le \log 2.$

- ▶ is continuous and monotone (Milnor-Thurston, 1977).
- ▶ $0 \le h_{top}(f_c, \mathbb{R}) \le \log 2.$

[Picture is for $f_a(x) = ax(1 - x)$.]

- ▶ is continuous and monotone (Milnor-Thurston, 1977).
- ▶ $0 \le h_{top}(f_c, \mathbb{R}) \le \log 2.$

Question : Can we extend this theory to complex polynomials?

- ▶ is continuous and monotone (Milnor-Thurston, 1977).
- ▶ $0 \le h_{top}(f_c, \mathbb{R}) \le \log 2.$

<u>Remark.</u> If we consider $f_c : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ entropy is constant $\overline{h_{top}(f_c, \hat{\mathbb{C}})} = \log 2$. (Lyubich 1980)

Mandelbrot set

The Mandelbrot set $\ensuremath{\mathcal{M}}$ is the connectedness locus of the quadratic family

$$\mathcal{M} = \{ oldsymbol{c} \in \mathbb{C} \; : \; f^n_{oldsymbol{c}}(\mathbf{0})
arrow \infty \}$$

External rays

Since $\hat{\mathbb{C}}\setminus\mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \setminus \overline{\mathbb{D}} \to \hat{\mathbb{C}} \setminus \mathcal{M}$$

External rays

Since $\hat{\mathbb{C}}\setminus\mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

 $\Phi_{\mathcal{M}}:\hat{\mathbb{C}}\setminus\overline{\mathbb{D}}\to\hat{\mathbb{C}}\setminus\mathcal{M}$

External rays

Since $\hat{\mathbb{C}}\setminus\mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

 $\Phi_{\mathcal{M}}:\hat{\mathbb{C}}\setminus\overline{\mathbb{D}}\to\hat{\mathbb{C}}\setminus\mathcal{M}$

The images of radial arcs in the disk are called external rays.

$$\boldsymbol{R}(\theta) := \Phi_{\mathcal{M}}(\{\rho \boldsymbol{e}^{2\pi i \theta} : \rho > 1\})$$

The Hubbard tree T_c of a quadratic polynomial is

The Hubbard tree T_c of a quadratic polynomial is

$$T_c := \bigcup_{m,n \ge 0} [f_c^m(0), f_c^n(0)]$$

The Hubbard tree T_c of a quadratic polynomial is

$$T_c := \bigcup_{m,n\geq 0} [f_c^m(0), f_c^n(0)]$$

The Hubbard tree T_c of a quadratic polynomial is

$$T_c := \bigcup_{m,n\geq 0} [f_c^m(0), f_c^n(0)]$$

The Hubbard tree T_c of a quadratic polynomial is

$$T_c := \bigcup_{m,n\geq 0} [f_c^m(0), f_c^n(0)]$$

The Hubbard tree T_c of a quadratic polynomial is

$$T_c := \bigcup_{m,n\geq 0} [f_c^m(0), f_c^n(0)]$$

The Hubbard tree T_c of a quadratic polynomial is

$$T_c := \bigcup_{m,n\geq 0} [f_c^m(0), f_c^n(0)]$$

It is a forward invariant, connected subset of the filled Julia set which contains the critical orbit.

The complex case: Hubbard trees The Hubbard tree T_c of a quadratic polynomial is

$$T_c := \bigcup_{m,n\geq 0} [f_c^m(0), f_c^n(0)]$$

It is a forward invariant, connected subset of the filled Julia set which contains the critical orbit. The map f_c acts on it.

Let *f* be a polynomial whose Julia set is connected and locally connected

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f).

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

$$h(f) := h(f \mid_{T_f})$$

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

$$h(f) := h(f \mid_{T_f})$$

where T_f is the Hubbard tree of f.

$$A \rightarrow B$$

$$egin{array}{c} A
ightarrow B \ B
ightarrow C \end{array}$$

$$\begin{array}{l} A \rightarrow B \\ B \rightarrow C \\ C \rightarrow A \cup D \\ D \rightarrow A \cup B \end{array}$$

The core entropy - example

 $h(f) := h(f \mid_{T_f})$

The core entropy - example

 $h(f) := h(f \mid_{T_f})$

The core entropy

Let $\theta \in \mathbb{Q}/\mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ} , with Hubbard tree T_{θ} .

The core entropy

Let $\theta \in \mathbb{Q}/\mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ} , with Hubbard tree T_{θ} .

Definition (W. Thurston)

The core entropy of f_{θ} is

$$h(\theta) := h(f_{\theta} \mid_{T_{\theta}})$$

The core entropy

Let $\theta \in \mathbb{Q}/\mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ} , with Hubbard tree T_{θ} .

Definition (W. Thurston)

The core entropy of f_{θ} is

$$h(\theta) := h(f_{\theta} \mid_{T_{\theta}})$$

Question: How does $h(\theta)$ vary with the parameter θ ?

Core entropy as a function of external angle (W. Thurston)

Core entropy as a function of external angle (W. Thurston)

Core entropy as a function of external angle (W. Thurston)

Question Can you see the Mandelbrot set in this picture?

Core entropy as a function of *c*

Observation

<u>Observation</u> If $R_M(\theta_1)$ and $R_M(\theta_2)$ land together, then $h(\theta_1) = h(\theta_2)$.

Observation If $R_M(\theta_1)$ and $R_M(\theta_2)$ land together, then $h(\theta_1) = h(\theta_2)$.

Monotonicity still holds along veins.

Observation If $R_M(\theta_1)$ and $R_M(\theta_2)$ land together, then $h(\theta_1) = h(\theta_2)$.

Monotonicity still holds along veins.

Let us take two rays θ_1 landing at c_1 and θ_2 landing at c_2 .

<u>Observation</u> If $R_M(\theta_1)$ and $R_M(\theta_2)$ land together, then $h(\theta_1) = h(\theta_2)$.

Monotonicity still holds along veins.

Let us take two rays θ_1 landing at c_1 and θ_2 landing at c_2 . Then we define $\theta_1 <_{\mathcal{M}} \theta_2$ if c_1 lies on the arc $[0, c_2]$.

<u>Observation</u> If $R_M(\theta_1)$ and $R_M(\theta_2)$ land together, then $h(\theta_1) = h(\theta_2)$.

Monotonicity still holds along veins.

Let us take two rays θ_1 landing at c_1 and θ_2 landing at c_2 . Then we define $\theta_1 <_{\mathcal{M}} \theta_2$ if c_1 lies on the arc $[0, c_2]$.

Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong) If $\theta_1 <_{\mathcal{M}} \theta_2$, then

 $h(\theta_1) \leq h(\theta_2)$

The core entropy as a function of external angle

<u>Question</u> (Thurston, Hubbard): Is $h(\theta)$ a continuous function of θ ?

Continuity of core entropy

Theorem (T.; Dudko-Schleicher)

The core entropy function $h(\theta)$ extends to a continuous function from \mathbb{R}/\mathbb{Z} to \mathbb{R} .

Regularity properties of the core entropy

In fact:

Theorem (T. '15)

The core entropy is locally Hölder continuous at θ if $h(\theta) > 0$, and not locally Hölder at θ where $h(\theta) = 0$.

Theorem (T. '17)

Let $h(\theta)$ be the entropy of the <u>real</u> quadratic polynomial with external ray θ . Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$\alpha(h, \theta) := \frac{h(\theta)}{\log 2}$$

(Conjectured Isola-Politi, 1990)

Further questions

Question. What about the other eigenvalues?

The entropy spectrum (W. Thurston '12)

Let

$$\mathcal{M}_0 := \{ \boldsymbol{c} \in \mathbb{R} : \exists n \text{ s.t. } f_{\boldsymbol{c}}^n(0) = 0 \}$$

the set of critically periodic parameters.

Let

$$\mathcal{M}_0 := \{ \boldsymbol{c} \in \mathbb{R} : \exists n \text{ s.t. } f_c^n(0) = 0 \}$$

the set of critically periodic parameters. Recall

$$\lambda(f_c) = e^{h_{top}(f_c)}$$

Let

$$\mathcal{M}_0 := \{ \boldsymbol{c} \in \mathbb{R} : \exists n \text{ s.t. } f_c^n(0) = 0 \}$$

the set of critically periodic parameters. Recall

$$\lambda(f_c) = e^{h_{top}(f_c)}$$

Definition We define the Thurston set (entropy spectrum) as

Let

$$\mathcal{M}_0 := \{ \boldsymbol{c} \in \mathbb{R} : \exists n \text{ s.t. } f_{\boldsymbol{c}}^n(0) = 0 \}$$

the set of critically periodic parameters. Recall

$$\lambda(f_c) = e^{h_{top}(f_c)}$$

Definition We define the Thurston set (entropy spectrum) as

$$\Sigma := \bigcup_{c \in \mathcal{M}_0} \operatorname{Gal}(\lambda(f_c))$$

Let

$$\mathcal{M}_0 := \{ \boldsymbol{c} \in \mathbb{R} : \exists n \text{ s.t. } f_c^n(0) = 0 \}$$

the set of critically periodic parameters. Recall

$$\lambda(f_c) = e^{h_{top}(f_c)}$$

Definition We define the Thurston set (entropy spectrum) as

$$\Sigma := \bigcup_{c \in \mathcal{M}_0} \operatorname{Gal}(\lambda(f_c))$$

where $Gal(\lambda)$ is the set of Galois conjugates (i.e., roots of the same minimal polynomial) of λ .

Zeros of polynomials with coefficients ± 1 (Bousch)

Comparison

$$\Sigma_{\pm} := \overline{\left\{ z \in \mathbb{C} \ : \ \exists (\epsilon_k) \in \{\pm\}^n \ : \ \sum_{k=1}^n \epsilon_k z^k = 0 \right\}}$$

Zeros of polynomials with coefficients 0,1 (Odlyzko-Poonen)

Theorem (T. '14)

The Thurston set Σ is connected and locally connected.

Theorem (T. '14)

- The Thurston set Σ is connected and locally connected.
- Σ contains a neighbourhood {1 − ε < |z| < 1 + ε} of the unit circle.</p>

Theorem (T. '14)

- The Thurston set Σ is connected and locally connected.
- Σ contains a neighbourhood {1 − ε < |z| < 1 + ε} of the unit circle.</p>
- Σ is closed under taking nth roots: if z ∈ Σ and wⁿ = z for some n ∈ N, then w belongs to Σ.

Theorem (T. '14)

- The Thurston set Σ is connected and locally connected.
- Σ contains a neighbourhood {1 − ε < |z| < 1 + ε} of the unit circle.</p>
- Σ is closed under taking nth roots: if z ∈ Σ and wⁿ = z for some n ∈ N, then w belongs to Σ.
- Moreover, we have

$$\Sigma \cap \mathbb{D} = \Sigma_{\pm} \cap \mathbb{D}.$$

The Master Teapot for real maps

The Master Teapot for tent maps

For each $\lambda \in [1, 2]$, consider the tent map $T_{\lambda} : [0, 1] \rightarrow [0, 1]$ $T_{\lambda}(x) := \begin{cases} \lambda x & \text{if } x \leq 1/2 \\ \lambda(1-x) & \text{if } x > 1/2 \end{cases}$

Let Π be the set of parameters for which the orbit of x = 1/2 is purely periodic under T_{λ} .

The Master Teapot for tent maps

For each $\lambda \in [1, 2]$, consider the tent map $T_{\lambda} : [0, 1] \rightarrow [0, 1]$ $T_{\lambda}(x) := \begin{cases} \lambda x & \text{if } x \leq 1/2 \\ \lambda(1-x) & \text{if } x > 1/2 \end{cases}$

Let Π be the set of parameters for which the orbit of x = 1/2 is purely periodic under T_{λ} . If $\lambda \in \Pi$, the system has a Markov partition: let M_{λ} be the corresponding transition matrix.

The Master Teapot for tent maps

For each $\lambda \in [1, 2]$, consider the tent map $T_{\lambda} : [0, 1] \rightarrow [0, 1]$ $T_{\lambda}(x) := \begin{cases} \lambda x & \text{if } x \leq 1/2 \\ \lambda(1-x) & \text{if } x > 1/2 \end{cases}$

Let Π be the set of parameters for which the orbit of x = 1/2 is purely periodic under T_{λ} . If $\lambda \in \Pi$, the system has a Markov partition: let M_{λ} be the corresponding transition matrix.

Definition

Thurston's Master Teapot is the closure

$$\Upsilon:=\overline{\{(z,\lambda)\in\mathbb{C}\times[1,2]\ :\ \lambda\in\Pi,\ \mathsf{det}(\mathit{M}_{\lambda}-\mathit{zl})=\mathsf{0}\}}$$

The Master Teapot for real polynomials

A three-dimensional object

Geometry of the teapot

Video (by D. Davis): https://vimeo.com/259921275

3D view: http://www.math.toronto.edu/tiozzo/teapot.html

Geometry of the real teapot

Theorem (Connectedness - T. '14)

The Master Teapot Υ is connected and locally connected.

Geometry of the real teapot

Theorem (Connectedness - T. '14)

The Master Teapot Υ is connected and locally connected.

Theorem (Persistence - Bray-Davis-Lindsey-Wu '19) For $z \in \mathbb{D}$, $(z, \lambda) \in \Upsilon$ implies $\{z\} \times [\lambda, 2] \subset \Upsilon$. Geometry of the real teapot

Theorem (Connectedness - T. '14)

The Master Teapot Υ is connected and locally connected.

Theorem (Persistence - Bray-Davis-Lindsey-Wu '19) For $z \in \mathbb{D}$, $(z, \lambda) \in \Upsilon$ implies $\{z\} \times [\lambda, 2] \subset \Upsilon$.

Let f postcritically finite.

- Let f postcritically finite.
- Its postcritical set together with the branch points of its Hubbard tree determine a Markov partition for f.

- Let f postcritically finite.
- Its postcritical set together with the branch points of its Hubbard tree determine a Markov partition for f.
- Denote by M_f the transition matrix associated to this Markov partition.

- Let f postcritically finite.
- Its postcritical set together with the branch points of its Hubbard tree determine a Markov partition for f.
- Denote by M_f the transition matrix associated to this Markov partition.

Definition

Consider the set Z(f) of eigenvalues of M_f :

$$Z(f) := \{\lambda \in \mathbb{C} \mid \det(M_f - \lambda I) = 0\}.$$

- Let f postcritically finite.
- Its postcritical set together with the branch points of its Hubbard tree determine a Markov partition for f.
- Denote by M_f the transition matrix associated to this Markov partition.

Definition

Consider the set Z(f) of eigenvalues of M_f :

$$Z(f) := \{\lambda \in \mathbb{C} \mid \det(M_f - \lambda I) = 0\}.$$

The growth rate $\lambda = e^{h(f)}$ is one element of Z(f).

- Let f postcritically finite.
- Its postcritical set together with the branch points of its Hubbard tree determine a Markov partition for f.
- Denote by M_f the transition matrix associated to this Markov partition.

Definition

Consider the set Z(f) of eigenvalues of M_f :

$$Z(f) := \{\lambda \in \mathbb{C} \mid \det(M_f - \lambda I) = 0\}.$$

The growth rate $\lambda = e^{h(f)}$ is one element of Z(f).

$$M = \left(\begin{array}{rrrrr} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

$$M = \left(\begin{array}{rrrrr} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

$$\det(M - xI) =$$

= -1 - 2x + x⁴

$$M = \left(\begin{array}{rrrrr} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

$$det(M - xl) =$$

$$= -1 - 2x + x^{4}$$

$$\lambda \approx 1.39534$$

$$h \approx \log 1.39534$$

Denote as $Com^+(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \setminus \overline{\mathbb{D}}$,

Denote as $Com^+(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \setminus \overline{\mathbb{D}}$, with the Hausdorff topology.

Denote as $Com^+(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \setminus \overline{\mathbb{D}}$, with the Hausdorff topology. Define $Z^+ : \mathbb{Q}/\mathbb{Z} \to Com^+(\mathbb{C})$ as

Denote as $Com^+(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \setminus \overline{\mathbb{D}}$, with the Hausdorff topology. Define $Z^+ : \mathbb{Q}/\mathbb{Z} \to Com^+(\mathbb{C})$ as

$$Z^+(heta):=Z(f_ heta)\cap (\mathbb{C}\setminus\mathbb{D}).$$

Denote as $Com^+(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \setminus \overline{\mathbb{D}}$, with the Hausdorff topology. Define $Z^+ : \mathbb{Q}/\mathbb{Z} \to Com^+(\mathbb{C})$ as

$$Z^+(heta) := Z(f_ heta) \cap (\mathbb{C} \setminus \mathbb{D}).$$

Theorem (Lindsey-T.-Wu '21) The map $Z^+ : \mathbb{Q}/\mathbb{Z} \to Com^+(\mathbb{C})$ admits a continuous extension

$$Z^+ : \mathbb{R}/\mathbb{Z} \to Com^+(\mathbb{C}).$$

Denote as $Com^+(\mathbb{C})$ the collection of compact subsets of $\mathbb{C} \setminus \overline{\mathbb{D}}$, with the Hausdorff topology. Define $Z^+ : \mathbb{Q}/\mathbb{Z} \to Com^+(\mathbb{C})$ as

$$Z^+(heta) := Z(f_ heta) \cap (\mathbb{C} \setminus \mathbb{D}).$$

Theorem (Lindsey-T.-Wu '21) The map $Z^+ : \mathbb{Q}/\mathbb{Z} \to Com^+(\mathbb{C})$ admits a continuous extension

$$Z^+ : \mathbb{R}/\mathbb{Z} \to Com^+(\mathbb{C}).$$

But: this is not true for the part inside $\mathbb{D}!$

Veins

A vein is an embedded arc in the Mandelbrot set.

Veins

A vein is an embedded arc in the Mandelbrot set. Existence (surgery): Branner-Douady '87

Veins

A vein is an embedded arc in the Mandelbrot set. Existence (surgery): Branner-Douady '87

ie Stass

For each p, q with gcd(p, q) = 1, there is a parameter $c_{p/q}$ with:

pre-fixed critical point

For each p, q with gcd(p, q) = 1, there is a parameter $c_{p/q}$ with:

- pre-fixed critical point
- rotation number $\frac{p}{a}$ around the α -fixed point

For each p, q with gcd(p, q) = 1, there is a parameter $c_{p/q}$ with:

- pre-fixed critical point
- rotation number $\frac{p}{a}$ around the α -fixed point
- The Hubbard tree of $c_{p/q}$ is a *q*-pronged star.

For each p, q with gcd(p, q) = 1, there is a parameter $c_{p/q}$ with:

- pre-fixed critical point
- rotation number $\frac{p}{a}$ around the α -fixed point
- The Hubbard tree of $c_{p/q}$ is a *q*-pronged star.

Definition

The $\frac{p}{q}$ -principal vein is the vein joining 0 with $c_{p/q}$.

Let $\Theta_{p/q}^{per}$ the periodic external angles whose rays land on the p/q-vein.

Definition

The $\frac{p}{q}$ -principal vein is the vein joining 0 with $c_{p/q}$.

Let $\Theta_{p/q}^{per}$ the periodic external angles whose rays land on the p/q-vein.

The Thurston set for a principal vein We define the Thurston set for the principal p/q-vein as

$$\Sigma_{p/q} := \left\{ z \in \mathbb{C} \mid \det(M_{\theta} - zI) = 0 \text{ for some } \theta \in \Theta_{p/q}^{per} \right\}.$$

Galois conjugates of entropies of complex maps: 1/3 vein

Galois conjugates of entropies of complex maps: 1/5 vein

Galois conjugates of entropies of complex maps: 1/11 vein

Connectivity of the $\frac{p}{q}$ -Thurston set

Corollary (Lindsey-T.-Wu '21) For any (p, q) coprime, the Thurston set

 $\Sigma_{p/q} \cap \{z \in \mathbb{C} \ : \ |z| \geq 1\}$

is path connected and locally connected.

Inside view: the Teapot

The Master Teapot for principal veins

For each λ , define

$$\mathcal{Z}(\lambda) := \{ z \in \mathbb{C} \mid \det(M_{\theta} - zI) = \mathbf{0} \; \forall \theta \in \Theta_{p/q} \text{ s.t. } \lambda = e^{h(\theta)} \}$$

The Master Teapot for principal veins

For each λ , define

$$\mathcal{Z}(\lambda) := \{ z \in \mathbb{C} \mid \det(M_{\theta} - zI) = \mathbf{0} \; \forall \theta \in \Theta_{p/q} \text{ s.t. } \lambda = \boldsymbol{e}^{h(\theta)} \}$$

the set of eigenvalues of all matrices for parameters of growth rate λ in the vein.

The Master Teapot for principal veins

For each λ , define

$$\mathcal{Z}(\lambda) := \{ z \in \mathbb{C} \mid \det(M_{\theta} - zI) = \mathbf{0} \; \forall \theta \in \Theta_{p/q} \text{ s.t. } \lambda = e^{h(\theta)} \}$$

the set of eigenvalues of all matrices for parameters of growth rate λ in the vein.

Definition

We define the $\frac{p}{a}$ -Master Teapot to be the set

$$\Upsilon_{p/q} := \left\{ (z, \lambda) \in \mathbb{C} \times \mathbb{R} \mid \lambda = e^{h(\theta)} \text{ for some } \theta \in \Theta_{p/q}^{per}, \ z \in \mathcal{Z}(\lambda) \right\}$$

The Persistence Theorem - complex veins Theorem (Persistence - Lindsey-T.-Wu '21) For $z \in \mathbb{D}$, $(z, \lambda) \in \Upsilon_{p/q}$ implies $\{z\} \times [\lambda, \lambda_q] \subset \Upsilon_{p/q}$.

The Persistence Theorem - complex veins Theorem (Persistence - Lindsey-T.-Wu '21) For $z \in \mathbb{D}$, $(z, \lambda) \in \Upsilon_{p/q}$ implies $\{z\} \times [\lambda, \lambda_q] \subset \Upsilon_{p/q}$.

Idea 1: look at Markov partition, write matrix and take leading eigenvalue

Idea 1: look at Markov partition, write matrix and take leading eigenvalue

This works, but you need to know the topology of the tree,

Idea 1: look at Markov partition, write matrix and take leading eigenvalue

This works, but you need to know the <u>topology</u> of the tree, and that varies wildly with the parameter!

Idea 1: look at Markov partition, write matrix and take leading eigenvalue

This works, but you need to know the <u>topology</u> of the tree, and that varies wildly with the parameter!

Idea 2: (Thurston): look at set of pairs of postcritical points

Idea 1: look at Markov partition, write matrix and take leading eigenvalue

This works, but you need to know the <u>topology</u> of the tree, and that varies wildly with the parameter!

Idea 2: (Thurston): look at set of pairs of postcritical points, which correspond to arcs between postcritical points.

Idea 1: look at Markov partition, write matrix and take leading eigenvalue

This works, but you need to know the <u>topology</u> of the tree, and that varies wildly with the parameter!

<u>Idea 2:</u> (Thurston): look at set of pairs of postcritical points, which correspond to arcs between postcritical points. Denote $c_i := f^i(0)$ the *i*th iterate of the critical point, and let

$$P:=\{(\textbf{c}_i,\textbf{c}_j) \ i,j \geq 0\}$$

the set of pairs of postcritical points

A pair (i, j) is <u>non-separated</u> if c_i and c_j lie on the same side of the critical point.

A pair (i, j) is <u>non-separated</u> if c_i and c_j lie on the same side of the critical point.

A pair (i, j) is <u>non-separated</u> if c_i and c_j lie on the same side of the critical point.

A pair (i, j) is <u>non-separated</u> if c_i and c_j lie on the same side of the critical point.

(1,2) \Rightarrow (2,3)

A pair (i, j) is <u>separated</u> if c_i and c_j lie on opposite sides of the critical point.

A pair (i, j) is <u>separated</u> if c_i and c_j lie on opposite sides of the critical point.

A pair (i, j) is <u>separated</u> if c_i and c_j lie on opposite sides of the critical point.

A pair (i, j) is <u>separated</u> if c_i and c_j lie on opposite sides of the critical point.

 $(1,3) \qquad \Rightarrow \qquad (1,2) + (1,4)$

Let *P* the cardinality of the set of <u>pairs</u> of postcritical points, and consider $A : \mathbb{R}^P \to \mathbb{R}^P$ given by

Let *P* the cardinality of the set of pairs of postcritical points, and consider $A : \mathbb{R}^P \to \mathbb{R}^P$ given by

▶ If (i, j) is non-separated, then $(i, j) \rightarrow (i + 1, j + 1)$

$$A(e_{i,j}) = e_{i+1,j+1}$$

Let *P* the cardinality of the set of <u>pairs</u> of postcritical points, and consider $A : \mathbb{R}^P \to \mathbb{R}^P$ given by

▶ If (i, j) is non-separated, then $(i, j) \rightarrow (i + 1, j + 1)$

$$A(e_{i,j}) = e_{i+1,j+1}$$

▶ If (i, j) is separated, then $(i, j) \rightarrow (1, i + 1) + (1, j + 1)$.

$$A(e_{i,j}) = e_{1,i+1} + e_{1,j+1}$$

Let *P* the cardinality of the set of <u>pairs</u> of postcritical points, and consider $A : \mathbb{R}^P \to \mathbb{R}^P$ given by

▶ If (i, j) is non-separated, then $(i, j) \rightarrow (i + 1, j + 1)$

$$A(e_{i,j}) = e_{i+1,j+1}$$

▶ If (i, j) is separated, then $(i, j) \rightarrow (1, i + 1) + (1, j + 1)$.

$$A(e_{i,j}) = e_{1,i+1} + e_{1,j+1}$$

Theorem (Thurston; Tan Lei) The entropy of f_{θ} is given by

 $h(\theta) = \log \lambda$

where λ is the leading eigenvalue of A. See also Gao Yan, Wolf Jung.

Theorem (Lindsey-T.-Wu '21)

Let f be a postcritically finite quadratic polynomial.

Theorem (Lindsey-T.-Wu '21)

Let f be a postcritically finite quadratic polynomial. Then the following 2 polynomials have the same roots off the unit circle:

Theorem (Lindsey-T.-Wu '21)

Let f be a postcritically finite quadratic polynomial. Then the following 2 polynomials have the same roots off the unit circle:

1. $P_{Th}(t)$ from Thurston's algorithm;

Theorem (Lindsey-T.-Wu '21)

Let f be a postcritically finite quadratic polynomial. Then the following 2 polynomials have the same roots off the unit circle:

- 1. $P_{Th}(t)$ from Thurston's algorithm;
- 2. $P_{Mar}(t)$ from the Markov partition.

Theorem (Lindsey-T.-Wu '21)

Let f be a postcritically finite quadratic polynomial. Then the following 2 polynomials have the same roots off the unit circle:

- 1. $P_{Th}(t)$ from Thurston's algorithm;
- 2. $P_{Mar}(t)$ from the Markov partition.

If f is critically periodic and belongs to a principal vein, a third polynomial that has the same roots off the unit circle is

(3) the principal vein kneading polynomial D(t).

Kneading theory for principal veins

We define the itinerary $It(x) \in \{0, 1, 2\}^{\mathbb{N}}$ as the itinerary for the first return map on $I_0 \cup I_1 \cup I_2$.

Kneading theory for principal veins

Let us define the "piecewise linear model"

$$\begin{split} F_{0,q,\lambda}(x) &:= \lambda x + \lambda + 1\\ F_{1,q,\lambda}(x) &:= -\lambda x + \lambda + 1\\ F_{2,q,\lambda}(x) &:= -\lambda^{q-1} x + \lambda^{q-1} + 1 \end{split}$$

Let $\epsilon_j \in \{+1, -1\}$ and $q_j \in \mathbb{N}^+$, and polynomial B_j be such that $F_{j,q,1/t}(x) := \frac{\epsilon_j}{t^{q_j}}x + \frac{B_j(t)}{t^{q_j}}$
Kneading theory for principal veins Let $w = \text{It}(c) \in \{0, 1, 2\}^{\mathbb{N}}$.

$$\eta_k := \epsilon_{w_1} \dots \epsilon_{w_k}$$
$$d_k := q_{w_0} + \dots + q_{w_{k-1}}$$

while $\eta_0 = 1$, $d_0 = 0$.

$$\eta_k := \epsilon_{w_1} \dots \epsilon_{w_k}$$
$$d_k := q_{w_0} + \dots + q_{w_{k-1}}$$

while $\eta_0 = 1$, $d_0 = 0$. We define the *q*-vein kneading determinant of f_c as

$$D(t):=\sum_{k=0}^{\infty}\eta_k B_{w_k}t^{d_k}.$$

$$\eta_k := \epsilon_{w_1} \dots \epsilon_{w_k}$$

 $d_k := q_{w_0} + \dots + q_{w_{k-1}}$

while $\eta_0 = 1$, $d_0 = 0$. We define the *q*-vein kneading determinant of f_c as

$$D(t):=\sum_{k=0}^{\infty}\eta_k B_{w_k}t^{d_k}.$$

Proposition

The power series D(t):

converges in the unit disk to a holomorphic function.

$$\eta_k := \epsilon_{w_1} \dots \epsilon_{w_k}$$

 $d_k := q_{w_0} + \dots + q_{w_{k-1}}$

while $\eta_0 = 1$, $d_0 = 0$. We define the *q*-vein kneading determinant of f_c as

$$D(t):=\sum_{k=0}^{\infty}\eta_k B_{w_k}t^{d_k}.$$

Proposition

The power series D(t):

- converges in the unit disk to a holomorphic function.
- The smallest root is $t = \frac{1}{\lambda}$, where λ is the growth rate

$$\eta_k := \epsilon_{w_1} \dots \epsilon_{w_k}$$

 $d_k := q_{w_0} + \dots + q_{w_{k-1}}$

while $\eta_0 = 1$, $d_0 = 0$. We define the *q*-vein kneading determinant of f_c as

$$D(t):=\sum_{k=0}^{\infty}\eta_k B_{w_k}t^{d_k}.$$

Proposition

The power series D(t):

- converges in the unit disk to a holomorphic function.
- The smallest root is $t = \frac{1}{\lambda}$, where λ is the growth rate
- The roots of D(t) inside the unit circle change continuously with w.

Fix a principal vein $\mathcal{V}_{p/q}$.

Fix a principal vein $\mathcal{V}_{p/q}$.

Theorem Let

$$lt(c_0) = (w_0)^{\infty}, \qquad lt(c_1) = (w_1)^{\infty}$$

Fix a principal vein $\mathcal{V}_{p/q}$.

Theorem

Let

$$\mathsf{lt}(c_0) = (w_0)^\infty, \qquad \mathsf{lt}(c_1) = (w_1)^\infty$$

be the itineraries of two critically periodic parameters $c_0 <_{\mathcal{M}} c_1$ in $\mathcal{V}_{p/q}.$

Fix a principal vein $\mathcal{V}_{p/q}$.

Theorem

Let

$$It(c_0) = (w_0)^{\infty}, \qquad It(c_1) = (w_1)^{\infty}$$

be the itineraries of two critically periodic parameters $c_0 <_{\mathcal{M}} c_1$ in $\mathcal{V}_{p/q}$. Then, given any N > 0, there is a critically periodic parameter c_2 such that the itinerary of c_2 is

$$\mathsf{lt}(c_2) = \left((w_1)^N u(w_0)^N \right)^\infty$$

Fix a principal vein $\mathcal{V}_{p/q}$.

Theorem

Let

$$It(c_0) = (w_0)^{\infty}, \qquad It(c_1) = (w_1)^{\infty}$$

be the itineraries of two critically periodic parameters $c_0 <_{\mathcal{M}} c_1$ in $\mathcal{V}_{p/q}$. Then, given any N > 0, there is a critically periodic parameter c_2 such that the itinerary of c_2 is

$$\mathsf{lt}(c_2) = \left((w_1)^N u(w_0)^N \right)^\infty$$

and c_2 is the smallest parameter on the vein with the given core entropy.

Fix a principal vein $\mathcal{V}_{p/q}$.

Theorem

Let

$$It(c_0) = (w_0)^{\infty}, \qquad It(c_1) = (w_1)^{\infty}$$

be the itineraries of two critically periodic parameters $c_0 <_{\mathcal{M}} c_1$ in $\mathcal{V}_{p/q}$. Then, given any N > 0, there is a critically periodic parameter c_2 such that the itinerary of c_2 is

$$\mathsf{lt}(c_2) = \left((w_1)^N u(w_0)^N \right)^\infty$$

and c_2 is the smallest parameter on the vein with the given core entropy.

Corollary

Let $(z, \lambda_0) \in \Upsilon$, let $\lambda_1 > \lambda_0$.

Fix a principal vein $\mathcal{V}_{p/q}$.

Theorem

Let

$$It(c_0) = (w_0)^{\infty}, \qquad It(c_1) = (w_1)^{\infty}$$

be the itineraries of two critically periodic parameters $c_0 <_{\mathcal{M}} c_1$ in $\mathcal{V}_{p/q}$. Then, given any N > 0, there is a critically periodic parameter c_2 such that the itinerary of c_2 is

$$\mathsf{lt}(c_2) = \left((w_1)^N u(w_0)^N \right)^\infty$$

and c_2 is the smallest parameter on the vein with the given core entropy.

Corollary

Let $(z, \lambda_0) \in \Upsilon$, let $\lambda_1 > \lambda_0$. For N large, $c_0 <_{\mathcal{M}} c_2 <_{\mathcal{M}} c_1$,

Fix a principal vein $\mathcal{V}_{p/q}$.

Theorem

Let

$$\mathsf{lt}(c_0) = (w_0)^\infty, \qquad \mathsf{lt}(c_1) = (w_1)^\infty$$

be the itineraries of two critically periodic parameters $c_0 <_{\mathcal{M}} c_1$ in $\mathcal{V}_{p/q}$. Then, given any N > 0, there is a critically periodic parameter c_2 such that the itinerary of c_2 is

$$\mathsf{lt}(c_2) = \left((w_1)^N u(w_0)^N \right)^\infty$$

and c_2 is the smallest parameter on the vein with the given core entropy.

Corollary

Let
$$(z, \lambda_0) \in \Upsilon$$
, let $\lambda_1 > \lambda_0$. For N large, $c_0 <_M c_2 <_M c_1$,
hence $\lambda_0 < \lambda_2 < \lambda_1$

Fix a principal vein $\mathcal{V}_{p/q}$.

Theorem

Let

$$It(c_0) = (w_0)^{\infty}, \qquad It(c_1) = (w_1)^{\infty}$$

be the itineraries of two critically periodic parameters $c_0 <_{\mathcal{M}} c_1$ in $\mathcal{V}_{p/q}$. Then, given any N > 0, there is a critically periodic parameter c_2 such that the itinerary of c_2 is

$$\mathsf{lt}(c_2) = \left((w_1)^N u(w_0)^N \right)^\infty$$

and c_2 is the smallest parameter on the vein with the given core entropy.

Corollary

Let $(z, \lambda_0) \in \Upsilon$, let $\lambda_1 > \lambda_0$. For N large, $c_0 <_{\mathcal{M}} c_2 <_{\mathcal{M}} c_1$, hence $\lambda_0 < \lambda_2 < \lambda_1$ but since $\operatorname{lt}(c_2)$ and $\operatorname{lt}(c_0)$ have the same "end" we have $d(z, \mathcal{Z}(c_0)) < \epsilon$,

Fix a principal vein $\mathcal{V}_{p/q}$.

Theorem

Let

$$It(c_0) = (w_0)^{\infty}, \qquad It(c_1) = (w_1)^{\infty}$$

be the itineraries of two critically periodic parameters $c_0 <_{\mathcal{M}} c_1$ in $\mathcal{V}_{p/q}$. Then, given any N > 0, there is a critically periodic parameter c_2 such that the itinerary of c_2 is

$$\mathsf{lt}(c_2) = \left((w_1)^N u(w_0)^N \right)^\infty$$

and c_2 is the smallest parameter on the vein with the given core entropy.

Corollary

Let $(z, \lambda_0) \in \Upsilon$, let $\lambda_1 > \lambda_0$. For N large, $c_0 <_{\mathcal{M}} c_2 <_{\mathcal{M}} c_1$, hence $\lambda_0 < \lambda_2 < \lambda_1$ but since $\operatorname{lt}(c_2)$ and $\operatorname{lt}(c_0)$ have the same "end" we have $d(z, \mathcal{Z}(c_0)) < \epsilon$, hence $(z, \lambda_1) \in \Upsilon$

Fix a principal vein $\mathcal{V}_{p/q}$.

Theorem

Let

$$It(c_0) = (w_0)^{\infty}, \qquad It(c_1) = (w_1)^{\infty}$$

be the itineraries of two critically periodic parameters $c_0 <_{\mathcal{M}} c_1$ in $\mathcal{V}_{p/q}$. Then, given any N > 0, there is a critically periodic parameter c_2 such that the itinerary of c_2 is

$$\mathsf{lt}(c_2) = \left((w_1)^N u(w_0)^N \right)^\infty$$

and c_2 is the smallest parameter on the vein with the given core entropy.

Corollary

Let
$$(z, \lambda_0) \in \Upsilon$$
, let $\lambda_1 > \lambda_0$. For N large, $c_0 <_{\mathcal{M}} c_2 <_{\mathcal{M}} c_1$,
hence $\lambda_0 < \lambda_2 < \lambda_1$ but since $\operatorname{lt}(c_2)$ and $\operatorname{lt}(c_0)$ have the same
"end" we have $d(z, \mathcal{Z}(c_0)) < \epsilon$, hence $(z, \lambda_1) \in \Upsilon$
 \Rightarrow persistence.

Thank you!

