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Topological entropy of real interval maps

Let f : I → I, continuous, piecewise monotone.

A lap of f is a
maximal interval on which f is monotone. The topological
entropy of f also equals (Misiurewicz-Szlenk)

htop(f ,R) = lim
n→∞

log #{laps(f n)}
n
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Example: the airplane map
f : I → I is postcritically finite if the forward orbits of the critical
points of f are finite.

Then the entropy is the logarithm of an
algebraic number.

A 7→ A ∪ B
B 7→ A

⇒
(

1 1
1 0

)
⇒ λ =

√
5+1
2 = ehtop(fc ,R)
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Dynamics and algebraic numbers
Let f : I → I be PCF with Markov matrix A.

Questions
I What is the meaning of the other eigenvalues?

Ergodicity, mixing, . . .
I How “intrinsic" are the other eigenvalues?

(e.g., what happens if you change symbolic coding?)

Observation. If λ′ is a Galois conjugate of λ, then it is an
eigenvalue of the same matrix.

I What algebraic numbers arise as growth rates of PCF
maps?
λ is a Perron number if |λ′| ≤ λ for any λ′ Galois conjugate
of λ.
(W. Thurston ’12) Every Perron number arises as growth
rate of a real PCF polynomial

I What if you fix the degree of the polynomial?
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Consider the real quadratic family

fc(z) := z2 + c c ∈ [−2,1/4]
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Question : Can we extend this theory to complex polynomials?



The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston, 1977).
I 0 ≤ htop(fc ,R) ≤ log 2.

Remark. If we consider fc : Ĉ→ Ĉ entropy is constant
htop(fc , Ĉ) = log 2. (Lyubich 1980)



Mandelbrot set

The Mandelbrot setM is the connectedness locus of the
quadratic family

M = {c ∈ C : f n
c (0) 9∞}



External rays
Since Ĉ \M is simply-connected, it can be uniformized by the
exterior of the unit disk

ΦM : Ĉ \ D→ Ĉ \M

The images of radial arcs in the disk are called external rays.

R(θ) := ΦM({ρe2πiθ : ρ > 1})
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The complex case: Hubbard trees

The Hubbard tree Tc of a quadratic polynomial is

Tc :=
⋃

m,n≥0

[f m
c (0), f n

c (0)]

where [x , y ] is the regulated arc between x and y .
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The complex case: Hubbard trees
The Hubbard tree Tc of a quadratic polynomial is

Tc :=
⋃

m,n≥0

[f m
c (0), f n

c (0)]

It is a forward invariant, connected subset of the filled Julia set
which contains the critical orbit. The map fc acts on it.



The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally
connected

(e.g. a postcritically finite f ). Then the core entropy
of f is the entropy of the restriction

h(f ) := h(f |Tf )

where Tf is the Hubbard tree of f .
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The core entropy - example

h(f ) := h(f |Tf )

A→ B
B → C
C → A ∪ D
D → A ∪ B

M =


0 0 1 1
1 0 0 1
0 1 0 0
0 0 1 0


det(M − xI) =
= −1− 2x + x4

λ ≈ 1.39534
h ≈ log 1.39534
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The core entropy

Let θ ∈ Q/Z. Then the external ray at angle θ lands, and
determines a postcritically finite quadratic polynomial fθ, with
Hubbard tree Tθ.

Definition (W. Thurston)
The core entropy of fθ is

h(θ) := h(fθ |Tθ
)

Question: How does h(θ) vary with the parameter θ?
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Core entropy as a function of external angle
(W. Thurston)
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Core entropy as a function of c



Monotonicity of entropy

Observation

If RM(θ1) and RM(θ2) land together, then h(θ1) = h(θ2).

Monotonicity still holds along veins.

Let us take two rays θ1 landing at c1 and θ2 landing at c2.
Then we define θ1 <M θ2 if c1 lies on the arc [0, c2].

Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong)
If θ1 <M θ2, then

h(θ1) ≤ h(θ2)
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The core entropy as a function of external angle

Question (Thurston, Hubbard):
Is h(θ) a continuous function of θ?
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Continuity of core entropy

Theorem (T.; Dudko-Schleicher)
The core entropy function h(θ) extends to a continuous function
from R/Z to R.
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Regularity properties of the core entropy

In fact:

Theorem (T. ’15)
The core entropy is locally Hölder continuous at θ if h(θ) > 0,
and not locally Hölder at θ where h(θ) = 0.

Theorem (T. ’17)
Let h(θ) be the entropy of the real quadratic polynomial with
external ray θ. Then the local Hölder exponent α(h, θ) of h at θ
satisfies

α(h, θ) :=
h(θ)

log 2

(Conjectured Isola-Politi, 1990)



Further questions

Question. What about the other eigenvalues?



The entropy spectrum (W. Thurston ’12)



Thurston’s entropy spectrum

Let
M0 := {c ∈ R : ∃n s.t. f n

c (0) = 0}

the set of critically periodic parameters.

Recall

λ(fc) = ehtop(fc)

Definition
We define the Thurston set (entropy spectrum) as

Σ :=
⋃

c∈M0

Gal(λ(fc))

where Gal(λ) is the set of Galois conjugates (i.e., roots of the
same minimal polynomial) of λ.
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Zeros of polynomials with coefficients ±1 (Bousch)



Comparison

Σ± :=

{
z ∈ C : ∃(εk ) ∈ {±}n :

n∑
k=1

εkzk = 0

}



Zeros of polynomials with coefficients 0,1 (Odlyzko-Poonen)



The entropy spectrum

Theorem (T. ’14)

I The Thurston set Σ is connected and locally connected.

I Σ contains a neighbourhood {1− ε < |z| < 1 + ε} of the
unit circle.

I Σ is closed under taking nth roots: if z ∈ Σ and wn = z for
some n ∈ N, then w belongs to Σ.

I Moreover, we have

Σ ∩ D = Σ± ∩ D.
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The Master Teapot for real maps

Topological Entropy of 
quadratic maps of an interval

with periodic critical point

3-dimensional plot of 11,966 Galois conjugates of exp(entropy) for self-maps of the interval with one periodic critical point
(and no others).   The vertical coordinate is exp(topological entropy, and horizontal is the complex plane.  Is the limiting 
3-dimensional set (the closure) connected? Does the limiting set contain the cylinder (unit circle X [1,2]?

The Master Teapot



The Master Teapot for tent maps

For each λ ∈ [1,2], consider the tent map Tλ : [0,1]→ [0,1]

Tλ(x) :=

{
λx if x ≤ 1/2
λ(1− x) if x > 1/2
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Let Π be the set of parameters for which the orbit of x = 1/2 is
purely periodic under Tλ.

If λ ∈ Π, the system has a Markov
partition: let Mλ be the corresponding transition matrix.

Definition
Thurston’s Master Teapot is the closure

Υ := {(z, λ) ∈ C× [1,2] : λ ∈ Π, det(Mλ − zI) = 0}



The Master Teapot for tent maps

For each λ ∈ [1,2], consider the tent map Tλ : [0,1]→ [0,1]

Tλ(x) :=

{
λx if x ≤ 1/2
λ(1− x) if x > 1/2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Let Π be the set of parameters for which the orbit of x = 1/2 is
purely periodic under Tλ. If λ ∈ Π, the system has a Markov
partition: let Mλ be the corresponding transition matrix.

Definition
Thurston’s Master Teapot is the closure

Υ := {(z, λ) ∈ C× [1,2] : λ ∈ Π, det(Mλ − zI) = 0}



The Master Teapot for tent maps

For each λ ∈ [1,2], consider the tent map Tλ : [0,1]→ [0,1]

Tλ(x) :=

{
λx if x ≤ 1/2
λ(1− x) if x > 1/2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Let Π be the set of parameters for which the orbit of x = 1/2 is
purely periodic under Tλ. If λ ∈ Π, the system has a Markov
partition: let Mλ be the corresponding transition matrix.

Definition
Thurston’s Master Teapot is the closure

Υ := {(z, λ) ∈ C× [1,2] : λ ∈ Π, det(Mλ − zI) = 0}



The Master Teapot for real polynomials



A three-dimensional object



Geometry of the teapot

Video (by D. Davis): https://vimeo.com/259921275

3D view:
http://www.math.toronto.edu/tiozzo/teapot.html

https://vimeo.com/259921275
http://www.math.toronto.edu/tiozzo/teapot.html


Geometry of the real teapot
Theorem (Connectedness - T. ’14)
The Master Teapot Υ is connected and locally connected.

Theorem (Persistence - Bray-Davis-Lindsey-Wu ’19)
For z ∈ D, (z, λ) ∈ Υ implies {z} × [λ,2] ⊂ Υ.
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Eigenvalues for complex polynomials

I Let f postcritically finite.

I Its postcritical set together with the branch points of its
Hubbard tree determine a Markov partition for f .

I Denote by Mf the transition matrix associated to this
Markov partition.

Definition
Consider the set Z (f ) of eigenvalues of Mf :

Z (f ) := {λ ∈ C | det(Mf − λI) = 0}.

The growth rate λ = eh(f ) is one element of Z (f ).



Eigenvalues for complex polynomials

I Let f postcritically finite.
I Its postcritical set together with the branch points of its

Hubbard tree determine a Markov partition for f .

I Denote by Mf the transition matrix associated to this
Markov partition.

Definition
Consider the set Z (f ) of eigenvalues of Mf :

Z (f ) := {λ ∈ C | det(Mf − λI) = 0}.

The growth rate λ = eh(f ) is one element of Z (f ).



Eigenvalues for complex polynomials

I Let f postcritically finite.
I Its postcritical set together with the branch points of its

Hubbard tree determine a Markov partition for f .
I Denote by Mf the transition matrix associated to this

Markov partition.

Definition
Consider the set Z (f ) of eigenvalues of Mf :

Z (f ) := {λ ∈ C | det(Mf − λI) = 0}.

The growth rate λ = eh(f ) is one element of Z (f ).



Eigenvalues for complex polynomials

I Let f postcritically finite.
I Its postcritical set together with the branch points of its

Hubbard tree determine a Markov partition for f .
I Denote by Mf the transition matrix associated to this

Markov partition.

Definition
Consider the set Z (f ) of eigenvalues of Mf :

Z (f ) := {λ ∈ C | det(Mf − λI) = 0}.

The growth rate λ = eh(f ) is one element of Z (f ).



Eigenvalues for complex polynomials

I Let f postcritically finite.
I Its postcritical set together with the branch points of its

Hubbard tree determine a Markov partition for f .
I Denote by Mf the transition matrix associated to this

Markov partition.

Definition
Consider the set Z (f ) of eigenvalues of Mf :

Z (f ) := {λ ∈ C | det(Mf − λI) = 0}.

The growth rate λ = eh(f ) is one element of Z (f ).



Eigenvalues for complex polynomials

I Let f postcritically finite.
I Its postcritical set together with the branch points of its

Hubbard tree determine a Markov partition for f .
I Denote by Mf the transition matrix associated to this

Markov partition.

Definition
Consider the set Z (f ) of eigenvalues of Mf :

Z (f ) := {λ ∈ C | det(Mf − λI) = 0}.

The growth rate λ = eh(f ) is one element of Z (f ).



The core entropy - example

A→ B
B → C
C → A ∪ D
D → A ∪ B

M =


0 0 1 1
1 0 0 1
0 1 0 0
0 0 1 0


det(M − xI) =
= −1− 2x + x4

λ ≈ 1.39534
h ≈ log 1.39534
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Outside view: continuity

Denote as Com+(C) the collection of compact subsets of C \D,

with the Hausdorff topology.
Define Z+ : Q/Z→ Com+(C) as

Z+(θ) := Z (fθ) ∩ (C \ D).

Theorem (Lindsey-T.-Wu ’21)
The map Z+ : Q/Z→ Com+(C) admits a continuous extension

Z+ : R/Z→ Com+(C).

But: this is not true for the part inside D!
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A vein is an embedded arc in the Mandelbrot set.

Existence (surgery): Branner-Douady ’87
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Principal veins
For each p,q with gcd(p,q) = 1, there is a parameter cp/q with:

I pre-fixed critical point

I rotation number p
q around the α-fixed point

I The Hubbard tree of cp/q is a q-pronged star.
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Principal veins
Definition
The p

q -principal vein is the vein joining 0 with cp/q.

Let Θper
p/q the periodic external angles whose rays land on the

p/q-vein.
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The Thurston set for a principal vein
We define the Thurston set for the principal p/q-vein as

Σp/q :=
{

z ∈ C | det(Mθ − zI) = 0 for some θ ∈ Θper
p/q

}
.



Galois conjugates of entropies of complex maps:
1/3 vein



Galois conjugates of entropies of complex maps:
1/5 vein



Galois conjugates of entropies of complex maps:
1/11 vein



Connectivity of the p
q -Thurston set

Corollary (Lindsey-T.-Wu ’21)
For any (p,q) coprime, the Thurston set

Σp/q ∩ {z ∈ C : |z| ≥ 1}

is path connected and locally connected.



Inside view: the Teapot



The Master Teapot for principal veins

For each λ, define

Z(λ) := {z ∈ C | det(Mθ − zI) = 0 ∀θ ∈ Θp/q s.t. λ = eh(θ)}

the set of eigenvalues of all matrices for parameters of growth
rate λ in the vein.

Definition
We define the p

q -Master Teapot to be the set

Υp/q :=
{

(z, λ) ∈ C× R | λ = eh(θ) for some θ ∈ Θper
p/q, z ∈ Z(λ)

}
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The Persistence Theorem - complex veins
Theorem (Persistence - Lindsey-T.-Wu ’21)
For z ∈ D, (z, λ) ∈ Υp/q implies {z} × [λ, λq] ⊂ Υp/q.
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Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading
eigenvalue

This works, but you need to know the topology of the tree,
and that varies wildly with the parameter!

Idea 2: (Thurston): look at set of pairs of postcritical points,
which correspond to arcs between postcritical points.
Denote ci := f i(0) the i th iterate of the critical point, and let

P := {(ci , cj) i , j ≥ 0}

the set of pairs of postcritical points
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Computing the entropy: non-separated pair

A pair (i , j) is non-separated if ci and cj lie on the same side of
the critical point.

⇒

(1,2) ⇒ (2,3)
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Computing the entropy: separated pair

A pair (i , j) is separated if ci and cj lie on opposite sides of the
critical point.

⇒

(1,3) ⇒ (1,2) + (1,4)
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The algorithm
Let P the cardinality of the set of pairs of postcritical points, and
consider A : RP → RP given by

I If (i , j) is non-separated, then (i , j)→ (i + 1, j + 1)

A(ei,j) = ei+1,j+1

I If (i , j) is separated, then (i , j)→ (1, i + 1) + (1, j + 1).

A(ei,j) = e1,i+1 + e1,j+1

Theorem (Thurston; Tan Lei)
The entropy of fθ is given by

h(θ) = logλ

where λ is the leading eigenvalue of A.
See also Gao Yan, Wolf Jung.
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Coincidence of entropy algorithms

Theorem (Lindsey-T.-Wu ’21)
Let f be a postcritically finite quadratic polynomial.

Then the
following 2 polynomials have the same roots off the unit circle:

1. PTh(t) from Thurston’s algorithm;
2. PMar (t) from the Markov partition.

If f is critically periodic and belongs to a principal vein, a third
polynomial that has the same roots off the unit circle is
(3) the principal vein kneading polynomial D(t).
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Kneading theory for principal veins

We define the itinerary It(x) ∈ {0,1,2}N as the itinerary for the
first return map on I0 ∪ I1 ∪ I2.



Kneading theory for principal veins
Let us define the “piecewise linear model"

F0,q,λ(x) := λx + λ+ 1
F1,q,λ(x) := −λx + λ+ 1

F2,q,λ(x) := −λq−1x + λq−1 + 1

α

x0

x1

x2

x3

I0

I1

I2I3

Let εj ∈ {+1,−1} and qj ∈ N+, and polynomial Bj be such that

Fj,q,1/t (x) :=
εj
tqj

x +
Bj(t)
tqj



Kneading theory for principal veins
Let w = It(c) ∈ {0,1,2}N.

For each k ≥ 1, define

ηk := εw1 . . . εwk

dk := qw0 + · · ·+ qwk−1

while η0 = 1, d0 = 0.
We define the q-vein kneading determinant of fc as

D(t) :=
∞∑

k=0

ηkBwk tdk .

Proposition
The power series D(t):

I converges in the unit disk to a holomorphic function.
I The smallest root is t = 1

λ , where λ is the growth rate
I The roots of D(t) inside the unit circle change continuously

with w.
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Persistence
Fix a principal vein Vp/q.

Theorem
Let

It(c0) = (w0)∞, It(c1) = (w1)∞

be the itineraries of two critically periodic parameters c0 <M c1
in Vp/q. Then, given any N > 0, there is a critically periodic
parameter c2 such that the itinerary of c2 is

It(c2) =
(

(w1)Nu(w0)N
)∞

and c2 is the smallest parameter on the vein with the given core
entropy.

Corollary
Let (z, λ0) ∈ Υ, let λ1 > λ0. For N large, c0 <M c2 <M c1,
hence λ0 < λ2 < λ1 but since It(c2) and It(c0) have the same
“end" we have d(z,Z(c0)) < ε, hence (z, λ1) ∈ Υ
⇒ persistence.
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